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Return Volatility and Trading Volume:
An Information Flow Interpretation of
Stochastic Volatility

TORBEN G. ANDERSEN*

ABSTRACT

The paper develops an empirical return volatility-trading volume model from a
microstructure framework in which informational asymmetries and liquidity needs
motivate trade in response to information arrivals. The resulting system modifies the
so-called “Mixture of Distribution Hypothesis” (MDH). The dynamic features are
governed by the information flow, modeled as a stochastic volatility process, and
generalize standard ARCH specifications. Specification tests support the modified
MDH representation and show that it vastly outperforms the standard MDH. The
findings suggest that the model may be useful for analysis of the economic factors
behind the observed volatility clustering in returns.

IT 18 WIDELY DOCUMENTED that daily financial return series display strong con-
ditional heteroskedasticity. This finding strikes at the heart of empirical
financial research. The estimated return variance is routinely used as a sim-
ple, albeit crude, measure of risk, and the return variance enters directly into
derivative pricing formulas such as the Black-Scholes formula. Moreover, tests
of market efficiency based on asset returns must incorporate corrections for
heteroskedasticity in order to produce the appropriate asymptotic distribu-
tions of the test statistics. And perhaps most importantly, empirically relevant
asset pricing theories typically relate expected returns, i.e., risk premia, to the
joint second order moments of returns and other stochastic processes. Again,
heteroskedasticity must be accounted for in order to derive efficient estimation
and testing procedures. Finally, a better characterization of return volatility
sheds light on the virtues of alternative specifications for the return generating
mechanism.
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Until recently, most empirical work on return volatility was devoted to
univariate time series models for which the autoregressive conditional het-
eroskedasticity (ARCH) model of Engle (1982) and its extension into GARCH
by Bollerslev (1986) have been very successful.! However, the research objec-
tives have grown increasingly ambitious. Multivariate structural models fo-
cusing on the volatility comovements across assets and the interaction be-
tween volatility and other economic variables are now commonplace. An
important motivation behind these studies is the attempt to capture and
interpret the factors that are the source of ARCH effects in returns. Nonethe-
less, these studies have not yet established a common framework that has
gained widespread acceptance.

From a market microstructure perspective, price movements are caused
primarily by the arrival of new information and the process that incorporates
this information into market prices. Theory suggests that variables such as the
trading volume, the number of transactions, the bid-ask spread, or the market
liquidity are related to the return volatility process. However, the focus of the
market microstructure literature is on intraday patterns rather than interday
dynamics, so there are typically no explicit predictions regarding the relation
among these variables at the daily frequency.

On the empirical front, a sizeable literature has documented a strong posi-
tive contemporaneous correlation between daily trading volume and return
volatility. Following the work of Clark (1973), the empirical specifications tend
to follow the intuitively appealing, although somewhat ad hoc specification
associated with the “Mixture of Distribution Hypothesis” (MDH) that posits a
joint dependence of returns and volume on an underlying latent event or
information flow variable, see, e.g., Epps and Epps (1976) and Tauchen and
Pitts (1983). The emphasis on a latent driving process separates the approach
from an ARCH modeling strategy and points instead towards a stochastic
volatility representation. Lamoureux and Lastrapes (1990) insert volume di-
rectly in the ARCH variance process and find it to be strongly significant, while
past return shocks become insignificant. This confirms that volume is driven
by the identical factors that generate return volatility, but leaves the task of
providing a model for the joint process unresolved. Early tests of the implications
of the MDH were supportive of the model, e.g., Harris (1986, 1987), but more
recent studies have produced largely negative evidence (Heimstra and Jones
(1994), Lamoureux and Lastrapes (1994), Richardson and Smith (1994)). Finally,
in a comprehensive empirical study of the joint distribution of returns and volume,
Gallant, Rossi, and Tauchen (1992, 1993) apply a semi-nonparametric estimation
technique to daily observations at the market wide level. They unearth a number
of stylized facts that serve as a challenge for future theoretical work.

This article develops a model of the daily return-volume relationship by
integrating the market microstructure setting of Glosten and Milgrom (1985)
with the stochastic volatility, information flow perspective of the MDH. At
first, the joint distribution is derived via weak conditions on the information

1 See, e.g., Bollerslev, Chou, and Kroner (1992) for a survey of this literature.
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arrival process. Subsequently, the model is expanded into a full dynamic
representation by providing a specific stochastic volatility process for the
information arrivals. Both representations are estimated and tested for five
major individual common stocks on the New York Stock Exchange over the
period 1973-1991. The main contributions of the article are as follows. First,
we develop modifications to the standard MDH that arise naturally from the
microstructure setting. Second, we reinforce the recent empirical findings by
resoundingly rejecting the restrictions that the standard MDH imposes on
contemporaneous return-volume observations, while controlling for the trend
in volume and using a long sample. In contrast, our alternative version of the
MDH provides an overall acceptable characterization of these features of the
data, so the general framework of the MDH may yet provide a useful basis for
structural modeling of the interaction of market variables in response to
information flows and, ultimately, the sources of return volatility. Third, we
demonstrate that a stochastic volatility representation of the information
arrival process that generalizes the popular GARCH(1,1) results in a dynamic
specification of the joint system that is consistent with the main contempora-
neous as well as dynamic features of the data. Fourth, we document that, in
spite of the overall satisfactory fit, the simultaneous incorporation of returns
and volume data results in a significant reduction in the estimated volatility
persistence relative to the usual results obtained from univariate return se-
ries. This points towards some new as well as promising directions for future
research within the general framework proposed.

Our model differs in important respects from other models in the literature,
but the papers by Foster and Viswanathan (1995), Brock and LeBaron (1993),
Ghysels and Jasiak (1994), and Tauchen, Zhang and Liu (1994) share some of
the basic motivations. The remainder of the article is organized as follows.
Section I outlines the basic features of the Glosten and Milgrom model re-
quired for the exposition. Section II develops the testable implications of the
model for the contemporaneous system of returns and trading volume, and
contrasts the specification to the usual MDH. Section III provides a description
of our data. Section IV conducts explicit tests of our modified version of the
MDH as well as the standard specification. Section V presents our set of
candidate stochastic volatility models for the dynamic representation of the
system and discusses the implementation of the Generalized Method of Mo-
ment (GMM) estimation technique in this context. Next follows a presentation of
the empirical results for the fully specified dynamic model. The section concludes
with an exploration of the estimated volatility persistence relative to standard
ARCH models and alternative univariate return models. Finally, section VI sum-
marizes the article and provides suggestions for future research.

I. The Theoretical Framework

We develop a version of the MDH based on the theoretical framework of
Glosten and Milgrom (1985), henceforth GM. This is a natural choice since GM
is structured to explain the process of price discovery, or information assimi-
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lation, that occurs just after an event providing an informational advantage to

"informed traders. We outline the basic features of the model and impose
sufficient structure on the intertemporal setting to allow for a rigorous explo-
ration of the model’s dynamic implications.

The model focuses on a single market for an asset with a random liquidation
value of V at a (distant) point in the future. There are three distinct groups of
risk-neutral traders, a specialist, and informed and uninformed investors. It is
a competitive setting in which investors arrive sequentially to the market in
random and anonymous fashion and then decide whether to trade one unit of
the asset at the bid or ask price quoted by the specialist or not trade at all.
During the trading day, informed investors obtain private signals regarding
the value of the asset that may provide apparent profit opportunities at the
quoted prices. An important finding is that over the course of a (short) period,
the sequence of trades reveals the pricing implications of the private signals
and subsequently —until new private information arrives—all market partic-
ipants agree on the value of the traded asset. Thus, private information
arrivals induce a dynamic learning process that results in prices fully reveal-
ing the content of the private information through the sequence of trades and
transaction prices. We refer to this period as a price discovery or information
assimilation phase. Subsequently, when all agents agree on the price we have
a (temporary) market equilibrium characterized by uniform valuation and a
low bid-ask spread. Hence, we assume that each information arrival induces a
price discovery phase followed by an equilibrium phase. The analysis below is
based on the bivariate series obtained by recording the price and the cumula-
tive volume since last observation at an arbitrary point during each equilib-
rium phase.

We require a formal specification of the market dynamics in order to explore
the intertemporal features of the model. The agents revise their estimates of
the terminal asset value, V, over time. Direct information is obtained from
either public signals that everybody observes simultaneously or from private
signals that are only received by a subset of the informed traders. Additional
information is gauged from transaction prices. The history of public informa-
tion signals and trades constitutes the common information set, C,, at time .
Each investors information set, ®,, consists of C, plus any potential private
information.? The specialist valuation of the asset at time 7 is the expected
value of the asset conditional on his current information, i.e., P, = E[VIS ],
where the specialist information set, S,, is another refinement of C,. The
specialist knows the probabilistic structure of investor and news arrivals and
makes correct statistical inference from the observed data. Moreover, he works
under a zero profit constraint enforced by regulation or by competition from
floor traders and limit orders. Nonetheless, P, is not the quoted price since
observing whether the next agent buys or sells provides additional informa-

2 We follow GM and label by 7 the trader who arrives at the market at time 7. Since investors
arrive sequentially the notation is unique, but the trader may be either informed or uninformed.
For the uninformed the refinement of C, is the empty set.
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tion. If A, denotes the event that an agent purchases the asset at the ask and
B, the event that an agent sells the asset at the bid at time 7, then “fair” ask
and bid prices are P? = E[VIS, U A,] and P® = E[VIS, U B_]. If a sell order
is submitted, the transaction price, P®, represents the expected value of the
asset to the market maker, since his information set now is S, U B,, rather
than S.. This implies that the market maker never ex post regrets a trade:
when the trade is effectuated it has an expected value of zero to the specialist.
This fact explains the second key finding of GM, namely that the transaction
prices follow a martingale w.r.t. S, and C,, i.e., the specialist as well as the
public information set. Hence, observed prices represent fair assessments of
future value conditional on the relevant information, and the bid-ask spread
does not induce any bias or negative autocorrelation into the sequence of
transaction prices.

We assume that uninformed investors arrive at the market according to a
constant Poisson arrival process with intensity m, per day.® For simplicity,
they have inelastic demand and supply schedules, i.e., a liquidity trader either
buys or sells one unit of the asset, each with probability one half. In contrast,
when an informed investor arrives at the market, the trading decision is based
on the value, E[VI®_], assigned to ownership of one unit of the asset, so these
agents differ only in their information sets. The signals received by the in-
formed are generally correlated but not identical. Thus, they may disagree on
their assessment of asset value. However, during the assimilation phase, their
valuation, as well as that of all other agents, converges. Consequently, in-
formed trading tends to taper off at the end of the price discovery phase.4 This
implies that the arrival rate of informed traders within each such phase is
endogenous as it depends on the informativeness of the private signals, the
preceding trade history, the bid-ask spread and other factors.5

II. The Empirical Specification
A. The Distribution of Daily Returns and Trading Volume

This section develops an empirically testable version of the MDH. As de-
scribed above, the market moves from one temporary equilibrium to the next

8 This minimizes the impact of the liquidity traders on the dynamics of return volatility and
trading volume. The presence of the liquidity traders help circumvent the no-trade theorem
(Milgrom and Stokey (1982)).

*In GM each investor assigns a value, p, E[VI®_], to owning one unit of the asset, where p,,
differs randomly from unity. Only the specialist has p, equal to one at all times. This allows for
price-elastic noise trading and effectively introduces a liquidity motive into the trading decisions
of informed agents. Neither feature changes the qualitative aspects of the model.

5 The derivation of the distribution for daily returns and volume below avoids the complications
associated with such short run dependencies in informed trading by defining the basic intraday
time unit to be the full (variable length) price discovery and equilibrium phase associated with the
latest information arrival. Thus, the dynamic theory of GM characterizes each short interval, but
the properties of the return and volume series at the daily level are driven largely, as we shall see,
by the (random) number of information events per day.
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in response to a large number of information arrivals during each trading day.
Thus, every day can be decomposed into a random number of small intervals,
each consisting of an information assimilation phase and an equilibrium phase
of varying length. A priori, the joint distribution of price changes and informed
trading volume is identical over each interval. Thus, if we sample transaction
prices and accumulated volume once during each equilibrium phase, then the
joint distribution of price changes and informed trading volume constitutes an
i.i.d. series.® '

An important conclusion of GM is that the sequence of transaction prices
follows a martingale with respect to public information. Thus, no matter how
we sample prices the resulting series will remain a martingale. We denote the
transaction price recorded during the j-th temporary equilibrium of day ¢ by
P;,j=1,...,dJ, — 1. The total number of information arrivals on day ¢, J,,
is random but large. Consequently, the return over the full trading day is given
by

Pj,t _ PJz,t
Pj~1,t Po,t

Jt
1+R,=1]] (1)

J=1

where P, , denotes the first and P; , the last transaction price of the day.
From the martingale property, R, has mean zero. It is convenient to work with
continuously compounded return, so ignoring an inconsequential approxima-
tion error, we write R, = In(P; ,/P, ,) and obtain

Jt P. Je
t ..
R, = 2 ln(P.J“) = 2 Mg Me ~ 1.1.d.(0, 0'?,) (2)
j=1 I j=1

The number of information arrivals, ¢J,, is assumed to be large, yet display a
significant variation across the trading days. This feature is best captured by
introducing the notion of a benchmark day with a fixed large number of
arrivals, J. Then J, = K, J, where the positive scaling factor K; denotes the
intensity of information arrivals relative to the benchmark. Clearly, the bench-
mark day with J arrivals generates a random return with mean zero and
variance o = Jo‘f,, and we may thus represent the intra-day return compo-
nents as n; , = o€, ,/J"'?, where ¢; , is i.i.d., mean zero and has unit variance.
The return specification for an arbitrary trading day now takes the form

1 JK,
R,= oK}? (TR > €t (3)
j=1

6 In fact, our theory allows the series to display quite general forms of weak dependency—the
pivotal point is that appropriate laws of large numbers and central limit theorems apply.
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The result resembles that of Clark (1973). For large J, and under weak
regularity conditions, we have? :

R,K, ~ N(0, o’K,) (4)

Hence, daily returns are conditionally normal but have variances that reflect
the intensity of information arrivals, K,, as also noted by Ross (1989). This
representation is closely related to the idea of time deformation as the return
variance is driven by an event time scale (information arrivals) rather than a
calendar time scale.® Moreover, we find that the systematic return volatility
dynamics is governed strictly by the time series properties of the information
flow into the market.

The daily trading volume, V,, has informed and noise components, i.e., V, =
IV, + NV,. Noise trading is governed by a stochastic process with a constant
arrival intensity of m, per day. Hence, NV, is directed by a time-invariant
Poisson process, Po(m,). Consequently, the systematic variation in trading
volume is due solely to fluctuations in the informed volume.

Each private information arrival tends to generate trading by informed
agents over the information assimilation phase. Both the number of daily
arrivals and the number of informed traders are large, but the daily informed
volume remains moderate because the probability that a given (potentially)
informed trader transacts as a result of a single information arrival is small.
We denote this probability, associated with the j-th arrival on day ¢, by p ;¢ An
informed agent may fail to trade on a given arrival for a number of reasons: (i)
each insider only picks up information associated with a particular arrival
with some (low) probability; (i) public news that reveals the information may
arrive to the market before the insider gets access to the news or the specialist;
(iii) other informed traders may arrive at the market before him or her and
through the intensity and unidirectional pattern of their trading reveal the
pricing implication of the information arrival; (iv) as soon as the specialist
infers that private information is present, the bid-ask spread increases, thus
diminishing the chance that the private signal presents a profit opportunity.
Of course, as the price discovery process unfolds the spread narrows again
because the adverse selection problem facing the specialist is abating. But by
then, the quoted prices reflect most of the information content of the private
signals, and profitable trading opportunities are minimal.

Consequently, we envision a setting in which each informed trader, on
average, makes only a few transactions per day. In addition, the likelihood of
an informed agent trading on a given news arrival, p;: may vary with the
informational content of the signals. However, a number of factors tend to

7 The textbook central limit theorem argument fails because the number of arrivals is stochas-
tic. See Clark (1973), Theorem 3, for an appropriate generalization of the standard theorem. More
general results that allow for weak dependency in the sequence of return components are provided
by Billingsley (1968), Theorems 17.2, 20.1, and 20.3.

8 See Stock (1988) for an introduction to time deformation and Ghysels and Jasiak (1994) for an
application.
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equalize this probability across the different types of information arrivals. For
example, following an arrival that induces a large price revision, more insiders
may be informed, and a higher fraction initially finds it profitable to trade.
However, as the information is being incorporated into the quotes, the inten-
sity and clustering of orders at one side of the market quickly induces a
substantial change in the bid and ask prices as well as an increase in the
spread. This lowers the probability of informed trading on the part of the
remaining insiders. Conversely, an arrival with less information content tends
to generate less concentrated insider trading, less rapid information assimila-
tion, less of a change in the spread, and hence a longer period over which an
insider may be able to exploit the superior information.® Exact predictions
regarding the amount of informed trading associated with different types of
events are not available. Nonetheless, the discussion suggests that the varia-
tion in p; , across arrivals is rather limited, in which case the distributional
approximations used below should be accurate.

First, consider the informed volume induced by a single news arrival. Each
insider trades one unit of the asset with probability p; , before the end of the
assimilation period. Thus, the induced amount of trading is binomially dis-
tributed, Bin(Z, p; ,), with an expected value of I - pj > where I denotes the
maximum number of insiders that might obtain a private signal associated
with the event. For I large, p;, small, and I - p; , moderate, the Poisson,
Po(I - p; ,), approximates this binomial extremely Well 10

Now, consider the informed volume on a day with J, arrivals. We assume the
variation in the probability of informed trading, p;;, across the arrivals is
governed by a stationary process. Letting the expected number of trades by an
insider be p on a day with J arrivals, p; , has mean p/J. If the variation of p; it
around its mean is limited, as suggested above, then by using the Poisson
approximation, one may show that the distribution of the daily informed
volume is given by!1

IVIK, ~ Po(IK,u) (5)

and combining the expressions for the noise and informed components of
trading, we obtain the following specification for daily trading volume

ViIK, ~ Po(my+ IK,p) (6)

Thus, the characterization of volume takes on a remarkably simple parametric
form. The constant, m,, reflects the noise component while the informed
component is proportional to the information flow. The factor of proportional-

9 This line of reasoning is formalized in Proposition 3 of GM, which states that the expected
number of trades times the square of the average spread is bounded by a number independent of
the pattern of trade.

10 See Feller (1968), pp. 152-153, for specific illustrations regarding the closeness of this
approximation. Alternatively, one may utilize a normal approximation to the binomial. This is,
however, much less precise under the present circumstances.

11 A derivation is provided in the appendix.
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ity, m; = I - u, determines how strongly volume fluctuates in response to
news.

B. Parameter Identification and Non-Stationarity

This section deals with issues of parameter identification and the implica-
tions of nonstationarity in the trading volume series.

First, it is clear that m,; = I - u is identifiable, while it is impossible to
identify the parameters I and w separately from observations on returns and
volume alone. We ignore these parameters and concentrate on the estimation
of m . Second, inspection of the equations (4) and (6) reveal that the scale of K,
itself is arbitrary. We normalize the system by choosing o = 1 in equation (4).
This fixes the scale of m and m, as well. Hence, our final specification for the
return equation is

R/|K, ~ N(0, K)) (7)

An equivalent representation of the daily return is often convenient. If Z, is
ii.d. N(O, 1), then

R, = Kt1/2 Z,

In this specification it is transparent that the return volatility is identical to
the information flow. Hence, the unobserved, or latent, process K, is a genuine
stochastic volatility process (Andersen (1992b)).

We now turn to the issue of nonstationarity. So far, we have assumed that
volume is stationary. This ignores the fact that trading volume data typically
have a strong trend component. We propose to detrend the volume data by
extracting a time trend, =, from the volume series, reflecting changes in the
size of the basic unit traded or the number of active traders.12 Thus, observable
volume is given by V? = V,- m,, where V, represent the stationary volume
series from the previous sections. The detrending procedure used in the em-
pirical work may depend on the characteristics of the data. However, even if
the detrending procedure is perfect, we face yet another scaling problem. The
reason is that our theory does not determine a specific value for the level, or
unconditional mean, of the relevant stationary volume series. Hence, an esti-
mated trend, #,, will at best reproduce the true underlying trend up to a factor
of proportionality, i.e., ¢ - #, = m,, where ¢ is an unknown positive constant. In
this case the detrended volume series becomes V, = V%4, = c¢V,. The
parameters in the volume expression are not invariant to this scaling of the
series. Indeed, we have

VK, ~ ¢-Po(my+ m,K,) (8)

12 Implicit in this approach is the assumption that the relative size of informed and noise
trading, i.e., the parameters m, and m,, have been invariant over the sample period.
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Hence, the scaling indeterminacy introduces an additional parameter that, in
the absence of extraneous information, must be estimated.

C. Properties of the Implied Return-Volume System

The system (7)-(8) represents our empirical specification of the MDH as
motivated by the stylized version of the GM model. However, the system differs
from the usual characterization of the MDH, in particular with respect to the
specification of the volume equation which typically takes the form

thKt -~ N(N«uKt, O-DKt) (9)

(see, e.g., Harris (1986, 1987)). Consequently, we refer to the system (7)—(8) as
the Modified MDH. The main differences in the volume specification are first,
the presence of the constant term, m,, which accounts for noise or liquidity
components of trading; second, the imposition of a conditional Poisson rather
than normal distribution. Besides reflecting a closer approximation to the
underlying distribution of the model, the latter is appealing because it respects
the nonnegativity constraint on trading volume. This is not a trivial issue.
Empirical work on the standard MDH often produces point estimates, which
imply that negative volume observations should occur with a disturbingly high
frequency. Finally, notice that the scaling parameter, c, allows the conditional
mean and variance of the trading volume to differ. Hence, this parameter, in
conjunction with m ,, effectively serves the same function in the modified MDH
as the two separate mean and variance parameters do in the standard MDH.13

The modified MDH determines the contemporaneous relation between re-
turn and volume. The series are related due to the common dependence on the
information flow variable K,. This is short of a full characterization of the
bivariate system because the dynamics of the information flow remains un-
specified —theory is simply moot on this point. Nonetheless, this system does
impose testable restrictions on the bivariate return-volume series. This is
exploited in Section IV as a preliminary diagnostic on the specification. For
now, we simply notice that the specification, by application of the law of
iterated expectations, implies:

cov(R,, V,) = 0; cov(R? V,) = o’m, var(K,) > 0.

This confirms that the model is consistent with well-known stylized facts.
Moreover, it provides a formal basis for the assertion that it should be advan-
tageous to utilize trading volume figures in conjunction with returns when
constructing measures of daily return volatility. This follows because the
information flow represents a stochastic volatility process that drives both
returns and volume, so each series will provide information regarding the state

3 If one applies a normal rather than a Poisson approximation during the derivation of the
daily volume, one will detect similar theoretical constraints between the mean and variance
parameters. However, the detrending procedure again destroys the linkage.
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of the unobserved volatility process. This reflects an important difference
vis-a-vis the ARCH modeling paradigm where return volatility, conditional on
the parameter estimates, is observable ex post. In the present model we can
never disentangle the impact of the two components of the product K}'2 - Z,
below equation (7), and the realization of the volatility process is thus subject
to uncertainty which, in general, will be reduced by drawing on additional
information. An alternative source of information is direct knowledge about
the dynamics of the news arrival process. The choice of an appropriate repre-
sentation for the K, process is discussed in Section V.

D. Incorporating Public Information Arrivals

It is potentially important to allow for the arrival of public information that
has an immediate impact on the valuation of the risky asset but does not
induce any additional trading activity. This occurs in our model if informed
traders receive no signals in advance of the information release, and the
information content is readily interpretable to all market participants, i.e.,
there is no asymmetric information associated with the release. Assuming that
this type of public information arrives randomly but at an expected rate that
is proportional to the arrival rate of the other information processes, this will
simply manifest itself in an additional random multiplicative term in the
return equation,4 i.e.,

R, = K"0,Z, = K"*Z, (10)

where O, is a positive, nondegenerate i.i.d. random variable with (normalized)
mean of unity and independent of Z,, which is i.i.d. N(0, 1). It follows that Z, is
i.i.d. with mean zero and unit variance. However, the additional randomness
associated with public information arrivals induces fat tails and excess kurto-
sis in the distribution of Z,. Indeed, the decomposition of Z, into O, and Z, is not
identifiable,5 and the proper statistical representation of the process is R, =
K}’ Z,. Consequently, the returns process is no longer conditionally normal.
Harvey, Ruiz, and Shephard (1994) stress that this feature may be important
in the context of the lognormal stochastic volatility model.

II1. Data Description

For brevity, this section describes only the series associated with IBM
common stock. We find the same qualitative characteristics for the remaining
four common stocks in our sample. ‘

A continuously compounded daily return series, corrected for dividends
and stock splits, is constructed from closing prices on IBM common stock

14 Bollerslev (1987) provides an explicit characterization of ¢-distributed return innovations
along these lines.

15 In the terminology of Andersen (1992b) the representation involving O, is nongenuine, while
the one involving Z, is genuine.
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Table 1

IBM Common Stock Daily Percentage Returns:

Summary Statistics
The statistics are based on continuously compounded percentage returns, corrected for divi-
dends and stock splits, calculated from daily New York Stock Exchange closing prices on
International Business Machines common stock over the period January 2, 1973-December 23,
1991. Observations between December 24 and January 1, inclusive, were deleted. The full
sample consists of 4,693 observations. The subsamples cover 1973-1975, 1976-1978, 1979—
1981, 1982-1984, 1985-1987, and 1988-1991, respectively. The first five have around 740
observations, while the sixth has 988 observations. The prices were obtained from Standard &
Poor’s Daily Stock Price Guide and checked against the returns indicated on tapes from the
Center for Research in Security Prices. The Ljung-Box portmanteau test for 10th order
autocorrelation in returns and squared returns are x2-distributed with 10 degrees of freedom.
The p-values are provided in parentheses following the value of the statistics. The return
autocorrelations for the full sample have standard errors of the order (1/T)¥2 = 1/(4,693)Y/2 =
0.0146.

Sample Full 1 2 3 4 5 6
100 X Mean 1.51 —4.61 4.52 —2.08 11.94 1.07 —0.94
St. Dev. 1.46 1.76 1.02 1.46 1.36 1.72 1.32
Skewness -1.04 0.32 0.64 0.61 0.35 —4.56 —0.65
Kurtosis 27.8 5.61 5.49 5.34 3.86 75.41 8.76
Maximum 10.05 9.86 5.43 8.15 5.10 10.05 5.89
Minimum —26.09 -9.13 —3.26 —4.74 —4.13 —26.09 -10.05

Additional Full Sample Statistics: First 8 Return Correlations: —0.031; —0.008; 0.005; —0.035;
0.025; 0.017; 0.017; 0.005; Ljung-Box Test: x3o(R) = 19.7 (0.033); x3,(R? = 193 (5.5 X 10726).

over January 1, 1973-December 31, 1991. The sample consists of 4693
observations. Summary statistics are provided in Table I. The sample mean
is small and not significantly different from zero, but it is erratic in terms
of both sign and size over subsamples. The sample standard deviation and
variance exceed the sample mean by a factor of more than 95 and are fairly
stable across subsamples. Finally, the returns display excess kurtosis and
are slightly skewed to the left, although the skewness is positive in four of
the six subsamples—the large negative value in the fifth, associated with
October 1987, generates the overall negative value. The kurtosis is sub-
stantially larger than 3 in all subsamples, but again very much so in the
fifth. Excluding October 1987 from this subsample yields a kurtosis consis-
tent with the other subsamples. The extreme sensitivity to outliers illus-
trates the problem of obtaining reliable estimates of higher order return
moments. They are invariably erratic and provide only limited information
in the estimation phase.1¢

16 Qur estimation procedure reduces the impact of sample moments that have highly variable
time series realizations. Outliers are very informative in other situations. For example, Phillips
and Loretan (1994) assume returns are generated by a linear process with an underlying i.i.d.
sequence of random variables whose tail behavior is of the Pareto-Levy form. They estimate the
maximal moment exponent by fitting the slope of the tail of the (transformed) empirical cumula-
tive distribution function of the return series.
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Figure 1. Autocorrelations for Raw, Absolute and Squared Daily Returns on Interna-
tional Business Machines Common Stock over 1973-1991. This figure shows the first 32
autocorrelations for the (transformed) return series. The returns are continuously compounded
percentage returns, corrected for dividends and stock splits, calculated from daily New York Stock
Exchange closing prices on International Business Machines common stock over the period
January 2, 1973-December 23, 1991. Observations between December 24 and January 1, inclu-
sive, were deleted. The sample consists of 4,693 observations. The stock prices were obtained from
Standard & Poor’s Daily Stock Price Guide and checked against the returns indicated on tapes
from the Center for Research in Security Prices. The short dashed lines in the figure represent the
5 percent standard error band for the null hypothesis of independent returns.

In summary, the returns are clearly not drawn independently from a normal
distribution. The empirical return distribution is more peaked around zero and
has thicker tails than the corresponding normal with the same mean and
variance. Figure 1 displays the autocorrelation coefficients up to lag 32 for the
returns, absolute returns, and squared returns series. It shows not only that
the returns are nonnormal, but also that they cannot be i.i.d. If they were, the
transformed series IR,| and R} would be i.i.d. as well, but the significant low
order auto-correlations of the latter strongly violate the indicated confidence
bands. Thus, the IBM return series displays the usual dependency in higher
order moments that traditionally are captured by ARCH formulations.

Preliminary justification for our approach is provided by Table II, where we
report the cross-correlations between the return volatility and trading volume
series within each year of our sample. The short annual samples mitigate the
effect of the trend in the volume. There is a strong relationship between the
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Table II

Cross-Correlations between Squared Returns and Trading Volume
for IBM Common Stock

The cross-correlations are based on continuously compounded percentage returns, corrected for
dividends and stock splits, and volume figures, corrected for stock splits, calculated from daily New
York Stock Exchange closing prices and trading volume for International Business Machines
common stock over the period January 2, 1973-December 23, 1991. Observations between De-
cember 24 and January 1, inclusive, were deleted. This leaves a sample of about 247 pairs of
observations per year. The figures were obtained from Standard & Poor’s Daily Stock Price Guide
and checked against the returns and volume indicated on tapes from the Center for Research in
Security Prices.

COIT(R?, Vt_ljl)

Year\Lag j= j=1 j=
1973 0.54 0.51 0.19
1974 0.35 0.41 0.19
1975 0.55 0.33 0.25
1976 0.29 0.33 . 0.19
1977 0.48 0.21 -0.01
1978 0.25 0.31 0.14
1979 0.25 0.23 0.05
1980 0.29 0.22 0.01
1981 0.32 0.34 0.13
1982 0.34 0.30 0.21
1983 0.32 0.08 0.00
1984 0.44 0.33 0.08
1985 0.44 0.35 0.14
1986 0.39 0.30 0.09
1987 0.42 0.42 0.30
1988 0.34 0.21 0.14
1989 0.55 0.38 0.11
1990 0.33 0.18 0.07
1991 0.51 0.19 0.13

two series, which is consistent with evidence from previous work (Karpoff
(1987)). The raw trading volume is displayed in Figure 2A. Most strikingly, the
series has a strong but erratic trend. On average, the growth in the number of
shares traded, corrected for stock splits, is about 13 percent a year. This
characterization is reinforced by the volume growth rates reported in Table III.
In addition, the series has a distinct seasonality at year’s end as the trading
intensity declines between Christmas and New Year.l” Consequently, we
exclude all observations from December 23 through the first trading day of the
following year. Another distinctive feature is that the fluctuations around the
trend grow more pronounced over time. The log-transformation of volume in
Figure 2B accomplishes two things. It converts the long run trend, as a rough

17 Due to the trend, year’s end volume should on average exceed the mean daily volume over the
preceding year. However, the average volume between Christmas and New Year is below the
average volume in 14 of 17 cases, and often by a large margin.



x 10*
14 1
e
>

12

Volume
08

06

04

s

| i
S

== _
—— g

muu»LW mkuawm Nﬁ&llﬁ w’

1000 1500 2000 2500 3000

Trading Day

3500 4000 4500

5000

10

Log—Volume

L T ! i L !

500 1000 1500 2000 2500 3000

Trading Day

1 L
4000 4500

5000

Figure 2A. Trading Volume for International Business Machines Common Stock over
1973-1991. This figure shows the daily trading volume, corrected for stock splits, for International
Business Machines common stock over the period January 2, 1973-December 23, 1991. Observa-
tions between December 24 and January 1, inclusive, are omitted. The sample consists of 4,693
observations. The data were obtained from Standard and Poor’s Stock Price Guide. Figure 2B.
Log-Trading Volume for International Business Machines Common Stock over 1973—
1991. This figure shows the daily log-trading volume, corrected for stock splits, for International
Business Machines common stock over the period January 2, 1973-December 23, 1991. Observa-
tions between December 24 and January 1, inclusive, are omitted. The sample consists of 4,693
observations. The data were obtained from Standard and Poor’s Stock Price Guide.
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Table III

Annual Percentage Growth Rates in Daily Trading Volume for
IBM Common Stock

The growth rates in trading volume are based on volume figures, corrected for stock splits, and
calculated from the daily New York Stock Exchange trading volume for International Business
Machines common stock over the period January 2, 1973-December 23, 1991. Observations
between December 24 and January 1, inclusive, were deleted. This leaves a sample of about 247
pairs of observations per year. The Growth rates were calculated as the difference between the
average trading volume in the two indicated periods and converted into annual percentage rates.
The subsamples cover 1973-1975, 1976-1978, 1979-1981, 1982-1984, 1985-1987, and 1988-1991,
respectively. The first five have around 740 observations, while the sixth has 988 observations.
The figures were obtained from Standard & Poor’s Daily Stock Price Guide and checked against
the tapes from the Center for Research in Security Prices.

Panel A: Measured from One Subsample to the Next

Sample 1-2 2-3 34 4-5 5-6
Growth Rate 17.8 7.8 22.3 17.8 -0.0

Panel B: Measured Biannually

Sample 73-75  75-77 77-79 79-81 81-83 83-85 8587 87-89 89-91
Growth Rate 18.4 11.7 7.4 11.6 25.9 16.1 26.9 -13.3 3.9

approximation, to a straight line, lending some support to the hypothesis of a
constant long run growth rate, and it stabilizes the variability of the series.18
Nonetheless, the assumption of a constant growth rate is unreasonably strict.
Instead, we employ detrending procedures that allow for a stochastic trend
component in volume as well as an autocorrelated disturbance term. The task
is to filter out the trend, i.e., the fluctuations in the expected or “normal”
trading volume, while retaining a measure of the correlated deviations around
this trend associated with the periods of unusual informational intensity. The
exact method chosen is necessarily governed by the data since we have very
little guidance from theory.

We briefly describe our detrending procedures. Each method estimates a
trend component that produces a “normal” or expected volume series, and the
detrended series is then obtained by dividing each trading figure with the
corresponding “normal” volume for that trading day. The approach is moti-
vated by the indication of approximate stationarity of the log-differences of the
volume series, which suggests that percentage deviations from trend are
stationary. Our first method uses a nonparametric kernel regression proce-
dure based on the normal kernel. This corresponds to a two-sided moving
average with weights that decline as the distance from the trading day in-
creases. The key choice is the relative weighting of remote and nearby obser-

18 Tt is difficult to test these conjectures due to the complex nature of the generating process of
trading. However, informal analysis of the sum of squared residuals over subsamples obtained
from fitting a linear trend in the log-model, using the two-step Cochrane-Orcutt to account for
autocorrelation in the error term, suggests that the variance process has been stabilized.
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Table IV

Detrended Daily Trading Volume for IBM Common Stock:
Summary Statistics

The summary statistics are based on detrended volume figures, corrected for stock splits, calcu-
lated from the daily New York Stock Exchange trading volume for International Business Ma-
chines common stock over the period January 2, 1973-December 23, 1991. Observations between
December 24 and January 1, inclusive, were deleted. The subsamples cover 1973-1975, 1976~
1978, 1979-1981, 1982-1984, 1985-1987, and 1988-1991, respectively. The first five have around
740 observations, while the sixth has 988 observations. The figures were obtained from Standard
& Poor’s Daily Stock Price Guide and checked against the tapes from the Center for Research in
Security Prices. The detrending was performed by dividing the actual trading volume for a given
day by the expected value calculated using either a nonparametric kernel regression (Panel A) or
a centered rolling two-year mean (Panel B).

Sample Full 1 2 3 4 5 6

Panel A: Detrending using a Nonparametric Regression with a Normal Kernel

Mean 0.993 0.974 1.02 0.948 1.02 1.03 0.977
St. Dev. 0.413 0.486 0.428 0.366 0.397 0.402 0.391
Skewness 2.10 3.28 1.60 1.60 1.26 1.74 2.06
Kurtosis 13.0 23.9 7.00 7.18 5.05 9.49 11.2
Maximum 5.93 5.93 3.40 3.13 2.88 3.86 3.73
Minimum 0.222 0.292 0.222 0.331 0.332 0.285 0.276

Panel B: Detrending using a Centered Two Year Rolling Sample Mean

Mean 0.995 0.984 1.03 0.946 1.02 1.03 0.972
St. Dev. 0.409 0.458 0.433 0.370 0.407 0.404 0.377
Skewness 1.81 2.25 1.63 1.62 1.29 1.79 1.99
Kurtosis 9.31 12.7 7.21 7.25 5.10 9.93 10.6
Maximum 4.49 4.49 3.46 3.14 2.92 3.93 3.64
Minimum 0.216 0.318 0.216 0.325 0.332 0.284 0.279

vations.1? Our second method is an equally weighted moving average of length
two years centered on the estimated trend component.2° The “window” of one
year in each direction renders this method compatible to the first.2! An alternative
detrending procedure was implemented by replacing the moving average by the
moving median, which is less sensitive to outliers. However, the two series were
quite similar, and we report only results based on the moving average.
Summary statistics of the derived volume series, reported in Table IV,

19 Our leading scheme allocates about 5.2 percent weight to the one month of observations
centered on the given trading day. Similarly, 15.0 percent weight is assigned to the 3 month
period, 55.7 percent on the one year period, 87.5 percent on the two years, and 98 percent on the
3 years around the trading day.

20 Standard one-sided (weighted) averages are used for the end of the sample where two-sided
averages are inapplicable. See Brockwell & Davis (1987) for a discussion of this approach.

21 The kernel-based estimates track positively correlated volume observations more closely
than the estimates from alternative methods, so deviations from trend tend to be smaller for the
former. We compensate by limiting the window to one year in each direction for the moving mean,
while the kernel method assigns weight to observations outside of that horizon.
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Table V

Autocorrelations for the Daily Detrended Trading Volume for
IBM Common Stock

The correlations are based on detrended volume figures, corrected for stock splits, calculated from
the daily New York Stock Exchange trading volume for International Business Machines common
stock over the period January 2, 1973-December 23, 1991. Observations between December 24
and January 1, inclusive, were deleted. The figures were obtained from Standard & Poor’s Daily
Stock Price Guide and checked against the tapes from the Center for Research in Security Prices.
The detrending was performed by dividing the actual trading volume for a given day by the
expected value calculated using a nonparametric kernel regression with a normal kernel (corre-
sponding to the series in Panel A of Table IV).

Corr(V,, V,_ )

J 1 2 3 4 5 6 7 8 9 10 11 12
0.52 032 025 023 022 0.18 0.14 0.14 0.13 013 0.12 0.10

J 13 14 15 16 17 18 19 20 21 22 23 24
0.09 009 010 0.06 0.05 0.03 0.05 0.05 0.04 0.02 0.05 0.05

J 25 26 27 28 29 30 31 32 33 34 35 36

003 002 002 002 003 003 -0.00 -000 -0.00 0.03 0.03 0.03

demonstrate the similarity of the basic characteristics of the two volume
series. In both cases the mean is near unity, which is to be expected given the
normalization rule. Furthermore, the standard deviations and skewness mea-
sures are quite stable across subsamples and do not indicate overly erratic
higher order moments. The skewness is positive in all subsamples. This is a
feature that must be accounted for by any model that purports to capture the
stylized facts of the volume series. In addition, the kurtosis exceeds three but
is smaller overall than for the returns series. However, this finding is not
robust. In the majority of the subsamples the volume series has a higher
kurtosis than returns. Finally, Table V lists the lower order autocorrelations
for the derived volume series. The autocorrelations display a regular and
smooth decline from significantly positive values at small lags to about zero at
lags above thirty.22 Moreover, a simple Goldfeld-Quandt test detected no signs
of a shift in the unconditional variance. In sum, the derived volume series
appears stationary and displays the type of properties we would expect from
theory. We elect the method based on the nonparametric normal kernel re-
gression as our basic “normalized” volume series and present empirical results
for this series only. However, most of the empirical work on the IBM data was
conducted for both volume series and for various weighting schemes in the
kernel regression scheme. The results display some variation across the proce-
dures, but the qualitative conclusions appear robust. The volume series based on
the nonparametric kernel regression is displayed in Figure 3. This is the series
that underlies the empirical work summarized in the following sections.

22 This is consistent with Harris’ (1987) observation that trading volume should display a
higher degree of autocorrelation than the squared return series in the normal-mixture model.
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Figure 3. Detrended Trading Volume for International Business Machines Common
Stock over 1973-1991. This figure shows the daily trading volume, corrected for stock splits, for
International Business Machines common stock over the period January 2, 1973-December 23,
1991. Observations between December 24 and January 1, inclusive, are omitted. The sample
consists of 4,693 observations. The data were obtained from Standard and Poor’s Stock Price
Guide. The series was detrended by dividing the actual trading volume for a given day by the
expected value calculated using a nonparametric kernel regression with a normal kernel (corre-
sponding to the series in Panel A of Table IV).

IV. Testing the Modified Mixture of Distributions Hypothesis

This section tests the Modified MDH under minimal restrictions on the
information flow. This may be viewed as a preliminary diagnostic designed to
assess whether the contemporaneous characterization of the return-volume
system we have developed is consistent with the basic features of data. How-
ever, it is also of interest in its own right, as the exploration of the empirical
merits of the MDH has attracted considerable attention in the recent litera-
ture, and our findings shed new light on these results. Since most studies of the
standard MDH allow for a nonzero mean in the return equation, we include a
constant, 7, in equation (7), but otherwise the test is based on the specification
(7)—(8). The test investigates the restrictions on the joint unconditional mo-
ments of returns and volume implied by the system. No dynamic moments, i.e.,
moments incorporating lagged relationships, are included since the theory in its
pure form puts no restrictions on the intertemporal behavior of the information
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flow variable. In fact, beyond the existence of some lower unconditional moments
of K,, the test is void of distribution assumptions on the information flow.

We apply the GMM procedure of Hansen (1982) which exploits the conver-
gence of selected sample moments to their unconditionally expected values.23
It provides a simultaneous test of the cross-restrictions on various lower order
moments of the return-volume system. The following set of unconditional
moment conditions is used:

E[R]=F
EIR, — 7l = (2/7)?E[K %]
E[(R, - 7)’] =E[K,]=K
EIR, — 71® = 2(2/7)?E[K??]
E[(R, — 7)*] = 3E[K? + var(K,)]
E[V.]=c(mo+mK)=V
E[(V,— V)% = ¢V + ¢2m? var(K),)
E[(V,— V)?] = ¢2V + 3¢*m? var(K,) + ¢*miE[K, — K]?
E[RV,]=FV
E[IR, — FI(V,~ V)]) = c(2/m)"*m,(E[K}*] — E[K}?])
E[(R, — 7)?V,] = VK + m, var(K,)
E[(R; — 7)2(V, — V)?] = cKV + ¢?*m, var(K,)
+ e2miE[K, — K]® - K var(K,)]

The parameter vector is (7, E[K 2], K, E[K3?], var(K,), E[K, — K13, m,,
m1, c¢). Thus, there are nine free parameters and twelve moment conditions
and hence three over-identifying restrictions. The system is estimated by
minimizing the distance between the sample and theoretical moments over the
parameter space in a quadratic form in accordance with the Newey & West
(1987a) (NW) procedure.

The estimation is carried out for five separate stocks. Table VI presents the
findings, including the y2-test for goodness-of-fit based on the over-identifying
restrictions. All point estimates are of the expected sign and the magnitudes
appear reasonable, although the higher order moments of the information
arrival process, not unexpectedly, are imprecisely estimated. Moreover, the

28 The GMM procedure appears relatively more efficient than the alternative of Quasi Maxi-
mum Likelihood (QML) Kalman filter estimation at the moderate levels of volatility persistence
that we encounter in these bivariate systems (Andersen and Sgrensen (1994)).
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Table VI

Estimation Results for the “Modified Mixture of Distributions
Hypothesis”

The results are based on continuously compounded percentage returns, corrected for dividends
and stock splits, and detrended volume figures, corrected for stock splits, calculated from the daily
New York Stock Exchange closing prices and trading volume for a set of five common stocks over
the period January 2, 1973-December 23, 1991. Observations between December 24 and January
1, inclusive, were deleted. The figures were obtained from Standard & Poor’s Daily Stock Price
Guide and checked against the returns and volume indicated on tapes from the Center for
Research in Security Prices. The volume series was detrended by dividing the actual trading
volume for a given day by the expected value calculated using a nonparametric kernel regression
with a normal kernel (corresponding to the series in Panel A of Table IV). The following system
involving the daily returns, R,, the detrended volume, V,, and the (unobserved) number of
information arrivals, K,, was estimated by the Generalized Method of Moments:

RJ|K, ~ N, K, VK, ~ ¢-Po(my+ m,K)

The estimated parameters include the mean return, 7, various unconditional moments of the
K,-process, including the mean K = E[K,], a (nuisance) scaling parameter for volume, ¢, and the
approximate average fraction of daily volume independent of (associated with) information arriv-
als, ¢ - my(c + m,). Estimated standard errors are provided below the point estimates, while
p-values are indicated below the test statistics. The weighting matrix used in the objective
function was calculated according to Newey and West (1987a) using 25 lags, except that the
weighting matrix and parameter estimates were iterated until convergence, so the weighting
matrix reflects the final parameter estimates. The y2-test for Goodness-of-Fit (Hansen (1982)) has
three degrees of freedom since there are 12 moment restrictions and 9 free parameters. The
“likelihood-ratio” test statistic for the restriction m, = 0 is y2-distributed with one degree of
freedom (Newey and West (1987b)).

_ - Xg mo =0
F E[K}'?] KK E[K??] Var(K,) ElK, - KI® ¢ -my c¢-m, c (p-val.) (p-val.)
Alcoa
0.019 1.66 3.28 7.70 9.82 68.7 0.607 0.110 0.071 6.93 46.2

(0.022) (0.039) (0.173) (0.763) (3.04) (106) (0.065) (0.024) (0.008) (0.074) (0.000)
Amoco
0.026 1.47 2.58 5.35 6.47 114 0.622 0.144 0.057 8.01 37.0
(0.019) (0.039) (0.142) (0.460) (1.35) (26.9) (0.058) (0.027) (0.008) (0.046) (0.000)
Coca-Cola
0.034 1.46 2.60 5.51 7.34 190 0.559 0.163 0.057 7.20 0.935
(0.020) (0.044) (0.294) (2.60) (11.9) (392) (0.422) (0.178) (0.034) (0.066) (0.232)
IBM
0.007 1.29 1.85 3.06 2.08 24.3 0.564 0.226 0.026 4.31 7.06
(0.016) (0.029) (0.090) (0.258) (0.488) (6.29) (0.073) (0.044) (0.010) (0.229) (0.008)
Kodak
—-0.016 1.55 2.79 6.10 - 7.87 162 0.553 0.153 0.027 4.90 7.03
(0.019) (0.037) (0.164) (0.733) (2.37) (60.4) (0.082) (0.035) (0.009) (0.179) (0.008)

x>-statistics, while overall rather low, do not reject the model at standard
significance levels.2¢ Given our large sample size and the possibility of struc-
tural breaks in the series, these findings are perhaps more supportive of the

24 Construction of an overall test for the joint restrictions on all five stocks simultaneously is
complicated by the fact that the return and volume processes are correlated across the securities.
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Modified MDH than one would expect. It does, however, raise a couple of
questions. First, the power of the goodness-of-fit test may be so low against
interesting alternatives as to render the test uninformative. Second, our find-
ings seem at odds with results reported by Richardson & Smith (1994) and
Lamoureux & Lastrapes (1994) who present mixed, but overall negative,
evidence relating to the standard MDH specification. We address these ques-
tions in two different ways. Both are motivated by considering the standard
MDH the natural alternative hypothesis in this context. As discussed in
section II.C, the main difference between the models is the volume equation,
where the Modified MDH posits a conditional Poisson rather than conditional
normal distribution, and it includes a constant term to accommodate the noise
trading component of volume. The significance of the latter feature can be
assessed directly within the Modified MDH framework by testing the restric-
tion m, = 0. The last column of Table VI reports the x2-statistics and associ-
ated p-values for a “likelihood ratio” type test based on the difference in the
objective function with and without imposing this restriction. In four of five
cases it is soundly rejected. Moreover, in all cases of rejection, some of the
estimated parameter values (not reported) are negative, which is incompatible
with the theory.25

A second way of assessing the modified MDH is by direct comparison to a
test of the standard MDH on the same data set. Table VII provides the results
from a GMM test on the standard MDH. This is similar to the estimation
strategy pursued by Richardson and Smith (1994). Our results indicate an
overwhelming rejection of the standard specification of the MDH. Even for
Coca-Cola, where the constant term was not deemed significant, the specifi-
cation fares poorly with exceptionally low p-values and parameter estimates

-that violate the theoretical restrictions.2¢6 Thus, our evidence is much more
conclusive than that presented by previous authors. This is probably due to our
larger sample size and our explicit handling of the trend in trading volume.2?
In addition, it illustrates that the proposed test is powerful enough to reject the
standard MDH without resorting to dynamic features of the system as in
Lamoureux and Lastrapes (1994).

Our findings have the following implications. One, the standard version of
the MDH is soundly rejected. But, second, this does not imply that the rea-
soning behind the MDH is useless as a basis for empirical asset pricing and
market microstructure research because fairly minor modifications result in
specifications that are roughly consistent with the joint behavior of stock
returns and appropriately detrended trading volume over long sample periods.

25 Only for Coca-Cola do we fail to reject the restriction. This is likely due to the fact that
Coca-Cola is unusual in other respects as well. Its parameters in the Modified MDH system are
much less precisely estimated than those for the other stocks, as evidenced by the relative
standard errors. Interestingly, Tauchen, Zhang, and Liu (1994) also find this series hard to fit.

26 Restricting the parameter estimates to stay within the proper parameter space results in
estimates at the boundary of the parameter space and even lower p-values.

27 For example, the average daily trading volume for IBM rises by about 40 percent over the
period 1982-1986 that is investigated by Richardson and Smith (1994).
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Table VII

Estimation Results for the Standard Mixture of
Distributions Hypothesis

The results are based on continuously compounded percentage returns, corrected for dividends
and stock splits, and detrended volume figures, corrected for stock splits, calculated from the daily
New York Stock Exchange closing prices and trading volume for a set of five common stocks over
the period January 2, 1973-December 23, 1991. Observations between December 24 and January
1, inclusive, were deleted. The figures were obtained from Standard & Poor’s Daily Stock Price
Guide and checked against the returns and volume indicated on tapes from the Center for
Research in Security Prices. The volume series was detrended by dividing the actual trading
volume for a given day by the expected value calculated using a nonparametric kernel regression
with a normal kernel (corresponding to the series in Panel A of Table IV). The following system
involving the daily returns, R,, the detrended volume, V,, and the (unobserved) number of
information arrivals, K,, was estimated by the Generalized Method of Moments:

R|K, ~ N7, K) VIK, ~ N(u, 0.K)

The estimated parameters include the mean return, 7, various unconditional moments of the
K,-process, including the mean K = E[K,], and the volume parameters, w, and o,. Estimated
standard errors are provided below the point estimates, while p-values are indicated below the test
statistics. The weighting matrix used in the objective function was calculated according to Newey
and West (1987a) using 25 lags, except that the weighting matrix and parameter estimates were
iterated until convergence, so the weighting matrix reflects the final parameter estimates. The
x>-test for Goodness-of-Fit (Hansen (1982)) has three degrees of freedom since there are 12
moment restrictions and 9 free parameters.

2
- X3
7 E[K}'?] K E[K3?] E[K2] [T o, (p-val.)
Alcoa -0.015 1.89 4.34 9.92 27.2 0.236 0.013 96.8
(0.021) (0.032) (0.131) (0.494) (1.65) (0.008) (0.011) (5-10729)
Amoco —0.036 1.72 3.43 7.14 15.7 0.302 —0.019 168
(0.019) (0.028) (0.096) (0.283) (0.875) (0.009) (0.007) (4-107%5)
Coca-Cola —0.153 2.59 13.0 57.2 436 0.086 —-0.110 937
(0.020) (0.026)  (0.098) (0.651) (7.77) (0.001) (0.003) (2-107201)
IBM —0.048 1.73 3.34 6.95 16.0 0.331 —0.090 4.31
(0.016) (0.019) (0.065) (0.279) (0.695) (0.007) (0.008) (4-10789%)
Kodak —0.042 1.93 4.41 11.7 29.1 0.250 —0.056 4.90

(0.019) (0.029) (0.131) (0.501) (1.79)  (0.007)  (0.006) (3-107%%)

In light of the dramatic failure of the standard specification, this improvement
in empirical performance is remarkable. Third, the proposed testing method-
ology is indeed powerful enough to reject interesting alternative hypotheses in
the present context. ‘

V. Representation and Estimation of the Full Dynamic Model
A. The Information Arrival Process

The theory developed in previous sections has little bearing on the process
generating information arrivals, except for the observation that the informa-
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tion flow constitutes a stochastic volatility process for returns in equation (6).
A couple of considerations are relevant when selecting a dynamic representa-
tion for the information variable. First, casual empiricism suggests that news
arrivals are positively correlated. When unanticipated news breaks on a given
day, more detailed disclosures tend to follow over the next few days or weeks,
and different interpretations of the circumstances leading to the event surface.
This tends to keep “the story” in the headlines for an extended period of time.
Moreover, important changes in the tactical orientation of a company do
typically play themselves out over longer periods (take-over battles and proxy
fights), and these developments are revealed through periodic news updates.
Second, and more importantly, judging from the success of modeling return
volatility dynamics by means of ARCH processes, and in particular models
closely related to the GARCH(1, 1), it is clear that an information arrival
process governing the dynamic features of return volatility must display a
similar type of positive conditional dependency. Andersen (1994) develops a
class of stochastic volatility models that are closely related to GARCH(1, 1),
termed Stochastic AutoRegressive Volatility (SARV) models. They satisfy the
above criteria in that they allow for positive autocorrelation in news arrivals,
and they serve as natural stochastic volatility generalizations of relevant
ARCH models. We have investigated two promising specializations, the first
being a standard SARV model:

K = w + BK2 + aK%u, (11)

where a, B = 0, » > 0, u, is i.i.d. with u, > 0, E[x,] = 1 and Var(u,) = 2.
In general, specific distributional assumptions for u, are not required. SARV
generalizes a GARCH(1, 1) model for the conditional return standard devia-
tion, and, in particular, the volatility persistence is closely related to the sum,
a + B, as is the case for GARCH(1, 1).28

The second specification is a lognormal stochastic volatility process (expo-
nential SARV):

Ink) =+ g InK,_,) + o,u,, 0,>0 (12)

where u, ~ ii.d. N(0, 1). The process is closely related to the EGARCH(1, 1)
(Nelson (1991)) and is popular in the options pricing literature. The volatility
persistence is governed by B. Given certain parameter restrictions, both pro-
cesses are strictly stationary and have finite lower order moments.2°

B. The GMM — Framework for the Dynamic Model

GMM estimation of the system (7)-(8) plus either equation (11) or (12)
exploits the convergence of selected sample moments to the corresponding

28 Let u, = cl1Z,_,I with ¢ = E(1Z,1)~* to obtain a GARCH(1, 1) specification for K}/2.

29 For the SARV process the proof relies on a generalization of arguments used for GARCH(1, 1)
by Nelson (1990). Closed form solutions for the unconditional moments of SARV are required for
our GMM procedure, and are provided in Andersen (1994).
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unconditionally expected values. Typically, moments such as E(R]*R}_,),
E(R7'V?_,), and E(V*V"_,) are utilized for low nonnegative integer values of
m, n, and k. Let the ¢ X 1 vector of unknown parameters be denoted by 6, the
true parameter vector by 6,, and the @ X 1 vector of selected sample moments
by M,(6), where @ = q, and T equals the sample size. Finally, let the vector
of corresponding analytical moments be denoted A(0). The GMM-estimator,
67, minimizes the distance between A(6) and M (6) over the parameter space
E in the following quadratic form

6r = arg min(A () — M4(0))'T;'(A(8) — M(6)) (13)

0EE

where the specific metric is determined by the choice of the positive definite
and possibly random weighting matrix, I'y. Under suitable regularity condi-
tions 0 is consistent and asymptotically normal

T"(by — 65) ~ N(0, Q)

Our procedure is based on consistent estimates of the optimal weighting
matrix that minimizes the asymptotic covariance matrix of the parameter
estimates, ().

Several problems arise in the estimation phase. First, although distribu-
tional assumptions are not required for SARV, the particular parameterization
and the erratic behavior of higher order return and volume moments combine
to make the individual higher order moments of u, hard to identify. Estimation
efficiency is greatly enhanced by imposing reasonable constraints on these
moments. A number of candidate distributions for u, were utilized in this
capacity, each generating a slightly different set of moment conditions for the
model. Second, as noted, the estimation of the full model requires the inclusion
of lagged variables among the moments. We rely on lower order dynamic
moments of order up to 20. This leads to the following choice of moments:
E(R,), E(R?), EIR, — rl, E(R}), E(V,), E(V?), E(V,R?), EIR, — r| IR,_; —
ri, E(R2R2_ ), E(V,V,_,)), E(V,_,;,IR,—rl), i > 0.2 Simulation evidence
(Andersen and Sgrensen (1995), henceforth AS) indicates, however, that it is
inappropriate to include all twenty lags for each moment, since it results in
an excessive number of moments relative to sample size. Hence, we include
an arbitrary selection of lags for each of the dynamic moments, except for
the following criteria adapted from AS: (i) a majority are lower order
moments (more precisely estimated than higher order moments); (ii) we
avoid having all dynamic moments be included at the same lag (to reduce
the multicollinearity in the weighting matrix); (iii) the total number of
included moments is kept at 30 for the present sample size. Third, estima-
tion of the weighting matrix involves a choice between a host of alternative
procedures. AS find that the single most important feature for relatively
large samples is to include a sufficiently large number of lags in the

30 Andersen (1994) verifies that the parameters are identified from these moments.
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construction of the weighting matrix. Thus, our reported results rely on the
NW procedure with 75 lags.3!

C. The Modeling of the IBM Series

The model has numerous variants depending on the distributional assump-
tions imposed on u,. Given the limited prior evidence with estimation of these
models, a preliminary specification search is inevitable. Unfortunately, there
are many alternative ways in which to implement the GMM procedure, even if
we adhere to the guidelines of AS. This flexibility in the choice of distributional
assumptions and estimation procedure raises serious questions regarding the
potential for overfitting or “data snooping” (see Lo and MacKinlay (1990)). We
try to mitigate these concerns by selecting the model specification and estima-
tion procedure from experimentation with the IBM data alone. Only thereafter
do we proceed to the analysis of the remaining series. Hence, for each stock we
rely on the identical model specification and moment conditions, and we apply
the same estimation procedure for the GMM weighting matrix. Since the other
series are only weakly correlated with the IBM series, this “cross-validation”
should alleviate the concerns relating to overfitting. Moreover, we explore the
robustness of the IBM results by investigating the behavior of the system over
various subsamples.

After rather extensive experimentation with models fit to the IBM data
series, we settled on the SARV specification for K}’? and u, generated by the
absolute value of a Generalized Error distributed variable, GED,,(0, 1).32 This
choice provided one of the more satisfactory fits judged from the standard
x’-tests, and the parameter estimates are quite robust to the selections of
moments and to estimation over subsamples. At the same time it is not
unrepresentative of the findings for alternative specifications.33

Below, we provide the exact specification of the system that was selected
from the investigation of the IBM series. The results reported in the following

31 The NW procedure is nonparametric and uses the Bartlett kernel (Newey and West (1987a)).
We also implemented the Quadratic Spectral (QS) kernel estimator, and for both procedures we
experimented with data-dependent choice of bandwidth (Andrews (1991)). However, the AS
findings appear robust in this regard as well.

32 The class of GED, -distribution (w > 0), also known as power exponential distributions, is a
natural choice because it encompasses the normal within the interior of the parameter space (w =
2). For w < 2, the tails are fatter than for a normal distribution, while for w > 2 they are thinner
than for a normal. The imposition of a unit variance results in only one remaining free parameter,
w. The density and the unconditional lower order moments for this normalized GED,,-variable are
provided in Andersen (1992a). For further discussion of this class of distributions, see, e.g., Nelson
(1991).

33 We considered specifications with u, distributed according to a Lognormal, Gamma, or x?
random variable or the absolute value of a standard normal or student ¢ variable. Further, we
explored the lognormal representation given by equation (12).
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sections utilize the same basic framework.

R,=7+ K"*Z, (7"
V.K,~c-Po(my,+ m,K,) (8)
K" = o+ BK" + aKu, (11)

where u, = Iv,//Elv,l, v, ~ GED,(0, 1). Letting ¢ = E(KY?) = w/(1 —
(a + B)), the parameterization of the system involves eight unknown coeffi-
cients, namely 0 = (7, 6, B + a, «a, ¢, cmgy, cMm4, W).

Table VIII summarizes results obtained for the IBM data over the full
sample and three subsamples, 1973-78, 1979-84, and 1985-91. Overall, the
x>-statistics for goodness-of-fit are supportive of the model at standard signif-
icance levels. Moreover, the point estimates appear reasonable and fall within
the theoretical bounds that are consistent with the assumptions underlying
the estimation procedure. The estimated daily mean returns are small and
vary substantially across subsamples. This reflects the usual difficulty of
obtaining precise estimates of expected returns (see, e.g., Merton (1980)). The
return standard deviation is governed by &, which is fairly uniform across
subsamples with estimates ranging from 1.24 to 1.31. More interestingly, the
estimates of the persistence measure, o + B, are lower than the ones usually
obtained from GARCH models of daily returns. On the other hand, this finding
parallels results obtained by Foster & Viswanathan (1995), who use half-
hourly return and volume observations on IBM.34 In conjunction, these studies
seem to indicate that the extension of univariate models of return volatility
into bivariate systems via the incorporation of volume observations results in
a significant reduction in the estimated volatility persistence. At this point,
such a conclusion is premature since the direct comparison of volatility per-
sistence measures between the ARCH and stochastic volatility models is
tenuous. However, we present further results and formal statistical tests that
strongly support this conclusion in the following sections.

The parameter ¢ - m, measures the fraction of the average daily volume
that is independent of the information flow. From this perspective, between 37
percent and 75 percent of the daily volume is unrelated to the arrival of news,
while the information sensitive components of trade, reflected in the coefficient
¢ - mq, accounts for the remainder. Point estimates of the scaling constant ¢
are small but strictly positive. Finally, the estimates of the tail parameter
indicate that the error processes have fatter tails than the normal, which
corresponds to w = 2. This is consistent with the evidence from the GARCH
models.35

34 In fact, given the high frequency observations used by Foster and Viswanathan, we find much
longer half-lives of shocks to volatility than they do.

35 The large standard errors on w reflect the fact that the identification of this parameter hinges
on higher order sample moments, which invariably are erratic.
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Table VIII

Estimation Results for the IBM Return-Volume System Based on the
SARV-GED,, Model

The results are based on continuously compounded percentage returns, corrected for dividends
and stock splits, and detrended volume figures, corrected for stock splits, calculated from the daily
New York Stock Exchange closing prices and trading volume for International Business Machines
common stock over the period January 2, 1973-December 23, 1991. Observations between De-
cember 24 and January 1, inclusive, were deleted. The figures were obtained from Standard &
Poor’s Daily Stock Price Guide and checked against the returns and volume indicated on tapes
from the Center for Research in Security Prices. The volume series was detrended by dividing the
actual trading volume for a given day by the expected value calculated using a nonparametric
kernel regression with a normal kernel (corresponding to the series in Panel A of Table IV). The
three subsamples are nonoverlapping and contain 1,564 observations each. The following system
involving the returns, R,, the detrended volume, V,, and the (unobserved) number of information
arrivals, K,, was estimated by the Generalized Method of Moments:

R, K,~N(, K,) VK, ~c-Po(my+ m,K)
K”=w+BK2A+aK%%u, u,=Ilvl/Elv,], v,~GEDLO, 1)

The estimated parameters include the mean return, 7, a (nuisance) scaling parameter for the
volume process, ¢, and the approximate average fraction of daily volume independent of (associ-
ated with) information arrivals, ¢ - my(c + m,), and the parameters of the Stochastic Auto-
Regressive Volatility (SARV) specification for K}'2, (&, «, @ + B, w). Among the latter, & =
E[K}"?] = w/(1 — a — B) measures the return standard deviation, o + B (<1) indicates the degree
of persistence in shocks to volatility and volume, and w denotes the tail parameter of the
standardized Generalized Error Distribution (Nelson (1991)) and reflects the propensity for
outliers in the innovations to the information arrival process. Estimated standard errors are
provided below the point estimates, while p-values are reported for the y*-test. The test has 22
degrees of freedom for the full sample and 16 degrees of freedom for the subsamples. The weighting
matrix used in the objective function was calculated according to Newey and West (1987a), except
that the weighting matrix and parameter estimates were iterated until convergence, so the
weighting matrix reflects the final parameter estimates, and a data-dependent bandwidth based
on univariate AR(1) approximations to the time series moments was employed (Andrews (1991)).

7 G B+ a a c'my c-m, c w x?
Full 0.012 1.31 0.756 0.239 0.650 0.171 0.041 1.13 0.66
(0.020) (0.017) (0.050) (0.060) (0.044) (0.025) (0.010) (0.377)

1973-1978 —0.037 1.31 0.787 0.327 0.650 0.157 0.054 2.26 0.38
(0.035) (0.044) (0.044) (0.089) (0.029) (0.017) (0.011) (1.35)

1979-1984 0.032 1.30 0.710 0.156 0.371 0.329 0.021 0932 0.77
(0.031) (0.027) (0.079) (0.080) (0.097) (0.058) (0.015) (0.693)

1985-1991 0.013 1.24 0.834 0.135 0.747 0.139 0.050 0.575  0.99
(0.032) (0.024) (0.068) (0.062) (0.051) (0.033) (0.011) (0.186)

D. Analysis of the Five Individual Stocks

This section summarizes our findings for the five individual stocks over the
full sample. Table IX reports point estimates for the full dynamic system
allowing for fat-tailed conditional return innovations as outlined in Section II
D. Consequently, Z, is distributed ii.d. GED,,,,(0, 1) rather than standard



Return Volatility and Trading Volume 197

Table IX

Estimation Results for the Return-Volume System Based on the
SARV-GED,,-GED,,,, Model

The results are based on continuously compounded percentage returns, corrected for dividends
and stock splits, and detrended trading volume, corrected for stock splits, calculated from the daily
New York Stock Exchange closing prices and trading volume for five common stocks over the
period January 2, 1973-December 23, 1991. Observations between December 24 and January 1,
inclusive, were deleted. The figures were obtained from Standard & Poor’s Daily Stock Price Guide
and checked against the returns and volume indicated on tapes from the Center for Research in
Security Prices. The volume series was detrended by dividing the actual trading volume for a given
day by the expected value calculated using a nonparametric kernel regression with a normal
kernel (corresponding to the series in Panel A of Table IV). The following system involving the
returns, R, the detrended volume, Vt, and the (unobserved) number of information arrivals, K,
was estimated by the Generalized Method of Moments:

R,=K"Z, VIK,~c-Po(mo+m, K=o+ BK" + oK u,
Z, ~ GED,»,(0,1)  u,=lvl/Elv,|, v, ~ GED,(0, 1),

where Z, and v, are i.i.d. and mutually independently distributed according to the standardized
Generalized Error Distribution (GED), whose outlier behavior are determined by the tail param-
eters w(r) and w respectively (Nelson (1991)). In addition, the estimated parameters include the
mean return, 7, a (nuisance) scaling parameter for the volume process, ¢, and the approximate
average fraction of daily volume independent of (associated with) information arrivals,
¢ - my(c - m;), and the parameters of the Stochastic Auto-Regressive Volatility (SARV) specifi-
cation for K2, (o, a, a + B, w, w(r)). Among the latter, ¢ = E[KY2] = o/(1 — a — B)
measures the return standard deviation, o + B (<1) indicates the degree of persistence in shocks
to volatility and volume. Estimated standard errors are provided below the parameters, while
p-values are reported for the y2-tests. The overall (joint) goodness-of-fit test has 22 degrees of
freedom. The tests of parameter restrictions in the third and second to last column are x2(1)-
distributed, while the joint test of goodness-of-fit of the subset of moments involving volume data
reported in the last column is x%(9)-distributed (Eichenbaum, Hansen, and Singleton (1988)). The
weighting matrix used in the objective function was calculated according to Newey and West
(1987a) with 75 lags, except that the weighting matrix and parameter estimates were iterated
until convergence, so the weighting matrix reflects the final parameter estimates.

Joint  Test: Test: Joint
- w(r) a+ B Volume
r a B+ a a c mg Cc*m, c w w(r)  Test =2 = 0.885 Moments

Alcoa
0.060 1.65 0.707 0.143 0.454 0.172 0.290 0.599 1.76 19.2 3.38 18.3 11.0
(0.023) (0.041) (0.049) (0.047) (0.063) (0.023) (0.034) (0.186) (0.099) (0.571) (0.066) (0.000) (0.615)
Amoco
0.054 1.23 0.803 0.138 0.535 0.274 0.135 0.688 1.86 23.3 1.23 128 12.9
(0.018) (0.033) (0.029) (0.043) (0.057) (0.038) (0.011) (0.246) (0.115) (0.328) (0.267) (0.000) (0.459)
Coca-Cola
0.070 1.34 0.759 0.098 0.528 0.222 0.153 0.435 1.59 20.4 16.3 9.99 11.0
(0.020) (0.037) (0.046) (0.028) (0.083) (0.047) (0.030) (0.098) (0.068) (0.496) (0.000) (0.002) (0.610)
IBM
0.003 1.24 0.694 0.243 0.621 0.196 0.039 1.07 199 21.9 0.004 55.2 18.9
(0.018) (0.034) (0.034) (0.063) (0.035) (0.024) (0.005) (0.415) (0.118) (0.406) (0.948) (0.000) (0.127)
Kodak
0.005 1.45 0.789 0.124 0.460 0.210 0.088 0611 1.91 20.9 0.373  8.87 18.3
(0.023) (0.037) (0.037) (0.041) (0.086) (0.045) (0.009) (0.241) (0.136) (0.465) (0.541) (0.003) (0.145)
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Normal which adds w(r) to the parameter vector 6. Otherwise, the system is
identical to the one selected above on the basis of the IBM data.

The estimation results for IBM are virtually identical to those presented in
Table VIII because w(r) at 1.99 is almost identical to the conditionally normal
case.¢ The findings for the remainder of the stocks are generally consistent
with those for IBM. The most noteworthy features are as follows: the estimated
mean returns are all positive, and significantly nonzero in three of five cases;
the volatility persistence measure, a + B, fluctuates between 0.70 and 0.80;
across the stocks the information-insensitive component of trading lies be-
tween 45 percent and 62 percent of the daily volume; for all stocks the
estimates indicate the presence of fat tails in the volatility innovations as well
as the conditional return innovations. However, the former are quite impre-
cisely estimated, while the latter only deviate significantly from normality in
the case of Coca-Cola and, marginally, Alcoa. An alternative test of the hy-
pothesis, w(r) = 2, is available in the form of a likelihood-ratio type test as
described in section IV, and the associated test statistics are included in Table
IX. It is reassuring that they point to the same conclusion as before: the
restriction is only strongly rejected for Cola-Cola (at the 1 percent level), while
it is rejected at the 10 percent level for Alcoa. For the remainder we fail to
reject the conditional normality of the return innovations. This points to yet
another theoretically motivated modification of the MDH, which appears to
improve the performance of the model; the release of (unanticipated) public
information induces return variability but may have little concurrent effect on
trading volume. This can induce conditionally fat tails and excess kurtosis in
the return distribution.

In conclusion, the full dynamic specification fares well, as it provides an
overall reasonable fit to the joint return and volume moments of the individual
stocks. The results support the hypothesis that an appropriately specified
structural system of the return-volume relation inspired by the reasoning
underlying the MDH is likely to constitute a fruitful avenue for future re-
search. Nonetheless, it is also evident that the current specification has some
shortcomings. This shows up primarily in the reduction of the measure of
return volatility persistence. The next section explores the statistical robust-
ness of this finding and verifies that a truly significant reduction takes place.
The concluding section of the article discusses some potential explanation for
this and points to modeling strategies that may help accommodate these
features of the joint return-volume system.

E. Exploring the Decay in the Estimated Volatility Persistence

This section investigates the decay in the estimated volatility persistence as
the return system is expanded into a joint return-volume system. For brevity,
the analysis focuses on the IBM series. Initially, we consider the following

86 The drop in the p-value associated with the y?-test for goodness-of-fit is due to the additional .
parameter, which reduces the degrees of freedom by one without improving the fit of the model.
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explanations. First, it is possible that our selected series happen to have a
lower volatility persistence than that typical of high frequency financial return
series. Second, our volatility process corresponds to the conditional return
standard deviation rather than the conditional return variance typically
modeled in the ARCH setting, and this may explain the difference in persis-
tence characteristics. Third, there may be sizeable finite sample biases inher-
ent in the GMM estimation procedure, which can account for the lower esti-
mated volatility persistence. Fourth, it is possible that the SARV specification
has fundamentally different volatility persistence characteristics from
GARCH(1, 1) so that we, in fact, should expect to detect different volatility
properties. The evidence reported below rejects all these explanations for the
estimated low volatility persistence in the bivariate system.

Table X presents estimation results for seven different univariate models fit
to the IBM return series. The first two rows of Panel A demonstrate that
standard GARCH(1, 1) models, estimated by maximum likelihood, produce the
usual high volatility persistence measures. Indeed, o + B is in excess of 0.985
for both the normally distributed and the thick tailed (GED,,,,) return inno-
vations. Likewise, maximum likelihood estimation of a GARCH(1, 1) model for
the conditional return standard deviation, termed SD-GARCH, produces a
point estimate of @ + B = 0.989. The GMM estimation results reported in
Panel B further reinforces the conclusion that.return volatility persistence is
extremely high. The first row refers to the identical SD-GARCH model and
indicates no significant decay in o« + B. The next two rows show that corre-
sponding SARV models produce almost identical estimates for the relevant
parameters. The SARV model in the second row restricts the tail parameter of
the return and volatility innovations to be identical, so that the only difference
to the SD-GARCH setting is the independence of the two processes. In con-
trast, the model in the third row of Panel B allows these tail parameters to
differ. Both innovation processes appear fat-tailed, but the parameter for
the volatility innovation process is extremely imprecisely estimated and, in
fact, close to being underidentified by the data. In conclusion, none of the results
indicate that the significant reduction in the estimated volatility persistence can
be explained by differences between the estimation methods or by differences in
the fundamental volatility persistence characteristics across the models.

Finally, the last SARV model restricts the return innovation to be normal.
This is typical of most proposed stochastic volatility representations and spe-
cifically the standard MDH. Interestingly, this restriction appears to induce a
substantial thickening of the tails in the estimated volatility innovation pro-
cess and, simultaneously, a significant drop in the volatility persistence. Thus,
the imposition of normality in the return innovations seems to have the same
qualitative implications for the volatility persistence as the incorporation of
the volume processes, albeit quantitatively less significant. Indeed, in Table IX
we find that the normality restriction on the return innovation is strongly
rejected only for one of the stocks. Moreover, while a joint test for the goodness-
of-fit of the subset of the moments that involve volume data fails to reject the
model, and thus confirms the overall satisfactory fit of the bivariate specification,



200 The Journal of Finance

Table X
Univariate Models for the IBM Return Series

The results are based on continuously compounded percentage returns, corrected for dividends
and stock splits, calculated from daily New York Stock Exchange closing prices on International
Business Machines common stock over the period January 2, 1973-December 23, 1991. Observa-
tions between December 24 and January 1, inclusive, were deleted. The full sample consists of
4,693 observations. The prices were obtained from Standard & Poor’s Daily Stock Price Guide and
checked against the returns indicated on tapes from the Center for Research in Security Prices.
The following models of the return series, R, and the conditional return variance process, K,, were
estimated by either Maximum Likelihood (Panel A) or Generalized Method of Moments (Panel B):

R, =7+ K2z, Ki=w+ BK%, + aK% u,, q=1or2.

The error processes Z, and u, are independent and both standardized to have mean zero and unit
variance, but may be normally distributed or Generalized Error Distributed (GED,,) with outlier
behavior governed by the tail parameter w (Nelson (1991)). In addition, the estimated parameters
include the mean return, 7, and the parameters of the (for ¢ = ¥, Standard Deviation, or SD-)
GARCH or Stochastic Auto-Regressive Volatility (SARV) specifications for K¢, (w, a, a + B),
where a + B indicates the degree of persistence in shocks to the return volatility (variance) process.
The table displays the point estimates for the parameter and provides standard errors in paren-
theses below the estimates. The LB, ,-statistics are Ljung-Box tests for the joint significance of the
first ten autocorrelations in returns and squared returns respectively, with P-values given below
the statistics. The following 14 moments were used for the Generalized Method of Moments
estimation: E(R, ) E(RY); E(IR, - 7l); E(R}); E(IR, — 7| IR,_; = 7),j = 1, 3, 6, 10, 13,
16, 19; E(RZ R2_)), i = 2, 4, 7. The y*test of overall goodness—of fit for the overldentlfylng
restrictions are x*- dlstnbuted with degrees of freedom equal to 14 minus the number of estimated
parameters. For rows 1, 2 and 4 in Panel B this implies 9 degrees of freedom, while the model in
column 3 of Panel B has 8 degrees of freedom, and the associated p-values are provided below the
statistics. The weighting matrices for the GMM objective functions were calculated by the Newey
and West (1987a) procedure using 75 lags, except that the weighting matrix and the parameter
estimates were iterated to convergence, so that the weighting matrix reflects the parameter
estimates.

Panel A: Maximum Likelihood Estimation Results

F ® B a  w(r) LB;o(R) LB,,(R?
GARCH; Z, ~ N(0, 1); 0.035 0.036 0.918 0.068 8.90 3.68
u, =22, q=1 (0.012) (0.007) (0.008) (.006) (0.54)  (0.96)
GARCH; Z, ~ GED,,; 0.000 0.023 0.943 0046 137 947 4.97
u,=2%, q=1 (0.007) (0.005) (0.007) (0.006) (0.026) (0.49)  (0.89)
SD-GARCH; Z, ~ GED,,;  0.002 0014 0948 0041 137 106 175

u, = 12,_,1/E|Z,|; q = V2 (0.011) (0.009) (0.009) (0.008) (0.011) (0.393)  (0.064)

Panel B: Generalized Method of Moments Estimation Results

F P B+ a a w w(r) x2% (p-val)
SD-GARCH; Z, ~ GED,,); 0.027 134 0958 0.055 [w(r)] 145 3.06
u, = 1Z,_,1/EIZ,|; ¢ =%  (0.019) (0.041) (0.037) (0.018) (0.060)  (0.96)
SARV; Z, ~ GED,y; q = V2 0.027 131 0960 0.087 [w(r)] 1.65 2.96
v, ~ GED,(,y; u, = lv,I/Elu | (0.019) (0.041) (0.037) (0.045) (0.086)  (0.97)

SARV; Z, ~ GED,; q =% 0027 131 0960 0083 145 165 2.96

v, ~ GED,; u, = Iu,l/Elu,I (0.019) (0.041) (0.036) (0.190) (7.53) (0.087) (0.94)
SARV; Z, ~N(0,1); g=1% 0014 125 0783 0.164 0699 [2] 8.47
v, ~ GED,; u, = |v,|/E|v,l (0.020) (0.039) (0.062) (0.076) (.540) (0.49)
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the test of « + B = 0.885, which is high from the perspective of the joint
return-volume model but low for the univariate returns model, is strongly rejected
for all stocks. These significantly lower estimates of volatility persistence are
again accompanied by extremely fat tails in the volatility innovations processes.

VI. Conclusion

This article studies the joint distribution for return volatility and trading
volume at the daily level. The contemporaneous relation is derived from a
stylized microstructure framework in which informational asymmetries and
liquidity needs motivate trade in response to the arrival of new information.
The specification is generally consistent with the “Mixture of Distributions
Hypothesis” for asset returns, although the volume equation differs from
standard specifications. This is due to an accommodation of microstructure
features as well as a Poisson, rather than normal, approximation to the
limiting distribution of the binomial process that drives trading volume. The
test of the modified MDH indicates that the specification is broadly consistent
with the data and performs vastly better than the standard formulation. The
dynamic features of the joint system is governed by a random mixing variable
representing an information flow—or stochastic volatility—variable. The lat-
ter is modeled as a SARV process which allows us to estimate the system by
GMM under a variety of alternative distributional assumptions regarding the
innovations to the information arrival process.

The full dynamic model is estimated and tested for daily data on five
common stocks over 1973-1991. Although the standard specification tests
generally support the full fledged version of the model, a significant reduction
in the estimated measure of volatility persistence takes place when the uni-
variate returns model is expanded to encompass the volume data. Moreover,
interesting implications arising from standard restrictions on stochastic vola-
tility models are noted. This points to promising avenues for future research.
For example, it is natural to hypothesize that there are two or more types of
information arrival processes that have different implications for volume and
return volatility persistence. Prominent candidates for news releases and
events, that have little effect on volatility persistence but induce a relatively
heavy trading volume, are periodic macroeconomic announcements (Edering-
ton and Lee (1993)) and so-called triple witching days where futures and
options on stock indices and individual stocks expire simultaneously (Sofianos
(1992)). These incidents typically generate only short lived bursts of volatility
in returns, but more significantly induce very heavy trading volumes. Conse-
quently, the volume figures will indicate a high information flow activity and
a subsequent fast decay, whereas the incident may be barely noticeable in the
returns process. Failing to control for such events will bias our volatility
persistence measures downward. An exhaustive exploration of this hypothesis
requires explicit use of intraday data. However, in addition to the above
mentioned phenomena, the intraday return volatility and volume processes
contain predictable, deterministic components of a form that is quite distinct
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from the ones captured by standard volatility models. In fact, Andersen and
‘Bollerslev (1994) demonstrate that failure to account for these effects may
result in dramatic downward biases in the estimated volatility persistence
measure. The impact is sufficient to explain the very low persistence measures
in half-hourly observations found by Foster and Viswanathan (1995). Thus,
further progress in this area is likely to stem from theoretical and empirical
work that simultaneously deals with the diversity of information arrival pro-
cesses, the prominent microstructure features of the data, and the interplay
between the intraday and the daily volatility processes.

Appendix
Derivation of Equation (5)

From the main text we have that the informed volume associated with a
given information arrival j on day ¢ is given by Po(Ip; ,). Since the informed volume
is independent across information arrivals, we obtain the following expression for
the daily informed volume conditional on the number of arrivals:

JK; JK;
IVIK, ~ E Po(I-p;,) =Pol I - 2 Djs (A-1)
j=1 j=1

Next, for J, = JK, large, we find

JK: JK;

s
2 Dt = JK, J—I{t E DPjt| = JKtE(pj,t) = JK, J = K (A-2)
j=1 j=1

Thus, for large J,, also relative to I, we apply the following distributional
approximation

JK;
IVIK, ~ Po(I- > p,.,t) = Po(I - K, (A-3)

J=1

which corresponds to equation (5).
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