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Vedat Akgiray

Clarkson University

Conditional Heteroscedasticity
in Time Series of Stock
Returns: Evidence and
Forecasts*

I. Introduction

This article presents new findings about the tem-
poral behavior of stock market returns and
summarizes the results of applying some new
time-series models to daily return series. It is
discovered that daily series exhibit much higher
degrees of statistical dependence than has been
reported in previous studies. This finding is the
result of recognizing the possibility of nonlinear
stochastic processes generating security prices.
The dependence structure is then exploited to
obtain forecasts of the conditional moments of
return distributions. Forecasts of conditional
variances in particular are shown to have reason-
ably high accuracy.

Empirical research on the statistical properties
of stock returns dates back to the pioneering
works of Mandelbrot (1963) and Fama (1965).
These and many other studies since then have
shown that time series of daily stock returns ex-
hibit some autocorrelation for short lags. The
magnitudes of the autocorrelations, however, are
too small to form profitable trading rules. More-
over, since the empirical distributions of returns
are significantly different from Gaussian distribu-
tions, the statistical significance of the usual
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This article presents
new evidence about the
time-series behavior of
stock prices. Daily re-
turn series exhibit
significant levels of
second-order depen-
dence, and they cannot
be modeled as linear
white-noise processes.
A reasonable return-
generating process is
empirically shown to
be a first-order autore-
gressive process with
conditionally hetero-
scedastic innovations.
In particular, general-
ized autoregressive
conditional heterosce-
dastic GARCH (1, 1)
processes fit to data
very satisfactorily.
Various out-of-sample
forecasts of monthly
return variances are
generated and com-
pared statistically.
Forecasts based on the
GARCH model are
found to be superior.
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autocorrelation estimates may be even lower. Consequently, the as-
sumption of Serially uncorrelated stock returns has been widely ac-
cepted as g safe approximation.

Unless 'the underlying stochastic process is Gaussian, the lack of
serial correlation does not imply statistical independence. However,
many .empirical studies of stock price behavior have made the stronger
assur/nption of intertemporally independent returns. Based on this as-
sumption, several probability distributions have been suggested to rep-
resent the empirical distribution of returns, ranging from infinite-
variance stable laws to finite-variance mixture models (Cox and
Rubinstein [1985] and Bookstaber and McDonald [1987] provide many
references to studies in this area). Some of these models require the
additional assumption of identically distributed returns while others
allow for random variation in some or all of the parameters. The com-
, mon characteristics of these models are two: (1) returns are indepen-

dent, and (2) the return-generating process is a linear process with
parameters that are independent of the past realizations of the process.
The mean and the variance are the parameters that are of great interest
because they are the key variables in theoretical and practical valua-
tion models of finance.

The empirical evidence reported in this article challenges the com-
mon assumptions of independence and linearity. In fact, there seem
to be no compelling theoretical reasons for assuming either (Neftgi
1984), and their necessities are questionable. On the contrary, the work-
ings of speculative markets suggest that nonlinearities and intertem-
poral dependence in return series are to be expected. As the dis-
cussions and empirical evidence in the articles by Perry (1982), Pindyck
(1984), and Poterba and Summers (1986) further imply, the assump-
tion of constant conditional (conditional on the past values) means
and variances is both unrealistic and dubious. All that is required
by the theory of speculation and competitive markets is that the re-
turn-generating process must be representable as a martingale.
This requirement is sufficient to guarantee market efficiency (Fama
1970).

This article is organized as follows. The following section investi-
gates the statistical properties of return distributions and identifies the
class of return-generating stochastic processes that are consistent with
these properties. The third section includes statistical tests of the fit of
two conditional heteroscedastic processes, autoregressive conditional
heteroscedastic (ARCH) and generalized autoregressive conditional
heteroscedastic (GARCH) processes. The fourth section presents vari-
ous forecasts of market volatility, and compares their accuracies. Con-
clusions and suggestions for future research make up the fifth and final
section of the article.
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II. Statistical Analysis

This section includes a comprehensive analysis of the distributional
and time-series properties of stock returns. Preliminary time-series
analysis is conducted both in the frequency domain and in the time
domain. The purpose is to determine whether stock price movements
can be adequately represented by linear white-noise processes with
independent increments, a common assumption in models of stock
prices. The terms ‘‘white noise,”” “‘random walk,”” and “linear pro-
cess’’ are sometimes applied outside of their precise meanings in math-
ematical statistics. Therefore, it may be useful expositionally to define
these terms first.

Let m = E[x,] and ¢; = E[x,,,x,] — m? denote the mean and the
covariance function of a second-order stochastic process {x;}. The pro-
cess is said to be (weakly, or second-order) stationary if m and ¢, do
not depend on . The mean can be set equal to zero without loss of
generality. If ¢, = 0 for all s > 0 (i.e., x, ., and x, are uncorrelated),
then the process is ‘‘white noise.”” It is important to note that
whiteness does not imply independence between x;and x,, ; (unless it is
a Gaussian white noise). In other words, zero autocorrelation does not
necessarily mean that the probability distribution of x, .  is independent
of realized values of x,. This is true even if the {x;} have identical
(unconditional) distributions. If, in addition, x, ; and x, are statistically
independent, then the process is called **strict white noise’’ or “‘purely
random.”” If the process x, is strict white noise, the processes {lx,|} and
{x?} are also strict white noise. The term ‘‘random walk”’ as used in the
finance literature is synonymous with strict white noise. Sometimes,
however, it is used confusingly to mean white noise only. Detailed
discussions of some of these issues and their implications for modeling
financial time series can be found in Taylor (1986).

Finally, a stationary process {x,} is said to be a ‘‘linear process’’ if it
can be expressed as a linear function of strict white noises {utasx, =
3= 0asU, 5. Stationary normal processes are always linear but other
white-noise processes need not be linear (Priestley 1981). For finite-
variance processes, linearity implies certain restrictions on the
covariance structure. In general, significant sample estimates of
E[xX; 1 5%, + 51 ,], or high values for E[x?x2, s] for large s, would indicate
a nonlinear process. A nonlinear process can be white noise but not
strict white noise.

A. The Data

The data are obtained from the Center for Research in Security Prices
(CRSP) tapes, and they contain 6,030 daily returns on the CRSP
value-weighted and equal-weighted indices covering the period from
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January 1963 to December 1986. To conform with the literature and to
avoid some computational problems, return is defined as the natural
logarithm of value relatives; R, = log (I7/I, ), where dividends are part
of total value. For small values of R,, such as in daily data, this defi-
nition is very similar to the arithmetic rate of return.

The 24-year period between 1963 and 1986 involves a sample of 6,030
observations. This sample is divided into four different periods of 6
years each, and each period is analyzed separately. The partitioning of
the data is motivated by the observation that the series do not exhibit
homogeneous behaviour over the entire 24-year period. This particular
partition is somewhat arbitrary and not necessarily the best scheme to
obtain homogeneity. Nevertheless, plots of monthly sample medians
and interquartile ranges during each 6-year period do not indicate ap-
parent nonhomogeneities. Conversely, as the subsequent empirical
evidence will show, there are significant statistical differences between
the four periods, and the entire series may not be represented by a
stationary process with constant (unconditional) parameters. Each pe-
riod contains about 1,500 observations, which is a sufficiently large
sample. Nevertheless, for purposes of completeness and comparison,
statistical analyses are conducted and findings are reported for the
entire sample as well.

The results are very similar for the two index series and therefore
they are reported only for the value-weighted index. Whenever inter-
esting and notable differences in the calculated values are found, refer-
ence to the equal-weighted index results is made. In addition to daily
data, some of the analysis is conducted also for weekly and monthly
data. They are summarized at the end of the paper.

B. Statistical Findings

In table 1, a wide range of descriptive statistics for the return series
{R},t=1,...,T,for the four periods are reported. These include the
following distributional parameters: mean, variance, skewness, kur-
tosis, range, median, interquartile range (IQR), Kolomogorov-Smirnov
D-statistic for the null hypothesis of normality, and the maximum log-
likelihood function value when a normal distribution is fitted to data.
Also included are statistics to test the null hypothesis of strict white
noise both in the time domain (Fisher’s kappa and Bartlett’s Kol-
mogorov-Smirnov-type statistic) and in the frequency domain (Ljung-
Box portmanteau test).

The sample moments in all four periods indicate that the empirical
distributions have heavy tails and sharp peaks at the center compared
to the normal distribution. The Kolmogorov-Smirnov test leads to the
rejection of normality in every sample. The Kiefer-Salmon (1983) tests
for normal kurtosis (zero-excess kurtosis) and normal skewness (zero)
also reject the normality hypothesis. Zero skewness cannot be rejected
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in the first and third periods but normal kurtosis is safely rejected in all
periods. That daily stock returns are not normally distributed is a well-
known result. Several leptokurtic distributions have therefore been
proposed as more descriptive models than the normal.

All of the findings for the four periods also hold for the entire 1963—
86 period. However, the sample moments from different periods are
generally significantly different. The differences between the means,
medians, and the interquartile ranges may be interpreted as distribu-
tion-free indicators of nonhomogeneity in the entire series. Conse-
quently, separate analyses of the four periods seem to be justified and
this should not result in any loss of generality.

Before any probability distribution model is fitted to data, the under-
lying assumptions of the model have to be verified empirically. Almost
all of the popular models of stock returns require that returns be inde-
pendent random variables, and many also require that they be identi-
cally distributed. In order to test the hypothesis of independence, the
periodogram of each series is estimated, and Fisher’s kappa and Bart-
lett’s test statistics are calculated (see Fuller 1976). Fisher’s kappa is
the largest periodogram ordinate divided by the average of these ordi-
nates. Bartlett’s procedure calculates the normalized cumulative pe-
riodogram, which is a uniform (0, 1) variate under the null hypothesis.'
As the entries in table 1 indicate, the hypothesis of independence is
rejected in periods 1 and 3 by Fisher’s test, and in all four periods by
Bartlett’s test. Visual inspections of the periodograms support this
conclusion. In the time domain, Ljung-Box tests also lead to the same
result. The test statistic is calculated for lags up to 60 days, and those
for lags 6, 12, and 24 are reported in table 1. The null hypothesis of
strict white noise is rejected in all cases, even at lower significance
levels than 1%. The conclusion must be that daily return series are not
made up of independent variates.

In order to investigate the reasons for lack of independence, the
sample autocorrelation functions may be analyzed. The estimated
autocorrelations for the series {R,}, {|R,|}, and {R?} for the whole period
from 1963 to 1986 are shown in figure 1. When the four periods are
analyzed separately, similar results are obtained. The return series
display high first-lag autocorrelations (ranging from 0.18 in period 4 to
0.31 in period 2) and apparently insignificant autocorrelations at longer
lags. Using the usual approximation of 1/\/T as the standard error of
these estimates, all of the first-lag autocorrelations are greater than
7/V/T. Even though the 1/VT value may be an understatement of the
standard error (due to the nonnormality of returns), seven times this

1. Strictly speaking, both procedures are tests of the hypothesis of normal (strict)
white noise but in large samples they provide good approximations for general tests of
independence. Bartlett’s test is known to be more robust to distributional assumptions.
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Fic. 1.—Autocorrelation functions for return series

value is a sufficiently large confidence bound. The autocorrelations in
the absolute and squared return series are always much higher than
those in the return series, and they are consistently significantly posi-
tive for lags up to 60 days. The autocorrelation between absolute re-
turns, however, is generally higher than that in squared returns. As the
lag increases, both autocorrelation functions slowly decay but never go
below 3/\/T at any lag up to 60. This finding agrees with those reported
in the classic work of Fama (1965), that large price changes are fol-
lowed by large changes, and small, by small, of either sign. More
generally, the distribution of the next absolute or squared return de-
pends not only on the current return but also on several previous
returns. This is a conclusive rejection of the hypothesis that return
series are strict white-noise processes. Indeed, the presence of signifi-
cant first-lag correlations in {R;} implies the rejection of white noise
too.

C. Implications for Model Building

The presence of linear dependence in daily return series of market
indexes can be attributed to various market phenomena and anomalies.
The presence of a common market factor, the problem of thin trading
in some stocks, the speed of information processing by market partici-
pants, and day-of-the-week effects could contribute partially to the
observed first-order autocorrelations. For example, the autocorrela-
tions in the series of equal-weighted index returns are generally higher
than those in the value-weighted series. However, as subsequent em-
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pirical evidence will show, thin trading and day-of-the-week effects
alone cannot account for the linear dependence structure in either
series.

Nonlinear dependence, on the other hand, may be explained by the
well-documented fact of changing variances (see, for example, Hsu,
Miller, and Wichern 1974; Epps and Epps 1976; Perry 1982; and
Tauchen and Pitts 1983). Changing variance can also explain the high
levels of kurtosis in return distributions. Variance changes are often
related to the rate of information arrivals, level of trading activity, and
corporate financial and operating leverage decisions, which tend to
affect the level of stock price. A natural way of modeling this phenome-
non is to represent return distributions as mixtures of distributions, or
as distributions with stochastic moments. Clark (1973), Blattberg and
Gonedes (1974), Oldfield, Rogalski, and Jarrow (1977), Merton (1982),
Kon (1984), and many others have proposed models of this type. While
these models allow for changing variances and can explain the lep-
tokurtosis (and, possibly, skewness) of empirical distributions, their
theoretical statistical assumptions are not consistent with the empirical
evidence reported here. Most important, all of these models assume
that successive observations are independent random variables and
hence the return series are strict white-noise processes.? These models
are not compatible with the nonlinear dependence structure observed
in the return series.

Any realistic probability model of daily stock-price movements must
be consistent with at least two empirical facts: (1) time series of returns
exhibit significant first-lag autocorrelation, and (2) time series of abso-
lute and squared returns are autocorrelated even at very long lags. A
reasonable strategy to construct such a model may start with trans-
forming the original return series so that the new series will no longer
be correlated. Then the model to be fitted to this new series would be
required to satisfy only the second property above (as applied to the
transformed series).

One possible way of generating an uncorrelated sequence from the
series {R,} is to obtain the ordinary least squares (OLS) residuals of the
following regression:

R, = ¢o + diR,—1 + e;. ¢))

The residual series {e,} can be expected to be uncorrelated since sec-
ond-order or higher-order autocorrelation is not observed in the return
series. The OLS estimates of this regression model, and a number of

2. It has to be noted that an erroneous assumption of strict white noise makes ques-
tionable the validity of parameter-estimation methods requiring the calculation of like-
lihood-function values such as the maximum-likelihood method. This is because a like-
lihood function can usually be calculated only for samples of independent random
variables.
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statistics describing the distribution of the residuals, are reported in
table 2.

The estimates of ¢, are significantly greater than zero, confirming the
presence of first-order autocorrelation in {R,}. Applying the Dickey-
Fuller (1979) test for unit roots shows that ¢, is also significantly
smaller than unity in all four periods. This implies that the return series
in each period may be generated by a stationary random walk, which is
more complex than a simple random walk. This is consistent with the
previous findings. Furthermore, simple likelihood-ratio tests show that
adding extra lagged variables to the model is not necessary.

The distributions of the residuals e, are expectedly very similar to
those of the returns. They are leptokurtic, slightly skewed, and non-
normal as indicated by the Kolmogorov-Smirnov tests. The variance
and range parameters are only slightly different. Durbin-Watson tests
show that there is no first-order autocorrelation in the residual series.
Thus, an AR(1) transformation of returns gives an uncorrelated series
of residuals as desired.

In order to check the hypothesis of independence for the residual
series, the periodograms and the correlograms are estimated, and the
Fisher, Bartlett, and Ljung-Box test statistics are calculated. In almost
all cases, these tests fail to reject the hypothesis that the {e,} is strict
white noise. This result is surprisingly very different from what is
observed in the return series. It is surprising because it is difficult to
understand how a linear AR(1) transformation can eliminate the long
autocorrelations in the absolute and squared return series. This para-
dox can be resolved by analyzing the correlograms of {|e,|} and {E7} in
addition to that of the residuals because, if the residuals are strict white
noise, so, too, are their absolute values and squares. All three autocor-
relation functions are displayed in figure 2. It is seen that the correlo-
grams of the absolute and squared residuals are very similar to their
counterparts in the return series shown in figure 1. The autocorrela-
tions in the squared and absolute residual series are significantly posi-
tive (many times 1/V/T) at even very long lags. Since the calculation of
these autocorrelations is not based on any stringent distributional as-
sumptions (with the possible exception of the existence of the fourth
moment), they show clearly that the residuals exhibit high levels of
intertemporal dependence. The residual series are not likely to be real-
izations of strict white-noise processes.

The Fisher, Bartlett, and Ljung-Box tests could not reject the hy-
pothesis of independence in the residual series because all of these
tests are based on the behavior of the autocorrelation function, or the
periodogram. In other words, the full probability distribution of e, is
not taken into account. Therefore, when the series is not normal
(which is the case here), failure to reject the independence hypothesis
by these tests is nothing more than failure to reject the hypothesis of
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white noise. The most that can be inferred from these test results is that
the residual series is white noise (uncorrelated).?

The presence of significant autocorrelation in squared residual (and
return) series explains the thick tails and peakedness of the empirical
distributions. Therefore, the return-generating process may be empiri-
cally represented by a linear process of the form (which can be derived
from the AR(1) specification by repeated substitution) R, = a +

> obse,—s, where the innovations are nonnormal (heavy-tailed and
peaked) random variables. Although this model could show a good
empirical fit to data, it would have severe shortcomings. First, since
the series {e,} is not independent (though uncorrelated), the traditional
time series or regression estimation of the model would be theoretically
erroneous. More important, any such linear specification would ne-
glect valuable information for prediction purposes, namely, informa-
tion about the dependence in the squared values of returns. Consider-
ing the critical role of ex ante parameters in many financial economic
theories and algorithms, this type of information should hardly be over-
looked.

3. The values of Bartlett’s test statistic from the squared residual series are .2116,
.1611, .1091, and .0873 for periods 1 through 4, respectively. Fisher’s kappa values are
14.86, 28.47, 34.13, and 19.03. Therefore, the hypothesis of independence can alterna-
tively be rejected by these tests too. The same conclusion applies to the absolute value
series.
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A nonlinear process, however, that includes functions of past values
of €2, would explicitly allow the probability distribution of R, (at least
its second-order properties) to depend on past realizations. This is
what the presented empirical evidence demands. Hinich and Patterson
(1985) report evidence supporting this point. As discussed by Priestley
(1981), statistical estimation of general nonlinear processes is unfortu-
nately often intractable. An alternative model, which closely approxi-
mates second-order nonlinear processes, has been developed by Engle
(1982) under the name Autoregressive Conditional Heteroscedasticity
(ARCH). The process allows the first and second moments of R, to
depend on its past values. This dependence is formulated as a linear
function, yielding easy statistical estimation. In the next section, this
process will be fitted to the return series.

It was mentioned previously that thin trading and day-of-the-week
effects could not be the full causes of dependence in return series.
Since thin trading is more prevalent in the equal-weighted index series
than in the value-weighted series, higher degrees of autocorrelation
may be found in the equal-weighted returns. Indeed, the first-order
autocorrelation in this series for the 24-year period is .3625 while it is
2251 for the value-weighted series. However, autocorrelations at
longer lags are similarly negligible. When the first-order autocorrela-
tion for a value-weighted series of 30 blue-chip stocks is calculated, it is
found to be equal to .1988. Therefore, the impact of thin trading, while
present, seems to be small. In order to ascertain the role of the week-
day effect, the following regression model is estimated by OLS:

R, = &0 + d1R,_1 + 2D + 1y, 2

where D = 1if ¢ is a Monday, and 0 otherwise. This is to be compared
with the previous model where D is not included. It turns out that, for
the purposes of this study, it is not necessary to include the Monday
dummy variable. Although the estimates of ¢, are marginally signifi-
cant in all four periods (the largest ¢-statistic is —2.37), there are very
small increases in the R? values (the R? values are .041, .114, .043, and
.021 in the four periods, respectively). Estimates of the other parame-
ters are also practically unchanged. Furthermore, the distributions and
correlograms of m, are almost identical to those of ¢,. The weekday
anomaly does not seem to have much effect on the temporal depen-
dence in stock-return series. This is true for both indices.

III. Conditional Heteroscedastic Models

In this section, two closely related conditional heteroscedastic time-
series models are fitted to data in order to represent the observed
autocorrelation structure in daily-return and squared-return series.
These are the ARCH model of Engle (1982) and the generalized ARCH
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(GARCH) model developed by Bollerslev (1986). In addition to being
approximations to more general nonlinear processes, these models
have appealing economic and statistical implications.

A. Description of Models

It was shown in the previous section that the first-lag autocorrelation in
daily-return series {R,} could be modeled as a simple AR(1) process.
This specification is also included in the full conditional heterosce-
dastic process below. An ARCH process obtains as a special case of a
GARCH process. A GARCH process of orders p and ¢, denoted as
GARCH (p, g), can be described as follows:

Rtlnt—l ~ F(u, V), 3)
pe = & + O1R, 4, )

' 2 q
vi=ag + 2 el + D By, 3)

i=1 j=1

and

e, =R, — &g — iR, (6)
where p > 0 and g = 0 are the orders of the process, and the parame-
ters satisfy the conditions o9 > 0, o;, 3; =0,i=1,...,p,j=1,...,

q. F(.;, v,) is the conditional distribution of the variable, with condi-
tional mean ., and variance v,. {,_ is the set of all information avail-
able at time #(R,_{,R,_5, . . . ). When ¢ = 0, an ARCH(p) process
results. The statistical properties of this class of processes has been
studied by Weiss (1984), Milhoj (1987), and also Bollerslev (1986). The
empirical distribution of variables generated by these processes are
heavy tailed, compared to the normal distribution. However, no gen-
eral expression for the distribution function is available.

The unconditional mean and variance of a GARCH process are con-
stant, but the conditional mean and variance are time dependent as
shown above. The fact that conditional variances are allowed to de-
pend on past realized variances is particularly consistent with the ac-
tual volatility pattern of the stock market where there are both stable
and unstable periods. The conditional variance v, of R, is large when
e?_1,...,andv,_y,...,arelarge, and vice versa. Based on the results
of Tsay (1987), GARCH processes can be seen as special cases of
general random coefficient ARMA models. But they have the advan-
tage that the conditional variance v, is expressed as a simple linear
function of past ‘‘forecast errors” (e?_, . . . ,) and past conditional
variances (v2_;, . . . ,). This greatly simplifies model estimation and
prediction. ARCH models have been applied successfully on time
series of foreign exchange rates by Domowitz and Hakkio (1985) and
Milhoj (1987).
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B. Model Estimation and Results

To estimate the parameters 6 = (dg, ¢1, Ag, - - -, 0, B1, - . ., Bg) Of 2
GARCH(p, q) process, it is necessary to specify the conditional distri-
bution function F (u,, v,). In all applications, a normal distribution func-
tion is assumed. For lack of a good reason for another distribution, this
assumption is adopted here, although the model is flexible enough to
admit other laws. Given a sample of daily returns Ry, . . . , Ry and initial
values Ry, e, v for s = 0, . . ., r = max(p, q), the log-likelihood
function is then given by

T
LOIp, ¢) = ) log f(p, v)), )

where f(p,, v,) is the normal density function, and w, and v, are cal-
culated recursively by equations (4)-(6). For large samples, choice of
initial values is not critical. Numerical maximization of L(8|p, q) gives
the maximum likelihood estimates of the parameters for the GARCH-
(p, q) model. The values of p and q are to be prespecified. The likeli-
hood function can be maximized for several combinations of p and g,
and the maximum values can be compared statistically to obtain the
optimal order of the process. Engle (1982) and Bollerslev (1986) have
developed Lagrangean multiplier tests for ARCH and GARCH models.
The Lagrangean multiplier test requires estimation under the null hy-
pothesis only. Alternatively, x* tests based on likelihood ratios can also
be used. Since a normal process (for e,) with time-dependent mean p,
and constant variance v, = ay, different ARCH(p) processes, and sev-
eral GARCH(p, q) processes are all nested within some higher order
GARCH model, likelihood ratio tests are readily available. If L(6,)
and L(8,) are the maximum log-likelihood function values under the
null and the alternative hypothesis, respectively, then the statistic
—2{L(8,) — L(8,)} is asymptotically x* distributed with degrees of free-
dom equalling the difference in the number of parameters under the
null and the alternative.

Numerical maximization of the log-likelihood functions is carried out
using the NPSOL package from Stanford University’s Systems Opti-
mization Laboratory. Numerical stability and rapid convergence to the
optimum is obtained in all cases. The results for the four periods are
presented in table 3 and table 4. The standard errors of the point
estimates are calculated using the Hessian matrix at the optimum. In
the tables, the numbers below the parameter estimates are the usual ¢-
statistics based on these standard errors.

Table 3 includes the results of fitting pure ARCH(p) processes to
daily returns. The order p* of the process is found by applying like-
lihood-ratio tests successively until the improvement in the log-
likelihood function becomes insignificant. In most samples, if an
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TABLE 3 ARCH(p) Model Estimates
Period
Parameter 1963-68 1969-74 1975-80 1981-86 1963-86
do .00041 —.00014 .00057 100047 00032
(3.04) (—0.63) (2.83) 2.24) (5.672)
&, .1945 3212 .2045 .1406 2307
(7.65) (13.2) 8.14) (5.53) (24.6)
p* 3 5 5 2 2
ag(thousands) .00961 .02042 .03279 106352 103628
(129.8) 2.16) (11.31) (23.52) (34.55)
oy 24138 .06879 11712 103419 18257
(5.79) (2.45) (35.4) (1.48) 9.93)
[« 73 .20540 .14984 .02974 .01773 20149
(5.40) (4.38) (1.21) (.91) (10.56)
a3 21927 .16835 .05432 e e
(54.7) (4.81) 2.11)
oy e 17641 17413
(5.03) (5.67)
as . 17572 .08584
(7.86) (2.83)
3P oy .6661 7391 4612 .0519 3841
o%(thousands) .0288 .0783 .0681 0670 .0589
o%(thousands) .0297 .0872 .0710 .0684 10620
Log-likelihood 5,892.3 5,228.9 5,236.5 5,133.3 21,138.9
LM statistic 162.01 176.11 78.53 40.48 258.68
X statistic 364.0 334.0 84.3 16.7 473.2

NoTe.—Numbers in parentheses are t-statistics.

ARCH process of an order higher than necessary is fitted, the esti-
mates of the parameters corresponding to longer lags also tend to be-
come insignificant. Maximum of five lags seems to give a satisfactory
fit to daily series. All of the parameters are statistically significant
(except o, in period 4). The estimates of &g and ¢, are very similar to
those obtained by OLS in the AR(1) regression model of the previous
section. This may show indirectly that if a process for conditional
means alone is desired, daily series can be modeled as AR(1). The
estimates of ag are all positive and considerably smaller than the sam-
ple variances shown in table 2. This is due to changing conditional
variances over time and their eventual contribution to unconditional
variance. The sum of the other ARCH parameters (o; + . .. + o) is
substantially smaller than unity. This indicates that the fitted models
are second-order stationary and that at least the second moment exists
(Bollerslev 1986). The unconditional variances of ¢, and R, are given by
02 = ag/(1 — 3P0 and 0% = o2/(1 — $}), and they are also reported.
These are comparable to the sample variances reported in table 2 and
table 1.
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TABLE 4 GARCH(1, 1) Model Estimates
Period
Parameter 1963-68 1969-74 1975-80 1981-86 1963-86
bo .00045 .00007 .00055 .00049 .00034
(3.04) (.56) 2.79) (2.34) 4.02)
oY .1987 3341 2103 .1405 2218
(7.13) (13.4) (7.99) (5.45) (31.4)
ao(thousands) .00127 .00765 .00154 .00223 .00084
(3.15) (19.1) 2.91) (8.92) (3.57)
oy .20018 .08706 .08506 .04659 .07906
(3.70) (4.35) (3.27) (4.65) (6.14)
B .76053 190452 .89325 .92000 .90501
(13.8) (29.2) (34.3) (46.0) (64.6)
o) + B .96071 .99158 .97831 .96659 .98407
a*(thousands) .0323 .9086 .0710 .0668 .0527
ok(thousands) .0337 1.023 .0743 L0681 .0555
Log-likelihood 5,919.8 5,273.0 5,254.7 5,169.8 21,527.8

Note.—Numbers in parentheses are z-statistics.

The Lagrangean multiplier (LM) and the x? test statistics in table 3
indicate the presence of significant ARCH effects. The null hypothesis
of a homoscedastic normal process (that is, oy = ... = a, = 0) is
rejected in all four periods. This is true even for the period from 1981 to
1986, where the ARCH parameters are relatively smaller. The ARCH
process describes stock-price fluctuations much better than a normal
process with constant variance and with or without time-varying mean.

As a diagnostic check on the appropriateness of ARCH processes for
daily return series, the autocorrelation function (ACF) of the squared
residual series {e?} shown in figure 2 and also the partial autocorrelation
function (PACF) of the same series are examined. Bollerslev (1986)
shows that the ACF and PACF of an ARCH(p) process of {e?} are
similar to those of an AR(p) process, where the ACF exhibits exponen-
tial and/or oscillatory decay and the PACF cuts off after lag p. Al-
though the estimated ACF of the squared residual series seems to
decay as the lag increases (the rate of decay may be slower than expo-
nential), the PACF does not become zero after p or even longer lags.
Therefore, as far as the ACF and PACF are concerned, the data do not
seem to show full agreement with a pure ARCH process.*

Table 4 includes the results of fitting a GARCH(1, 1) process to daily
return series. Within the class of GARCH processes, GARCH(1, 1)
shows the best fit. Other models such as GARCH(p, q)forp =1, .. .,

4. The ACF and PACEF of the squared series are calculated for all four periods (using
the ARIMA procedure of the Statistical Analysis System). The same conclusion applies.
In the fourth period, the disagreement is more pronounced.
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5and g = 1, ..., 3 were also tried, but there were no significant
improvements in goodness-of-fit based on likelihood-ratio tests. The
number of parameters in GARCH(1, 1) is smaller than that in ARCH(p)
when p > 2. As reported in table 3, the smallest ARCH order for daily
returns is 2, which corresponds to an equal number of parameters as in
a GARCH(1, 1) process. When the log-likelihood function values for
the GARCH(1, 1) estimates in table 4 are compared with those for the
ARCH estimates in table 3, it can be seen that they are substantially
greater. Therefore, without having to calculate any x* or Lagrangean
multiplier tests, it is concluded that GARCH processes fit to data much
better than ARCH and normal processes.

The parameter estimates of the GARCH(1, 1) model in table 4 are all
statistically significant (except ¢ in period 2). The estimates of ¢o and
¢, are very similar to their counterparts in table 2 and table 3 for the
ARCH case. The estimates of ao are much smaller than the sample
variances of e, in table 2, showing again that conditional variances are
changing over time. The unconditional variances of e, and R,, cal-
culated as o2= ao/(1 — a; — B) and ok = oZ(1 — &), are expectedly
of similar magnitudes as their sample variances in table 2 and table 1.
The estimates of B are always markedly greater than those of o, and
the sum a; + B is very close to but always smaller than unity. When
the Dickey-Fuller test for unit roots is applied, the null hypothesis that
oy + B = 1.0is rejected in all periods except the second. Therefore, the
fitted process seems to be second-order stationary (admittedly, this is
not a strong conclusion). The fact that a; + B is close to one, however,
is useful for purposes of forecasting conditional variances. This will be
explored at length in the next section.

The ACF and PACEF for ¢? for a GARCH(p, g) process are similar to
those for an ARMA(r, g) process (r = max(p, g)), where both func-
tions tail off after r — ¢ lags. Based on the results in Bollerslev (1986),
it can be shown that, for the special case of GARCH(I, 1), ¢, = (o +
B)c,_1 for n = 2, where ¢, is the correlation between e? and e?_,,. The
ACF for ¢? shown in figure 2 is unusually consistent with this difference
equation. Of the 60 autocorrelations plotted in figure 2, 48 fall within
plus/minus 10% of the values implied by the equation. Furthermore,
the PACF (not shown) is also generally nonzero but decays at higher
lags. It is concluded that the empirical correlation structure is consis-
tent with a GARCH(1, 1) specification. This holds for the whole 24-
year period as well as for all four periods, and for both index series.

The fit of the GARCH(1, 1) model is further evaluated by investigat-
ing whether the standardized residuals (e, — p,)/\/v_, have a standard
normal distribution, as they should under the specification given by
expressions (3)—-(6) and the additional assumption of conditional nor-
mality in (7). Kolmogorov-Smirnov tests and the Kiefer-Salmon tests
cannot reject the hypothesis of normality. The GARCH model reduces
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the excess kurtosis to zero (the highest value observed is 0.37 in period
4). Skewness is also no longer present (the largest absolute value is
0.02 in period 2). These results are expected but still they provide
supporting evidence of good fit to data. They show that large returns
(of either sign) are more frequently observed in more volatile periods,
and vice versa. This is a realistic description of stock-market behavior.

Finally, the results of fitting ARCH and GARCH models to the entire
1963-86 period are reported in the last columns of table 3 and table 4.
Within their classes, ARCH(2) and GARCH(1, 1) specifications for this
series provide satisfactory fit. GARCH(I1, 1), however, is superior to
any ARCH specification. These results have to be interpreted with
consideration of the presence of nonhomogeneity in the series. As a
case in point, the log-likelihood function of either model for the entire
series is significantly smaller than the sum of the log-likelihood func-
tions for the four periods. This indicates that there are gains in descrip-
tive power when the models are fitted separately to the four periods,
and it also provides further justification for dividing the data into four
samples.

IV. Forecasts of Volatility

The parameter estimates in the previous section show that any realistic
process for stock returns must allow for high degrees of dependence in
the series of conditional variances and, to a lesser extent, in the series
of conditional means. As mentioned before, any intertemporal depen-
dence is also valuable information for forecasting purposes. In this
section, several forecasts of return variances are calculated and their
accuracies are compared. Given the set £}, of all information about past
and present returns (Ry, R_, . . . ), forecasts of the variance of future
returns (either var(R|Q), or var(R; + . .. + Rn|Qo) for some N) may
be obtained. Forecasting the variance for a period that contains multi-
ple observations is useful here because it is then possible to compare
forecasts with actual realized values. Since return is defined as the
continuously compounded return, the sum R, + ... + Ry is the N-day
return. In the following analysis, N is chosen as 20, which roughly
corresponds to one month, and the sum is called monthly return. In
other words, forecasts of monthly variances are estimated from sam-
ples of daily returns.

Forecasts of future variance are useful for several reasons. First of
all, the predictive capabilities of ARCH and GARCH models constitute
further evidence as to their overall usefulness as practical models of
stock returns and also about their relative merits as such. Second,
since risk is inherently related to volatility, expected future volatility is
a major factor in the pricing of securities. Good forecasts of volatility
can be used to investigate any relation between current prices and
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expected risk. For example, future variance is an explicit argument in
the popular option-pricing models.

A. Methodology

The time series of returns for each of the four periods is divided into
two parts: Rl’ Rz, ey RT—480 and RT—479’ RT—478’ ey RT, where T'is
the total sample size for the period. The forecasting models are esti-
mated from the first T — 480 observations, and forecasts are generated
for the variance of return for the following month (20 days). This gives
the first forecast. For each subsequent forecast, the estimation sample
is shifted forward by one month (by dropping the initial 20 observations
and adding in the new 20 observations). Thus, the number of forecasts
generated for each period is 24 (480 divided by 20). This scheme of
successive out-of-sample forecasting allows for the model parameters
to be modified over time.

The forecast of the variance of returnin month s (s = 1, . . ., 24)
immediately following day z (z = T — 480, T — 460, ..., T — 20) is
denoted by V , = var(R, . + ... + R, 2|€,). The actual variance for
the same month (taking into account the first-lag autocorrelation in
daily returns) is calculated ex post as follows:

20 19
VO = > Ryis - 1?)2[1 +.10 >0 - Jw], ®)
i—1 j=1
where R is the mean, and ¢ is the first-lag autocorrelation. This equa-
tion provides a more realistic measure of variance than the usual calcu-
lation 2%, R2, ; (Merton 1980, Perry 1982). These ex post values are to
be compared with the forecasts. Four different sets of forecasts are
obtained.

Benchmark forecast. This is the simple historical average:

Z

Vi = ( 20 R, - R

T — 480 )t=z—ZT+ 479

This would be the best forecast if the time series of returns were strict
white noise. It is an unbiased forecast over long periods of time.

Exponentially weighted moving average forecast (EWMA). This
forecast is given by

12
= i—1
Vs,z =1 - W) 2 w' Vs—i,z—Z()i-
i=1

The smoothing constant w is estimated by minimizing the sum of
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squared forecast errors using the first T — 480 observations. The
minimization is done by the Newton-Raphson algorithm, and the esti-
mated values of w are .18, .24, .19, and .11 for the four periods. This
simple exponential smoothing approach is consistent with the phenom-
ena of infrequent changes in variances (unlike the GARCH models
where variances are continuously chan; g). Thus, notwithstanding
the findings in the preceding section, the EWMA forecasting model
should perform relatively better if the return-generating process is
nonstationary.

ARCH forecast. Since the ARCH model specifies the actual condi-
tional variances as an explicit function of observed values, one-step-
ahead forecasts are readily obtained. More distant forecasts are simply
generated by repeated substitution until they are reduced to functions
of only present and past values. After some suitable algebra and suc-
cessive operations with conditional expectations, the final forecasting
equation takes the following form:

20

[ - 2 191
— ¢ _ ;
Vs,z = z (1 — d)l) [AZO ’vz+1 + JZO aoAj],

t=1

where A = a; + ... + ops,and v,y = ap + 32 oel, 1 _; by equa-
tion (5). The second sum in the brackets is set equal to zero if 1 = 20.

GARCH forecast. The GARCH forecast V, , is given by the same
expression as above, where now A = a; + B and v, is given by
equation (5) for p = g = 1. The calculation of each of these variance
forecasts is computationally fast and easy. Unless the model parame-
ters are to be revised as new data become available, forecast updates
are also readily available. In this application, this approach is not taken
and the parameters are reestimated as new observations come in.
However, in most practical applications, less frequent revisions may
be acceptable.

B. Results

The forecasts of 24 monthly return variances by each of the four
methods and the actual ex post variances are shown in figure 3. It is
clearly seen that the ARCH and GARCH models can simulate the
actual pattern of stock market volatility very closely. When these two
related models are compared with each other, the GARCH specifica-
tion is superior. For example, in the 1981-86 period, the ARCH model
performs very poorly while GARCH does not. As expected, historical
averages do not reflect short-term changes in volatility. They are virtu-
ally unchanged throughout the 24-month period. As for the exponen-
tially weighted moving average representation, this is also unable to
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TABLE § Forecasts of Monthly Variances
Historical EWMA ARCH GARCH
Period Statistic Estimate Forecast Forecast Forecast
1963-68 ME 000341 .000108 .000071 .000069
RMSE .000748 .000722 .000643 .000587
MAE .000460 .000518 .000455 .000387
MAPE .559 .736 .653 525
1969-74 ME .004292 .003643 000746 .000011
RMSE .005428 004762 002970 .002081
MAE .004292 .003643 .002033 .001527
MAPE 722 .603 367 .338
1975-80 ME .001333 .001072 .000471 000150
RMSE .001940 .001769 .001326 .001052
MAE .001423 1001220 .001012 .000780
MAPE .487 428 .502 .389
1981-86 ME —.000018 .000431 —.000422 —.000251
RMSE .000772 .000873 .000854 .000693
MAE .000608 .000627 .000724 .000615
MAPE 557 425 .786 465

Note.—Letting E; = V,, — V) denote the forecast error in the sth month, the statistics are
calculated as following:

24
ME = (1/24) Z E;»

s=1

24 12
RMSE = [(1/24) z E?] ,
s=1

24
MAE = (1124) ) [EJ)

s=1

E;
Ve |

24
MAPE = (1/24) z ‘
s=1

model transitory changes in volatility. These findings show that the
time-series behavior of market volatility can be realistically modeled
by conditionally heteroscedastic processes. These models perform par-
ticularly well in periods of high overall volatility such as the 1970s. This
can be seen in the second and third graphs in figure 3.

The forecasts are evaluated and compared through a number of sta-
tistics: mean error (ME), root mean square error (RMSE), mean abso-
lute error (MAE), and mean absolute percent error (MAPE). These are
reported in table S, along with their calculation methods. Based on the
relative values of these statistics, the GARCH forecasts are far better
than the other three. This difference is more pronounced in periods of
high volatility (1969-74 and 1975-80). GARCH forecasts are generally
less biased (if significant at all), as smaller ME values imply, and more
accurate, as smaller values of the other three parameters imply. It
seems safe to conclude that ex ante measures of variance can be satis-
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Variance
o061 Benchmark
_____ EWMA
__________ ARCH
_______ GARCH
Actual
0.003
0.000+ . . . r
1 6 12 18 24
Month (s)
Period 1
Variance
0.0151
0.012
0.009 ]
0.006 1
0.003 |=s-
0-000 T T T T T
1 6 12 18 24
Month (s)
Period 2

Fic. 3.—Forecasts of monthly variances, periods 1-4
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Variance
0.006 1

0.003

0.000" . . T .
1 6 12 18 24
Month (s)
Period 3
Variance
0.006
0.003

0.000 . . , :
1 6 12 18 24

Month (s)
Period 4
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factorily estimated by GARCH models of stock returns. Although none
of the forecasts are as accurate as desirable (the smallest MAPE is
greater than 30%), GARCH forecasts constitute substantial improve-
ment over the traditional forecasts such as the historical sample av-
erages.

An interesting observation from the plots in figure 3 is that GARCH
(and, to a lesser extent, ARCH) forecasts are more accurate when
actual changes in volatility are not one-time events but persist for at
least a few months. This is due in part to the particular model spec-
ification, where next period’s variance is a function of this period’s
realized variance. Alternatively, the finding that a; + B is very close to
unity and that this sum is dominated by B indicates that changes in
market volatility tend to be persistent. This is probably why GARCH
forecasts are better than the others. To further investigate the pattern
of volatility implied by the estimated model, daily conditional vari-
ances v, are calculated for t = 3, . . ., T, using equation (5), and the
distribution of these statistics is analyzed. It is found that these condi-
tional variances have a right-skewed distribution. This means that pe-
riods of above-average volatility are less frequent than periods of aver-
age or below-average volatility. This is consistent with the observed
patterns in the stock markets. When the distributions of 12 subsamples
containing roughly 7/12 observations each (spanning a period of about
6 months) are analyzed, both the medians and the means of these
distributions are found to be substantially different. This is interpreted
as evidence that changes in market volatility in either direction are
usually persistent changes. This would seem to be in agreement with
the relative magnitudes of the estimated parameters.

V. Discussion and Conclusions

The empirical evidence presented in this paper indicates that time
series of daily stock returns exhibit significant levels of dependence.
The probability distribution of R, is not independent of R, .. ; for several
values of s. The conditional heteroscedastic processes allow for auto-
correlation between the first and second moments of return distribu-
tions over time, and consequently they fit to data very satisfactorily.
More important, they provide improved forecasts of volatility. Within
the class of such models, GARCH(1, 1) processes show the best fit and
forecast accuracy.

Several extensions to this study may be suggested. Currently, re-
search is under way to investigate the plausibility of bilinear processes
for stock prices, where conditional means evolve nonlinearly over
time. More general nonlinear models, which allow for dependence in
higher order moments, may also be used. The difficulty, however, is
that there is not much statistical estimation theory for nonlinear pro-
cesses. This is despite the fact that it is relatively easy to identify
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nonlinearities. As immediate competitors to the (G)ARCH models,
conditional heteroscedastic ARMA (Tsay 1987), ARMA-GARCH
(Weiss 1984), and general random coefficient AR processes may be
investigated. All of these models have similar financial theoretical
backgrounds, and all can represent the empirical behavior of prices.

GARCH models may be used to further understand the relationship
between volatility and expected returns. The fundamental valuation
theories in finance, such as the capital asset pricing models and the
option pricing models, are based on some hypothesized risk-return
relationship. Most of these models hold for the ‘‘average’’ security but
they do not explain the full valuation mechanism for ‘‘nonaverage’’
securities. Empirical evidence about the size effect and the deviation of
out-of-the-money option premia from implied theoretical values is
abundant. The apparent failure of the models for such securities may
be largely due to an erroneous choice of values for the model parame-
ters. Consequently, improved parameter estimates may explain the
discrepancies between theory and reality. In this regard, GARCH
models can be very useful. For example, since ex ante (rather than ex
post) measures of variance are what the traders use in forming expecta-
tions of return, GARCH forecasts of variance are better choices than
the usual historical estimates. Future research in this area is well war-
ranted.

Finally, most of the findings in this study hold only for daily data.
The preliminary statistical analysis conducted for daily return series in
Section II is also conducted for weekly (Wednesday—Wednesday) and
monthly series. Notable differences are found. First of all, the distribu-
tions of weekly and monthly returns are not as leptokurtic as those of
daily returns. In fact, Kolmogorov-Smirnov tests cannot reject the
hypothesis that monthly returns are normally distributed. Secondly,
there is no significant autocorrelation in either return series. When the
squared and absolute series are analyzed, weekly series exhibit some
autocorrelation up to a maximum of four lags, but monthly series have
no significant autocorrelation. Therefore, it is concluded that monthly
returns are independently normally distributed (strict white noise). For
weekly series, the log-likelihood functions corresponding to GARCH-
(1, 1) processes are not significantly greater than those for normal
process (except in period 2, where a x* value of .103 is found). A
central limit theorem for sums of dependent (daily) returns may be
manifesting itself in these findings about weekly and monthly series.
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