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Dynamics of market correlations: Taxonomy and portfolio analysis
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The time dependence of the recently introduced minimum spanning tree description of correlations between
stocks, called the ‘‘asset tree’’ has been studied in order to reflect the financial market taxonomy. The nodes of
the tree are identified with stocks and the distance between them is a unique function of the corresponding
element of the correlation matrix. By using the concept of a central vertex, chosen as the most strongly
connected node of the tree, an important characteristic is defined by the mean occupation layer. During crashes,
due to the strong global correlation in the market, the tree shrinks topologically, and this is shown by a low
value of the mean occupation layer . The tree seems to have a scale-free structure where the scaling exponent
of the degree distribution is different for ‘‘business as usual’’ and ‘‘crash’’ periods. The basic structure of the
tree topology is very robust with respect to time. We also point out that the diversification aspect of portfolio
optimization results in the fact that the assets of the classic Markowitz portfolio are always located on the outer
leaves of the tree. Technical aspects such as the window size dependence of the investigated quantities are also
discussed.
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I. INTRODUCTION

In spite of the traditional wisdom ‘‘Money does not gro
on trees,’’ here we wish to show that the concept of tre
~graphs! has potential applications in financial market ana
sis. This concept was recently introduced by Mantegna a
method for finding a hierarchical arrangement of stoc
through studying the clustering of companies by using c
relations of asset returns@1#. With an appropriate metric
based on the correlation matrix, a fully connected graph w
defined in which the nodes are companies, or stocks, and
‘‘distances’’ between them are obtained from the correspo
ing correlation coefficients. The minimum spanning tr
~MST! was generated from the graph by selecting the m
important correlations and it is used to identify clusters
companies.

In this paper, we study the time dependent properties
the minimum spanning tree and call it a ‘‘dynamic as
tree.’’ It should be mentioned that several attempts have b
made to obtain clustering from the huge correlation mat
such as the Potts superparamagnetic method@2#, a method
based on the maximum likelihood@3# or the comparison of
the eigenvalues with those given by the random ma
theory @4#. We have chosen the MST because of its uniq
ness and simplicity. The different methods are compare
Ref. @3#.

Financial markets are often characterized as evolv
complex systems@5#. The evolution is a reflection of the
changing power structure in the market and it manifests
passing of different products and product generations, n
1063-651X/2003/68~5!/056110~12!/$20.00 68 0561
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technologies, management teams, alliances and partners
among many other factors. This is why exploring the as
treedynamicscan provide us new insights to the market. W
believe that dynamic asset trees can be used to simplify
complexity in order to grasp the essence of the market w
out drowning in the abundance of information. We aim
derive intuitively understandable measures, which can
used to characterize the market taxonomy and its state
further characterization of the asset tree is obtained by stu
ing its degree distribution@6#. We will also study the robust-
ness of tree topology and the consequences of the ma
events on its structure. The minimum spanning tree, a
strongly pruned representative of asset correlations, is fo
to be robust and descriptive of stock market events.

Furthermore, we aim to apply dynamic asset trees in
field of portfolio optimization. Many attempts have bee
made to solve this central problem from the classical
proach of Markowitz@7# to more sophisticated treatment
including spin-glass-type studies@8#. In all the attempts to
solve this problem, correlations between asset prices pla
crucial role and one might, therefore, expect a connec
between dynamic asset trees and the Markowitz portfo
optimization scheme. We demonstrate that although the
pological structure of the tree changes with time, the com
nies of the minimum risk Markowitz portfolio are alway
located on the outer leaves of the tree. Consequently, a
trees in addition to their ability to form economically mea
ingful clusters, could potentially contribute to the portfol
optimization problem. Then with a lighter key one cou
perhaps say that ‘‘some money may grow on trees,’’ after
©2003 The American Physical Society10-1
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FIG. 1. Left: Plot of the probability density function of the correlation coefficients as a function of time. Right: The mean, st
deviation, skewness, and kurtosis of the correlation coefficients as functions of time.
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II. RETURN CORRELATIONS AND DYNAMIC
ASSET TREES

The financial market, for the largest part in this pap
refers to a set of data commercially available from the Cen
for Research in Security Prices~CRSP! of the University of
Chicago Graduate School of Business. Here we will stu
the split-adjusted daily closure prices for a total ofN5477
stocks traded at the New York Stock Exchange~NYSE! over
the period of 20 years, from 02 Jan 1980 to 31 Dec 19
This amounts to a total of 5056 price quotes per stock,
dexed by time variablet51,2, . . . ,5056. For analysis and
smoothing purposes, the data are divided timewise intoM
windows t51,2, . . . ,M of width T corresponding to the
number of daily returns included in the window. Several co
secutive windows overlap with each other, the extent
which is dictated by the window step length parameterdT,
describing the displacement of the window, measured als
trading days. The choice of window width is a trade o
between too noisy and too smoothed data for small and la
window widths, respectively. The results presented in t
paper were calculated from monthly stepped four-year w
dows. Assuming 250 trading days a year, we useddT
'20.8 day andT51000 day. We have explored a large sca
of different values for both parameters, and the given val
were found optimal@9#. With these choices, the overall num
ber of windows isM5195.

In order to investigate correlations between stocks we
denote the closure price of stocki at timet by Pi(t) ~Note
that t refers to a date, not a time window.! We focus our
05611
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attention to the logarithmic return of stocki, given byr i(t)
5 ln Pi(t)2ln Pi(t21) which, for a sequence of consecutiv
trading days, i.e., those encompassing the given windot,
form the return vectorr i

t . In order to characterize the syn
chronous time evolution of assets, we use the equal t
correlation coefficients between assetsi and j defined as

r i j
t 5

^r i
tr j

t&2^r i
t&^r j

t&

A@^r i
t2&2^r i

t&2#@^r j
t 2&2^r j

t&2#
, ~1!

where ^•••& indicates a time average over the consecut
trading days included in the return vectors. Due to Cauc
Schwarz inequality, these correlation coefficients fulfill t
condition21<r i j <1 and form anN3N correlation matrix
Ct, which serves as the basis of dynamic asset trees to
discussed later.

Let us first characterize the correlation coefficient dis
bution ~shown in Fig. 1!, by its first four moments and thei
correlations with one another. The first moment is themean
correlation coefficientdefined as

r̄~ t !5
1

N~N21!/2 (
r i j

t PCt
r i j

t , ~2!

where we consider only the nondiagonal (iÞ j ) elementsr i j
t

of the upper~or lower! triangular matrix. We also evaluat
the higher order normalized moments for the correlation
efficients, so that the variance is
0-2
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l2~ t !5
1

N~N21!/2 (
( i , j )

~r i j
t 2 r̄ t!2, ~3!

the skewness is

l3~ t !5
1

N~N21!/2 (
( i , j )

~r i j
t 2 r̄ t!3/l2

3/2~ t !, ~4!

and the kurtosis is

l4~ t !5
1

N~N21!/2 (
( i , j )

~r i j
t 2 r̄ t!4/l2

2~ t !. ~5!

The mean, standard deviation~square root of the variance!,
skewness, and kurtosis of the correlation coefficients
plotted as functions of time in Fig. 1.

In this figure the effect and repercussions of Black Mo
day ~October 19, 1987! are clearly visible in the behavior o
all these quantities. For example, the mean correlation c
ficient is clearly higher than average on the interval betw
1986 and 1990. The length of this interval corresponds to
window widthT, and Black Monday coincides with the mid
point of the interval@10#. The increased value of the mea
correlation is in accordance with the observation by Droz
et al. @11#, who found that the maximum eigenvalue of th
correlation matrix, which carries most of the correlations
very large during market crashes. We also investiga
whether these four different measures are correlated
seems clear from the figure. For this we determined the P
son’s linear and Spearman’s rank-order correlation coe
cients, which between the mean and variance turned ou
be 0.97 and 0.90, and between skewness and kurtosis
and 0.96, respectively. Thus the first two and the last t
measures are very strongly correlated.

We now move on to construct an asset tree. For this
use the nonlinear transformationdi j 5A2(12r i j ) to obtain
distances with the property 2>di j >0, forming anN3N dis-
tance matrixDt. At this point an additional hypothesis abo
the topology of the metric space is required. The work
hypothesis is that a useful space for linking the stocks is
ultrametric space, i.e., a space where all distances are ult
metric. This hypothesis is motivateda posterioriby the find-
ing that the associated taxonomy is meaningful from an e
nomic point of view. The concept of ultrametricity i
discussed in detail by Mantegna@1#, while the economic
meaningfulness of the emerging taxonomy is addressed
in this paper. Out of the several possible ultrametric spa
the subdominant ultrametric is opted for due to its simplic
and remarkable properties. In practice, it is obtained by us
the distance matrixDt to determine the MST of the distance
according to the methodology of Ref.@1#, denoted byTt.
This is a simply connected graph that connects allN nodes of
the graph withN21 edges such that the sum of all ed
weights,(d

i j
t PTtdi j

t , is minimum. @Here time~window! de-

pendence of the tree is emphasized by the addition of
superscriptt to the notation.# Asset trees constructed for di
ferent time windows are not independent of each other,
05611
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form a series through time. Consequently, this multitude
trees is interpreted as a sequence of evolutionary steps
singledynamic asset tree.

As a simple measure of the temporal state of the ma
~the asset tree! we define thenormalized tree lengthas

L~ t !5
1

N21 (
di j

t PTt
di j

t , ~6!

where t again denotes the time at which the tree is co
structed, andN21 is the number of edges present in t
MST. The probability distribution function of theN21 dis-
tance elementsdi j in Tt as a function of time is plotted in
Fig. 2 ~cf. Ref. @12#!. Also the mean, standard deviatio
skewness, and kurtosis of normalized tree lengths are
picted in Fig. 2.

As expected and as the plots show, the mean correla
coefficient and the normalized tree length are very stron
anticorrelated. Pearson’s linear correlation between the m

correlation coefficientr̄(t) and normalized tree lengthL(t)
is 20.98, and Spearman’s rank-order correlation coeffici
is 20.92, thus both indicating very strong anticorrelatio
Anticorrelation is to be expected in view of how the di
tancesdi j are constructed from correlation coefficientsr i j .
However, the extent of this anticorrelation is different f
different input variables and is lower if, say, daily transacti
volumes are studied instead of daily closure prices@13#.

It should be noted that in constructing the minimum spa
ning tree, we are effectively reducing the information spa
from N(N21)/2 separate correlation coefficients toN21
tree edges, in other words, compressing the amount of in
mation dramatically. This follows because the correlati
matrix Ct and distance matrixDt are bothN3N dimen-
sional, but due to their symmetry, both haveN(N21)/2 dis-
tinct upper~or lower! triangle elements, while the spannin
tree has onlyN21 edges. So, in moving from correlation o
distance matrix to the asset treeTt, we have pruned the
system fromN(N21)/2 toN21 elements of information. If
we compare Figs. 1 and 2, we find that distribution of t
distance elements contained in the asset tree retain mo
the features of the correlation coefficient distribution. Th
corresponding moments also bear striking correlati
anticorrelation, e.g., the Pearson’s linear correlation betw
the skewness of the correlation coefficients and the skew
of the edge lengths is20.85, while the Spearman’s ran
order correlation is20.82. Thus one may contemplate th
the minimum spanning tree as a strongly reduced repre
tative of the whole correlation matrix, bears the essen
information about asset correlations.

As further evidence that the MST retains the salient f
tures of the stock market, it is noted that the 1987 mar
crash can be quite accurately seen from Figs. 1 and 2.
fact that the market, during crash, is moving together is t
manifested in two ways. First, the ridge in the plot of t
mean correlation coefficient in Fig. 1 indicates that the wh
0-3
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FIG. 2. Left: The probability distribution function of the (N21) distance elements contained in the asset tree, as a function of
Right: The mean, standard deviation, skewness, and kurtosis of the normalized tree lengths as functions of time.
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market is exceptionally strongly correlated. Second, the c
responding well in the plot of the mean normalized tr
length in Fig. 2 shows how this is reflected in considera
shorter than average length of the tree so that the tree
average, is very tightly packed. Upon letting the windo
width T→0, the two sides of the ridge converge to a sing
date, which coincides with Black Monday@10#.

III. TREE OCCUPATION AND CENTRAL VERTEX

Next we focus on characterizing the spread of nodes
the tree. In order to do so, we introduce the quantity ofmean
occupation layeras

l ~ t,vc!5
1

N (
i 51

N

L~v i
t!, ~7!

whereL(v i) denotes the level of vertexv i . The levels, not to
be confused with the distancesdi j between nodes, are mea
sured in natural numbers in relation to thecentral vertexvc ,
whose level is taken to be zero. Here the mean occupa
layer indicates the layer on which the mass of the tree,
average, is conceived to be located.

Let us now examine the central vertex in more detail,
the understanding of the concept is a prerequisite for in
preting mean occupation layer results, to follow shortly. T
central vertex is considered the parent of all other node
the tree, also known as the root of the tree. It is used as
reference point in the tree, against which the locations of
other nodes are relative. Thus all other nodes in the tree
05611
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children of the central vertex. Although there is arbitrarine
in the choice of the central vertex, we propose that it
central, or important, in the sense that any change in its p
strongly affects the course of events in the market on
whole. We propose three alternative definitions for the c
tral vertex in our studies, all yielding similar and, in mo
cases, identical outcomes.

The first and second definitions of the central vertex
local in nature. The idea here is to find the node that is m
strongly connected to its nearest neighbors. According to
first definition, this is the node with the highestvertex de-
gree, i.e., the number of edges which are incident w
~neighbor of! the vertex. The obtained results are shown
Fig. 3. Thevertex degree criterionleads to General Electric
~GE! dominating 67.2% of the time, followed by Merril
Lynch ~MER! at 20.5%, and CBS at 8.2%. The combin
share of these three vertices is 95.9%. The second defini
a modification of the first, defines the central vertex as
one with the highest sum of those correlation coefficie
that are associated with the incident edges of the ver
Therefore, whereas the first definition weighs each depar
node equally, the second gives more weight to short ed
since a high value ofr i j corresponds to a low value ofdi j .
This is reasonable, as short connections link the vertex m
tightly to its neighborhood than long ones~the same prin-
ciple employed in constructing the spanning tree!. This
weighted vertex degree criterionresults in GE dominating
65.6% of the cases, followed by MER at 20.0%, and CBS
8.7%, the share of the top three being 94.3%.

The third definition deals with the global quantity ofcen-
ter of mass. In considering a treeTt at time t, the vertexv i
0-4
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that produces the lowest value for mean occupation la
l (t,v i) is the center of mass, given that all nodes are assig
an equal weight and consecutive layers~levels! are at equi-
distance from one another, in accordance with the ab
definition. With thiscenter of mass criterionwe find that the
most dominant company, again, is GE, as it is 52.8% of
time the center of mass of the graph, followed by MER
15.4%, and Minnesota Mining & MFG at 14.9%. These t
three candidates constitute 83.1% of the total. Should
weight of the node be made proportional to the size~e.g.,
revenue, profit, etc.! of the company, it is obvious that GE’
dominance would increase.

As Fig. 3 shows, the three alternative definitions for t
central vertex lead to very similar results. The vertex deg
and the weighted vertex degree criteria coincide 91.8% of
time. In addition, the former coincides with center of ma
66.7% and the latter 64.6% of the time, respectively. Over
the three criteria yield the same central vertex in 63.6%
the cases, indicating considerable mutual agreement. The
istence of a meaningful center in the tree is not a trivial iss
and neither is its coincidence with the center of mass. Ho
ever, since the criteria applied, present a mixture of b
local and global approaches, and the fact that they coin
almost 2/3 of the time, does indicate the existence of a w

FIG. 3. Central vertices according to~1! vertex degree criterion
~top!, ~2! weighted vertex degree criterion~middle!, and~3! center
of mass criterion~bottom!.
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defined center in the tree. The reason for the coincidenc
the criteria seems clear, intuitively speaking. A vertex with
high vertex degree, the central vertex, in particular, carrie
lot of weight around it~the neighboring nodes!, which in turn
may be highly connected to others~to their children!, and so
on. Two different interpretations may be given to these
sults. One may have either~i! static~fixed at all times! or ~ii !
dynamic ~updated at each time step! central vertex. If the
first approach is opted for, the above evidence well subs
tiates the use of GE as the central vertex. In the sec
approach, the results will vary somewhat depending
which of the three criteria are used in determining the cen
vertex.

The mean occupation layerl (t) is depicted in Fig. 4,
where also the effect of different central vertices is dem
strated. The solid curve results from the static central ver
i.e., GE, and the dotted one to dynamic central vertex ev
ated using the vertex degree criterion. The two curves co
cide where only the solid curve is drawn. This is true most
the time, as the above central vertex considerations lead u
expect. The two dips at 1986 and 1990, located symme
cally at half a window width from Black Monday, corre
spond to the topological shrinking of the tree associated w
the famous market crash of 1987@10#. Roughly between
1993 and 1997,l (t) reaches very high values, which is i
concordance with our earlier results obtained for a differ
set of data@14#. High values ofl (t) are considered to reflec
a finer market structure, whereas in the other extreme
dips are connected to market crashes, where the behavi
the system is very homogeneous. The finer structure m
result from general steady growth in asset prices during
period as can be seen, for example, from the S&P 500 ind

IV. TREE CLUSTERS AND THEIR
ECONOMIC MEANINGFULNESS

As mentioned earlier, Mantegna’s idea of linking stocks
an ultrametric space was motivateda posterioriby the prop-
erty of such a space to provide a meaningful economic t

FIG. 4. Plot of mean occupation layerl (t,vc) as a function of
time, with static~solid! and dynamic~dotted! central vertices.
0-5
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FIG. 5. ~Color online! Snapshot of a dynamic
asset tree connecting the examined 116 stocks
the S&P 500 index. The tree was produced usi
four-year window width and it is centered o
January 1, 1998. Business sectors are indica
according to Ref.@15#. In this tree, General Elec
tric ~GE! was used as the central vertex and eig
layers can be identified.
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onomy. We will now explore this issue further, as the me
ingfulness of the emerging economic taxonomy is the k
justification for the use of the current methodology. In R
@1#, Mantegna examined the meaningfulness of the t
onomy by comparing the grouping of stocks in the tree w
a third party reference grouping of stocks by their indus
etc., classifications. In this case, the reference was prov
by Forbes@15#, which uses its own classification system
assigning each stock with a sector~higher level! and industry
~lower level! category.

In order to visualize the grouping of stocks, we co
structed a sample asset tree for a smaller dataset@14#, shown
in Fig. 5. This was obtained by studying our previous data
@14#, which consists of 116 S&P 500 stocks, extending fro
the beginning of 1982 to the end of 2000, resulting in a to
of 4787 price quotes per stock@16#.

Before evaluating the economic meaningfulness of gro
ing stocks, we wish to establish some terminology. We
the term sector exclusively to refer to the given third pa
classification system of stocks. The termbranch refers to a
subset of the tree, to all the nodes that share the spec
common parent. In addition to the parent, we need to hav
reference point to indicate the generational direction~i.e.,
who is who’s parent! in order for a branch to be well defined
Without this reference there is no way to determine wh
one branch ends and the other begins. In our case, the r
ence is the central node. There are some branches in the
in which most of the stocks belong to just one sector, in
cating that the branch is fairly homogeneous with respec
business sectors. This finding is in accordance with thos
Mantegna@1#, although there are branches that are fairly h
erogeneous, such as the one extending directly downw
from the central vertex, see Fig. 5.

Since the grouping of stocks is not perfect at the bra
level, we define a smaller subset whose members are m
homogeneous as measured by the uniformity of their se
classifications. The termclusteris defined, broadly speaking
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as a subset of a branch. Let us now examine some of
clusters that have been formed in the sample tree. We use
terms completeand incompleteto describe, in rather stric
terms, the success of clustering. A complete cluster cont
all the companies of the studied set belonging to the co
sponding business sector, so that none are left outside
cluster. In practice, however, clusters are mostly incompl
containing most, but not all, of the companies of the giv
business sector, and the rest are to be found somewhere
in the tree. Only the Energy cluster was found complete,
many others come very close, typically missing just one
two members of the cluster.

Building upon the normalized tree length concept, we c
characterize the strength of clusters in a similar manner
they are simply subsets of the tree. These clusters, whe
complete or incomplete, are characterized by thenormalized
cluster length, defined for a clusterc as follows:

Lc~ t !5
1

Nc
(

di j
t Pc

di j
t , ~8!

whereNc is the number of stocks in the cluster. This can
compared with the normalized tree length, which for t
sample tree in Fig. 5 at timet* is L(t* )'1.05. A full ac-
count of the results is to be found in Ref.@16#, but as a short
summary of results we state the following. The Energy co
panies form the most tightly packed cluster resulting
LEnergy(t* )'0.92, followed by the Health-care cluster wit
LHealth care(t* )'0.98. For the Utilities cluster we hav
LUtilities(t* )'1.01 and for the diverse Basic Materials clust
LBasic materials(t* )'1.03. Even though the Technology clust
has the fewest number of members, its mean distance is
highest of the examined groups of clusters be
LTechnology(t* )'1.07. Thus, most of the examined cluste
seem to be more tightly packed than the tree on average
0-6
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One could find and examine several other clusters in
tree, but the ones that were identified are quite convinc
The minimum spanning tree, indeed, seems to provide a
onomy that is well compatible with the sector classificati
provided by an outside institution, Forbes in this case. Thi
a strong vote for the use of the current methodology in st
market analysis. Some further analysis of the identified c
ters is presented in Ref.@16#.

There are, however, some observed deviations to the c
sification, which call for an explanation. For them the fo
lowing points are raised.

~i! The seemingly random asset price fluctuations s
not only from standard economic factors, but also from p
chological factors, introducing noise in the correlation m
trix. Therefore, it is not reasonable to expect a one-to-
mapping between business sectors and MST clusters.

~ii ! Business sector definitions are not unique, but vary
the organization issuing them. In this work, we used the c
sification system by Forbes@15#, where the studied compa
nies are divided into 12 business sectors and 51 indust
Forbes has its own classification principle, based on co
pany dynamics rather than size alone. Alternatively, o
could have used, say, the Global Industry Classification S
dard ~GICS!, released on January 2, 2001, by Standard
Poor’s @17#. Within this framework, companies are divide
into 10 sectors, 23 industry groups, 59 industries, and
subindustries. Therefore, the classification system cle
makes a difference, and there are discrepancies even a
topmost level of business sectors amongst different syste

~iii ! Historical price time series is, by definition, old
Therefore, one should use contemporary definitions for b
ness sectors, etc., as those most accurately characteriz
company. Since these were not available to the authors
current classification scheme by Forbes was used. The e
caused by this approach varies for different companies.

~iv! In many classification systems, companies engage
substantially different business activities are classified
cording to where the majority of revenues and profits com
from. For highly diversified companies, these classificatio
are more ambiguous and, therefore, less informative. A
consequence, classification of these types of compa
should be viewed with some skepticism. This problem has
roots in the desire to categorize companies by a single la
and the approach fails where this division is unnatural.

~v! Some cluster outliers can be explained through
MST clustering mechanism, which is based on correlati
between asset returns. Therefore, one would expect, for
ample, investment banks to be grouped with their inve
ments rather than with other similar institutions. Throu
portfolio diversification, these banks distance themsel
from the price fluctuations~risks! of a single-business secto
Consequently, it would be more surprising to find a tota
homogeneous financial cluster than a fairly heterogene
one currently observed.

~vi! The risks imposed on the companies by the exter
environment vary in their degree of uniformity from on
business sector to another. For example, companies in
Energy sector~price of their stocks! are prone to fluctuations
in the world market price of oil, whereas it is difficult t
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think of one factor having equal influence on, say, compan
in the Consumer/Noncyclical business sector. This unif
mity of external risks influences the stock price of the
companies, in coarse terms, leading to their more comp
clustering than that of companies facing less uniform ex
nal risks. In conclusion, regarding all the above listed fa
tors, the success of the applied method in identifying mar
taxonomy is remarkable.

V. SCALE-FREE STRUCTURE OF THE ASSET TREE

So far we have characterized the asset tree as an impo
subgraph of the fully connected graph derived from all t
elements of the correlation matrix. Since the asset tre
expected to reflect some aspects of the market and its sta
is therefore of interest to learn more about its structure. D
ing the last few years, much attention has been devote
the degree distribution of graphs. It has become clear tha
so called scale-free graphs, where this distribution obey
power law, are very frequent in many fields, ranging fro
human relationships through cell metabolism to the Inter
@18,19#. Scale-free trees have also been extensively stud
~see, e.g., Ref.@20#!. Recently, examples for scale-free ne
works in economy and finance have been found@6,21,22#.

Vandewalleet al. @6# found scale-free behavior for th
asset tree in a limited~one year, 1999! time window for 6358
stocks traded at the NYSE, NASDAQ, and AMEX. The
proposed the distribution of the vertex degreesf (n) to fol-
low a power law behavior:

f ~n!;n2a, ~9!

with the exponenta'2.2, wheren is the vertex degree~or
number of neighbors of a node!. This exponent implies tha
the second moment of the distribution would diverge in t
infinite market limit, or in other words, the second mome
of the distribution is always dominated by the rare but e
tremely highly connected vertices.

Our aim here is to study the property of scale freenes
the light of asset tree dynamics. First, we conclude that
asset tree has, most of the time, scale-free properties w
rather robust exponenta'2.160.1 for normal topology
~i.e., outside crash periods of ‘‘business as usual’’!, a result
close to that given in Ref.@6#. For most of the time the
distribution behaves in a universal manner, meaning that
exponenta is a constant within the error limits. Howeve
when the behavior of the market is not business as usual~i.e.,
within crash periods!, the exponent also changes, althou
the scale-free character of the tree is still maintained. For
Black Monday period, we havea'1.860.1. This result is in
full agreement with the observation of the shrinking of t
tree during market crashes, which is accompanied by an
crease in the degree, thus explaining the lower value of
exponenta. The observation concerning the change in t
value of the exponent for normal and crash period is exe
plified in Fig. 6.

When fitting the data, in many cases we found one or t
outliers, i.e., vertices whose degrees did not fit to the ove
power law behavior since they were much too high. In
cases these stocks corresponded either to the highest
0-7
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FIG. 6. Typical plots of vertex degree for nor
mal ~left! and crash topology~right!, for which
the exponents and goodness of fit area'2.15,
R2'0.96 anda'1.75, R2'0.92, respectively.
The plot on the left is centered at 28.2.1994 a
the right one at 1.5.1989, and for bothT51000
days, i.e., 4 years.
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nected node~i.e., the central vertex! or were nodes with very
high degrees. This result suggests that it could be usefu
handle these nodes with special care, thus providing fur
support to the concept of the central node. However, for
purpose of fitting the observed vertex degree data, s
nodes were considered outliers. To give an overall mea
of goodness of the fits, we calculated theR2 coefficient of
determination, which can be interpreted as the fraction of t
total variation that is explained by the least-squares reg
sion line. We obtained, on average, values ofR2'0.86 for
the entire dataset with outliers included andR2'0.93 with
outliers excluded. Further, the fits for the normal market
riod were better than those obtained for the crash period
characterized by the average values ofR2'0.89 andR2

'0.93, respectively, with outliers excluded. In addition
the market period based dependence, the exponenta was
also found to depend on the window width. We examine
range of values for the window widthT between 2 and 8 yr
and found, without excluding the outliers, the fitted expon
to depend linearly onT.

In conclusion, we have found the scaling exponent to
pend on the market period, i.e., crash vs normal market
cumstances and on the window width. These results
raise the question of whether it is reasonable to assume
different markets share the scaling exponent. In case the
not, one should be careful when pooling stocks together fr
different markets for the purpose of vertex degree analys

VI. ASSET TREE EVOLUTION

In order to investigate the robustness of asset tree to
ogy, we define thesingle-step survival ratioof tree edges as
the fraction of edges found common in two consecutive tr
at timest and t21 as

s~ t !5
1

N21
uE~ t !ùE~ t21!u. ~10!

In this E(t) refers to the set of edges of the tree at timet, ù
is the intersection operator, andu•••u gives the number of
elements in the set. Under normal circumstances, the tre
two consecutive time steps should look very similar, at le
for small values of window step length parameterdT. With
this measure it is expected that while some of the differen
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can reflect real changes in the asset taxonomy, others
simply be due to noise. On lettingdT→0, we find that
s(t)→1, indicating that the treesare stable in this limit@9#.

A sample plot of single-step survival ratio forT51000
days anddT'20.8 days is shown in Fig. 7. The followin
observations are made.

~i! A large majority of connections survives from one tim
window to the next.

~ii ! The two prominent dips indicate a strong tree reco
figuration taking place, and they are window widthT apart,
positioned symmetrically around Black Monday, and th
imply topological reorganization of the tree during the ma
ket crash@10#.

~iii ! Single-step survival ratios(t) increases as the win
dow width T increases whiledT is kept constant. Thus an
increase in window width renders the trees more stable w
respect to single-step survival of connections. We also fi
that the rate of change of the survival ratio decreases as
window width increases and, in the limit, as the windo
width is increased towards infinityT→`,s(t)→1 for all t.
The survival ratio seems to decrease very rapidly once
window width is reduced below roughly 1 yr. As the windo
width is decreased further towards zero, in the limit asT
→0, s(t)→0 for all t.

FIG. 7. Single-step survival ratios(t) as a function of time. The
average value is indicated by the horizontal line.
0-8
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DYNAMICS OF MARKET CORRELATIONS: TAXONOMY . . . PHYSICAL REVIEW E68, 056110 ~2003!
~iv! Variance of fluctuations around the mean is const
over time, except for the extreme events and the inte
period, and it gets less as the window width increases.

In order to study the long term evolution of the trees,
introducethe multistep survival ratioat time t as

s~ t,k!5
1

N21
uE~ t !ùE~ t21!•••E~ t2k11!ùE~ t2k!u,

~11!

where only those connections that have persisted for
whole time period without any interruptions are taken in
account. According to this formula, when a bond betwe
two companies breaks even once ink steps and then reap
pears, it is not counted as a survived connection. It is fo
that many connections in the asset trees evaporate quite
idly in the early time horizon. However, this rate decrea
significantly with time, and even after several years there
some connections that are left intact. This indicates that s
companies remain closely bonded for times longer tha
decade. The behavior of the multi-step survival ratio
three different values of window width~2, 4, and 6 yr! is
shown in Fig. 8, together with the associated fits.

In this figure the horizontal axis can be divided into tw
regions. Within the first region, decaying of connections
faster than exponential, and takes place at different rates
different values of the window width. Later, within the se
ond region, when most connections have decayed and
some 20%–30% remain~for the shown values ofT), there is
a crossover to power law behavior. The exponents obta
for the window widths ofT5500, T51000, andT51500,
in days, are21.15, 21.19, and21.17, respectively, and s
remains the same within error margins. Thus, interestin
the power law decay in the second region seems indepen
of the window width.

FIG. 8. Multistep survival ratios(t,k) as a function of time for
different parametric values ofT ~in days!.
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We can also define a characteristic time, the so ca
half-life of the survival ratiot1/2, or tree half-lifefor short, as
the time interval in which half the number of initial conne
tions have decayed, i.e.,s(t,t1/2/dT)50.5. The behavior of
t1/2 as a function of the window width is depicted in Fig.
and it is seen to follow a clean linear dependence for val
of T being between 1 and 5 yr, after which it begins to gro
faster than a linear function. For the linear region, the t
half-life exhibits t1/2'0.12T dependence.

This can also be seen in Fig. 8, where the dashed horiz
tal line indicates the level at which half of the connectio
have decayed. For the studied values of the window wid
tree half-life occurs within the first region of the multiste
survival plot, where decaying was found to depend on
window width. Consequently, the dependence of half-life
window widthT does not contradict the window width inde
pendent power law decaying of connections, as the two
cur in different regions. In general, the number of stocksN,
as well as the their type, is likely to affect the half-live
Earlier, for a set ofN5116 S&P 500 stocks, half-life was
found to depend on the window width ast1/2'0.20T @9#. A
smaller tree, consisting primarily of important industry g
ants, would be expected to decay more slowly than the la
set of NYSE-traded stocks studied in this paper.

VII. PORTFOLIO ANALYSIS

Next, we apply the above discussed concepts and m
sures to the portfolio optimization problem, a basic proble
of financial analysis. This is done in the hope that the as
tree could serve as another type of quantitative approac
and/or visualization aid of the highly interconnected mark
thus acting as a tool supporting the decision making proc
We consider ageneral Markowitz portfolioP(t) with the
asset weightsw1 ,w2 , . . . ,wN . In the classic Markowitz
portfolio optimization scheme, financial assets are charac
ized by their average risk and return, where the risk ass
ated with an asset is measured by the standard deviatio
returns. The Markowitz optimization is usually carried o

FIG. 9. Plot of half-lifet1/2 as a function of window widthT.
0-9
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ONNELA et al. PHYSICAL REVIEW E 68, 056110 ~2003!
by using historical data. The aim is to optimize the as
weights so that the overall portfolio risk is minimized for
given portfolio returnr P @23#. In the dynamic asset tre
framework, however, the task is to determine how the as
are located with respect to the central vertex.

Let r m and r M denote the returns of the minimum an
maximum return portfolios, respectively. The expected po
folio return varies between these two extremes, and can
expressed asr P,u5(12u)r m1ur M , whereu is a fraction
between 0 and 1. Hence, whenu50, we have the minimum
risk portfolio, and whenu51, we have the maximum retur
~maximum risk! portfolio. The higher the value ofu, the
higher the expected portfolio returnr P,u and, consequently
the higher the risk the investor is willing to absorb. We d
fine a single measure, theweighted portfolio layeras

l P~ t,u!5 (
i PP(t,u)

wiL~v i
t!, ~12!

where ( i 51
N wi51 and further, as a starting point, the co

straintwi>0 for all i, which is equivalent to assuming tha
there is no short selling. The purpose of this constraint is
prevent negative values forl P(t), which would not have a
meaningful interpretation in our framework of trees wi
central vertex. This restriction will shortly be discussed f
ther.

Figure 10 shows the behavior of the mean occupa
layer l (t) and the weighted minimum risk portfolio laye
l P(t,u50). We find that the portfolio layer is higher than th
mean layer at all times. The difference between the lay
depends on the window width, here set atT51000, and the
type of central vertex used. The upper plot in Fig. 10
produced using the static central vertex~GE!, and the differ-
ence in layers is found to be 1.47. The lower one is produ

FIG. 10. Plot of the weighted minimum risk portfolio laye
l P(t,u50) with no short selling~dotted! and mean occupation laye
l (t,vc) ~solid! against time. Top—static central vertex, bottom
dynamic central vertex according to the vertex degree criterion
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by using a dynamic central vertex, selected with the ver
degree criterion, in which case the difference of 1.39
found.

Above we assumed the no short-selling condition. Ho
ever, it turns out that, in practice, the weighted portfolio lay
never assumes negative values and the short-selling co
tion, in fact, is not necessary. Fig. 11 repeats the earlier p
this time allowing for short selling. The weighted portfoli
layer is now 99.5% of the time higher than the mean oc
pation layer and, with the same central vertex configurat
as before, the difference between the two is 1.18 and 1.1
the upper and lower plots, respectively. Thus we conclu
that only minor differences are observed in the previous p
between banning and allowing short selling, although
difference between weighted portfolio layer and mean oc
pation layer is somewhat larger in the first case. Further,
difference in layers is also slightly larger for static than d
namic central vertex, although not by much.

As the stocks of the minimum risk portfolio are found o
the outskirts of the tree, we expect larger trees~higherL) to
have greaterdiversification potential, i.e., the scope of the
stock market to eliminate specific risk of the minimum ri
portfolio. In order to look at this, we calculated the mea
variance frontiers for the ensemble of 477 stocks usingT
51000 as the window width. In Fig. 12, we plot the level
portfolio risk as a function of time, and find a similarit
between the risk curve and the curves of the mean correla
coefficient r̄ and normalized tree lengthL. Earlier, in Ref.
@14#, when the smaller dataset of 116 stocks—consisting
primarily important industry giants—was used, we fou
Pearson’s linear correlation between the risk and the m
correlation coefficientr̄(t) to be 0.82, while that betwee
the risk and the normalized tree lengthL(t) was 20.90.
Therefore, for that dataset, the normalized tree length
able to explain the diversification potential of the mark

FIG. 11. Plot of the weighted minimum risk portfolio laye
l P(t,u50) with short selling allowed~dotted! and mean occupation
layer l (t,vc) ~solid! against time. Top—static central verte
bottom—dynamic central vertex according to the vertex degree
terion.
0-10
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DYNAMICS OF MARKET CORRELATIONS: TAXONOMY . . . PHYSICAL REVIEW E68, 056110 ~2003!
better than the mean correlation coefficient. For the curr
set of 477 stocks, which includes also less influential co
panies, the Pearson’s linear and Spearman’s rank-order
relation coefficients between the risk and the mean corr
tion coefficient are 0.86 and 0.77, and those between the
and the normalized tree length are20.78 and20.65, re-
spectively.

So far, we have only examined the location of stocks
the minimum risk portfolio, for whichu50. As we increase
u towards unity, portfolio risk as a function of time soo
starts behaving very differently from the mean correlat
coefficient and normalized tree length. Consequently, it is
longer useful in describing diversification potential of t
market. However, another interesting result emerges: The
erage weighted portfolio layerl P(t,u) decreases for increas
ing values ofu, as shown in Fig. 13. This means that out
all the possible Markowitz portfolios, the minimum risk por

FIG. 12. Plots of~a! the mean correlation coefficientr̄(t), ~b!
the normalized tree lengthL(t), and ~c! the risk of the minimum
risk portfolio, as functions of time.

FIG. 13. ~Color online! Plots of the weighted minimum risk
portfolio layer l P(t,u) for different values ofu.
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folio stocks are located furthest away from the central vert
and as we move towards portfolios with higher expected
turn, the stocks included in these portfolios are located clo
to the central vertex. When static central node is used,
average values of the weighted portfolio layerl P(t,u) for u
50, 1/4, 1/2, and 3/4 are 6.03, 5.70, 5.11, and 4.72, resp
tively. Similarly, for a dynamic central node, we obtain th
values of 5.68, 5.34, 4.78, and 4.37. We have not inclu
the weighted portfolio layer foru51, as it is not very infor-
mative. This is due to the fact that the maximum return po
folio comprises only one asset~the maximum return asset i
the current time window! and, therefore,l P(t,u51) fluctu-
ates wildly as the maximum return asset changes over ti

We believe these results to have potential for practi
application. Due to the clustering properties of the MST,
well as the overlap of tree clusters with business sector
defined by a third party institution, it seems plausible th
companies of the same cluster face similar risks, imposed
the external economic environment. These dynamic risks
fluence the stock prices of the companies, in coarse te
leading to their clustering in the MST. In addition, the rad
location of stocks depends on the chosen portfolio risk lev
characterized by the value ofu. Stocks included in low-risk
portfolios are consistently located further away from the c
tral node than those included in high-risk portfolios. Cons
quently, the radial distance of a node, i.e., its occupat
layer, is meaningful. Thus, it can be conjectured that
location of a companywithin the cluster reflects its position
with regard to internal, or cluster specific, risk. Characteri
tion of stocks by their branch, as well as their location with
the branch, enables us to identify the degree of interchan
ability of different stocks in the portfolio. For example, i
most cases we could pick two stocks from different asset
clusters, but from nearby layers, and interchange them in
portfolio without considerably altering the characteristics
the portfolio. Therefore, dynamic asset trees provide
intuition-friendly approach to and facilitateincorporation of
subjective judgmentin the portfolio optimization problem.

VIII. SUMMARY AND CONCLUSION

In summary, we have studied the distribution of corre
tion coefficients and its moments. We have also studied
dynamics of asset trees: the tree evolves over time and
normalized tree length decreases and remains low durin
crash, thus implying the shrinking of the asset tree parti
larly strongly during a stock market crisis. We have al
found that the mean occupation layer fluctuates as a func
of time, and experiences a downfall at the time of mar
crisis due to topological changes in the asset tree. Furt
our studies of the scale-free structure of the MST show t
this graph is not only hierarchical in the sense of a tree
there are special, highly connected nodes and the hierarc
structure is built up from these. As for the portfolio analys
it was found that the stocks included in the minimum ri
portfolio tend to lie on the outskirts of the asset tree:
average the weighted portfolio layer can be almost one an
half levels higher, or further away from the central verte
0-11
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than the mean occupation layer for window width of fo
years.

For many of the quantities we have studied, the beha
is significantly different for those data windows containi
the dates around October 19, 1987~Black Monday! from
windows without them. We have studied the effects of t
crash, more specifically in Ref.@10#. We should clarify that
the period 1986–1990 which has shown a ‘‘crashlike’’ b
havior is an artifact of the four-year window width used
analyze the data and except for the dates around Octobe
1987 this period 1986–1990 was ‘‘normal.’’

Correlation between the risk and the normalized t
length was found to be strong, though not as strong as
correlation between the risk and the mean correlation co
cient. Thus we conclude that the diversification potential
the market is very closely related also to the behavior of
normalized tree length. Finally, the asset tree can be vie
as a highly graphical tool, and even though it is stron
pruned, it still retains all the essential information of t
gy
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market and can be used to add subjective judgment to
portfolio optimization problem.

ACKNOWLEDGMENTS

J.-P.O. is grateful to European Science Foundation
REACTOR grant to visit Hungary, the Budapest Univers
of Technology and Economics for the warm hospitality, a
the Graduate School in Computational Methods of Inform
tion Technology ~ComMIT!, Finland. The role of Harri
Toivonen at the Department of Accounting, Helsinki Scho
of Economics, is acknowledged for carrying out CRSP da
base extractions. We are also grateful to R. N. Mantegna
very useful discussions and suggestions. This research
partially supported by the Academy of Finland, Resea
Center for Computational Science and Engineering, Pro
No. 44897 ~Finnish Center of Excellence Program 2000
2005! and OTKA ~Grant No. T029985!.
ril,

.fi/

//

int
,

s are
@1# R.N. Mantegna, Eur. Phys. J. B11, 193 ~1999!.
@2# L. Kullmann, J. Kerte´sz, and R.N. Mantegna, Physica A287,

412 ~2000!.
@3# L. Giada and M. Marsili, Physica A315, 650 ~2002!.
@4# L. Laloux et al., Phys. Rev. Lett.83, 1467 ~1999!; V. Plerou

et al., ibid. 83, 1471~1999!.
@5# The Economy as an Evolving Complex System II, edited by

W.B. Arthur, S.N. Durlauf, and D.A. Lane~Addison-Wesley,
Reading, MA, 1997!.

@6# N. Vandewalle, F. Brisbois, and X. Tordoir, Quant. Finance1,
372 ~2001!.

@7# H.M. Markowitz, J. Finance7, 77 ~1952!.
@8# S. Gallucio, J.-P. Bouchaud, and M. Potters, Physica A259,

449 ~1998!; A. Gabor and I. Kondor,ibid. 274, 222 ~1999!; L.
Bongini et al., Eur. Phys. J. B27, 263 ~2002!.

@9# J.-P. Onnela, M. Sc. thesis, Helsinki University of Technolo
Finland, 2002.

@10# J.-P. Onnela, A. Chakraborti, K. Kaski, and J. Kerte´sz, Physica
A 324, 247 ~2003!.

@11# S. Drozdzet al., Physica A287, 440 ~2000!.
@12# J.-P. Onnela, A. Chakraborti, K. Kaski, and J. Kerte´sz, Phys.

Scr. T106, 48 ~2003!.
,

@13# J.-P. Onnela, A. Chakraborti, K. Kaski, and J. Kerte´sz ~unpub-
lished!.

@14# J.-P. Onnela, A. Chakraborti, K. Kaski, and J. Kerte´sz, Eur.
Phys. J. B30, 285 ~2002!.

@15# Forbes at http://www.forbes.com/, referenced in March-Ap
2002.

@16# Supplementary material is available at http://www.lce.hut
˜ jonnela/

@17# Standard & Poor’s 500 index at http:
www.standardandpoors.com/, referenced in June, 2002.

@18# R. Albert and A.-L. Barabasi, Rev. Mod. Phys.74, 47 ~2002!.
@19# S.N. Dorogovtsev and J.F.F. Mendes, Adv. Phys.51, 1079

~2002!.
@20# G. Szabo´, M. Alava, and J. Kerte´sz, Phys. Rev. E66, 026101

~2002!.
@21# M. Marsili, Quant. Finance2, 297 ~2002!.
@22# I. Yang, H. Jeong, B. Kahng, and A.-L. Barabasi, e-pr

cond-mat/0301513; H.-J. Kim, Y. Lee, B. Kahng, and I. Kim
J. Phys. Soc. Jpn.71, 2133~2002!.

@23# Several software packages based on standard procedure
available. We usedMATLAB with Financial Toolbox.
0-12


