PHYSICAL REVIEW E 68, 056110 (2003
Dynamics of market correlations: Taxonomy and portfolio analysis
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The time dependence of the recently introduced minimum spanning tree description of correlations between
stocks, called the “asset tree” has been studied in order to reflect the financial market taxonomy. The nodes of
the tree are identified with stocks and the distance between them is a unique function of the corresponding
element of the correlation matrix. By using the concept of a central vertex, chosen as the most strongly
connected node of the tree, an important characteristic is defined by the mean occupation layer. During crashes,
due to the strong global correlation in the market, the tree shrinks topologically, and this is shown by a low
value of the mean occupation layer . The tree seems to have a scale-free structure where the scaling exponent
of the degree distribution is different for “business as usual” and “crash” periods. The basic structure of the
tree topology is very robust with respect to time. We also point out that the diversification aspect of portfolio
optimization results in the fact that the assets of the classic Markowitz portfolio are always located on the outer
leaves of the tree. Technical aspects such as the window size dependence of the investigated quantities are also
discussed.
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[. INTRODUCTION technologies, management teams, alliances and partnerships,
among many other factors. This is why exploring the asset
In spite of the traditional wisdom “Money does not grow treedynamicscan provide us new insights to the market. We
on trees,” here we wish to show that the concept of treedelieve that dynamic asset trees can be used to simplify this
(graphs has potential applications in financial market analy-complexity in order to grasp the essence of the market with-
sis. This concept was recently introduced by Mantegna as aut drowning in the abundance of information. We aim to
method for finding a hierarchical arrangement of stocksderive intuitively understandable measures, which can be
through studying the clustering of companies by using corused to characterize the market taxonomy and its state. A
relations of asset returnd]. With an appropriate metric, further characterization of the asset tree is obtained by study-
based on the correlation matrix, a fully connected graph waing its degree distributiof6]. We will also study the robust-
defined in which the nodes are companies, or stocks, and theess of tree topology and the consequences of the market
“distances” between them are obtained from the correspondevents on its structure. The minimum spanning tree, as a
ing correlation coefficients. The minimum spanning treestrongly pruned representative of asset correlations, is found
(MST) was generated from the graph by selecting the mosto be robust and descriptive of stock market events.
important correlations and it is used to identify clusters of Furthermore, we aim to apply dynamic asset trees in the
companies. field of portfolio optimization. Many attempts have been
In this paper, we study the time dependent properties ofmade to solve this central problem from the classical ap-
the minimum spanning tree and call it a “dynamic assetproach of Markowitz[7] to more sophisticated treatments,
tree.” It should be mentioned that several attempts have beeincluding spin-glass-type studi¢8]. In all the attempts to
made to obtain clustering from the huge correlation matrixsolve this problem, correlations between asset prices play a
such as the Potts superparamagnetic mef2dda method crucial role and one might, therefore, expect a connection
based on the maximum likelihod@] or the comparison of between dynamic asset trees and the Markowitz portfolio
the eigenvalues with those given by the random matrixoptimization scheme. We demonstrate that although the to-
theory[4]. We have chosen the MST because of its uniquepological structure of the tree changes with time, the compa-
ness and simplicity. The different methods are compared imies of the minimum risk Markowitz portfolio are always
Ref.[3]. located on the outer leaves of the tree. Consequently, asset
Financial markets are often characterized as evolvingrees in addition to their ability to form economically mean-
complex systemg$5]. The evolution is a reflection of the ingful clusters, could potentially contribute to the portfolio
changing power structure in the market and it manifests theptimization problem. Then with a lighter key one could
passing of different products and product generations, newerhaps say that “some money may grow on trees,” after all.
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FIG. 1. Left: Plot of the probability density function of the correlation coefficients as a function of time. Right: The mean, standard
deviation, skewness, and kurtosis of the correlation coefficients as functions of time.

Il. RETURN CORRELATIONS AND DYNAMIC attention to the logarithmic return of stockgiven byr;(7)
ASSET TREES =InPy(7)—In P(v—1) which, for a sequence of consecutive

trading days, i.e., those encompassing the given wingjow

The financial market, for the largest part in this paper, th ¢ tort 1 der to ch terize th
refers to a set of data commercially available from the Cente‘orm € return vector; . In order o characterize the syn-
chronous time evolution of assets, we use the equal time

for Research in Security PricéERSP of the University of lati tici b ctmdi defined
Chicago Graduate School of Business. Here we will stud;fcorre ation coefficients between assetd] defined as
(rir) = (ri)(r))

the split-adjusted daily closure prices for a totalNE477
stocks traded at the New York Stock Excharily&’ SE) over t

the period of 20 years, from 02 Jan 1980 to 31 Dec 1999. P~ VLB = (2 —(rih2y”

This amounts to a total of 5056 price quotes per stock, in- ' ' J '

dexed by time variable=1,2, ... 5056. For analysis and \yhere(...) indicates a time average over the consecutive
smoothing purposes, the data are divided timewise Mto  trading days included in the return vectors. Due to Cauchy-
windows t=1,2,... M of width T corresponding to the gchwarz inequality, these correlation coefficients fulfill the
number of daily returns included in the window. Several con-condition — 1=p;;=1 and form alNx N correlation matrix
secutive windows overlap with each other, the extent ofct \yhich serves as the basis of dynamic asset trees to be
which is dictated by the window step length paramef&l  yiscussed later.

describing the displacement of the window, measured also in | et ys first characterize the correlation coefficient distri-
trading days. The choice of window width is a trade off hytion (shown in Fig. 3, by its first four moments and their

between too noisy and too smoothed data for small and larggyrrelations with one another. The first moment is ithean
window widths, respectively. The results presented in thiggrrelation coefficientdefined as

paper were calculated from monthly stepped four-year win-

D

dows. Assuming 250 trading days a year, we us&d _ 1

~20.8 day and’ = 1000 day. We have explored a large scale p(t)= m E pit,- ' 2
of different values for both parameters, and the given values p}j ec!

were found optima9]. With these choices, the overall num-

ber of windows isM =195. where we consider only the nondiagonad() elementso}j

In order to investigate correlations between stocks we firsbf the upper(or lowern triangular matrix. We also evaluate
denote the closure price of stoclat time = by P;(7) (Note  the higher order normalized moments for the correlation co-
that r refers to a date, not a time windgw/\e focus our efficients, so that the variance is
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1 _ form a series through time. Consequently, this multitude of
No(t)= N(N=1)/2 > (pij—p"H?, (3 trees is interpreted as a sequence of evolutionary steps of a
oD singledynamic asset tree
As a simple measure of the temporal state of the market

the skewness is (the asset treewe define thenormalized tree lengtlas

1 _
_ R VN1
L= 2 dij, (6)
o N—1 <Y
and the kurtosis is dijeT
1 _
- = R VTN : _ _ _ )
Aa(t) N(N=T)72 (ZJ) (pf; = PH*INS(D). (5)  wheret again denotes the time at which the tree is con

structed, andN—1 is the number of edges present in the
MST. The probability distribution function of the—1 dis-
tance elementsl;; in T! as a function of time is plotted in
%ig. 2 (cf. Ref. [12]). Also the mean, standard deviation,
skewness, and kurtosis of normalized tree lengths are de-
picted in Fig. 2.

The mean, standard deviatigequare root of the variange
skewness, and kurtosis of the correlation coefficients ar
plotted as functions of time in Fig. 1.

In this figure the effect and repercussions of Black Mon-
day (October 19, 198yare clearly visible in the behavior of _
all these quantities. For example, the mean correlation coef- AS_ gxpected and as the_ plots show, the mean correlation
ficient is clearly higher than average on the interval betweef@€fficient and the normalized tree length are very strongly
1986 and 1990. The length of this interval corresponds to th@nticorrelated. Pearsgn s linear correlation between the mean
window width T, and Black Monday coincides with the mid- correlation coefficienp(t) and normalized tree length(t)
point of the interval[10]. The increased value of the mean is —0.98, and Spearman’s rank-order correlation coefficient
correlation is in accordance with the observation by Drozdas —0.92, thus both indicating very strong anticorrelation.
et al. [11], who found that the maximum eigenvalue of the Anticorrelation is to be expected in view of how the dis-
correlation matrix, which carries most of the correlations, iStancesdij are constructed from correlation coefficienis.
very large during market crashes. We also investigategqowever, the extent of this anticorrelation is different for
whether these four different measures are correlated, agifferent input variables and is lower if, say, daily transaction
seems clear from the figure. For this we determined the Peaj|umes are studied instead of daily closure prices).
spn’s Iinegr and Spearman’s rank-order.correlation coeffi- |t should be noted that in constructing the minimum span-
cients, which between the mean and variance turned out iQig tree we are effectively reducing the information space
be 0.97 and 0.90,. and between skewness and kurtosis 0.9%3m N(N—1)/2 separate correlation coefficients fb- 1
and 0.96, respectively. Thus the first two and the last twq,,q edges, in other words, compressing the amount of infor-
measures are very strongly correlated. . mation dramatically. This follows because the correlation

We now move on to construct an asset tree. For this We, - ct and distance matrisD! are bothNXN dimen-
use the nonlinear transformatialy = y2(1-p;j) to obtain  giona| but due to their symmetry, both haéN—1)/2 dis-
distances with the property=2d;; =0, forming anNXN dis- {inct upper(or lowen triangle elements, while the spanning
tance matrixD'. At this point an additional hypothesis about tree has onlN— 1 edges. So, in moving from correlation or
the topology of the metric space is required. The workingyistance matrix to the asset tr@@, we have pruned the
hypothesis is that a useful space for linking the stocks is aQystem fromN(N—1)/2 toN—1 elements of information. If
ultrametric spacei.e., a space where all distances are ultrayye compare Figs. 1 and 2, we find that distribution of the
metric. This hypothesis is motivatedposterioriby the find-  gisiance elements contained in the asset tree retain most of
ing that the associated taxonomy is meaningful from an ecoge features of the correlation coefficient distribution. Their
nomic point of view. The concept of ultrametricity iS ¢orresponding moments also bear striking correlation/
discussed in detail by Mantegrid], while the economic  pticorrelation, e.g., the Pearson's linear correlation between
meaningfulness of the emerging taxonomy is addressed latgfe skewness of the correlation coefficients and the skewness
in this paper. Out of the several possible ultrametric spacegyf he edge lengths is-0.85, while the Spearman’s rank
the subdominant ultrametric is opted for due to its simplicity ;. yar correlation is— 0.82. Thus one may contemplate that

and rgmarkable p.rotperties. In practice, itis obtaingd by USiNgha minimum spanning tree as a strongly reduced represen-
the distance matri” to determine the MST of the distances, (aijye of the whole correlation matrix, bears the essential

acgording_to the methodology of Rdfl], denoted byT". information about asset correlations.
This is a simply connected graph that connectiNaibdes of As further evidence that the MST retains the salient fea-

the graph W'thNt_ 1 edges such that the sum of all edgeyres of the stock market, it is noted that the 1987 market
weights, 2 ¢ crdjj, is minimum.[Here time(window) de-  crash can be quite accurately seen from Figs. 1 and 2. The
pendence of the tree is emphasized by the addition of théact that the market, during crash, is moving together is thus
superscript to the notation|. Asset trees constructed for dif- manifested in two ways. First, the ridge in the plot of the

ferent time windows are not independent of each other, butean correlation coefficient in Fig. 1 indicates that the whole
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FIG. 2. Left: The probability distribution function of theN(-1) distance elements contained in the asset tree, as a function of time.
Right: The mean, standard deviation, skewness, and kurtosis of the normalized tree lengths as functions of time.

market is exceptionally strongly correlated. Second, the corehildren of the central vertex. Although there is arbitrariness
responding well in the plot of the mean normalized treein the choice of the central vertex, we propose that it is
length in Fig. 2 shows how this is reflected in considerablycentral, or important, in the sense that any change in its price
shorter than average length of the tree so that the tree, dirongly affects the course of events in the market on the
average, is very tightly packed. Upon letting the windowWhole. We propose th(ee alternatiye de_fin'itions for'the cen-
width T—0, the two sides of the ridge converge to a singletral vertex in our studies, all yielding similar and, in most

date, which coincides with Black Monddg0]. cases, identical outcomes.
The first and second definitions of the central vertex are

local in nature. The idea here is to find the node that is most
IIl. TREE OCCUPATION AND CENTRAL VERTEX strongly connected to its nearest neighbors. According to the

Next we focus on characterizing the spread of nodes ofirst definition, this is the node with the highestrtex de-

the tree. In order to do so, we introduce the quantitynean ~ 9r€€ i-€., the number of edges which are incident with
occupation layems q m (neighbor of the vertex. The obtained results are shown in

Fig. 3. Thevertex degree criteriofeads to General Electric
N (GE) dominating 67.2% of the time, followed by Merrill
I(t,we)= i z ﬁ(vit), (7) Lynch (MER) at 20.5%, .and .CBS at 8.2%. The compin_gd
N =1 share of these three vertices is 95.9%. The second definition,
a modification of the first, defines the central vertex as the
whereL(v;) denotes the level of vertax . The levels, notto one with the highest sum of those correlation coefficients
be confused with the distanceg between nodes, are mea- that are associated with the incident edges of the vertex.
sured in natural numbers in relation to thentral vertex ., Therefore, whereas the first definition weighs each departing
whose level is taken to be zero. Here the mean occupationode equally, the second gives more weight to short edges,
layer indicates the layer on which the mass of the tree, osince a high value of;; corresponds to a low value aof; .
average, is conceived to be located. This is reasonable, as short connections link the vertex more
Let us now examine the central vertex in more detail, agightly to its neighborhood than long onéthe same prin-
the understanding of the concept is a prerequisite for intereiple employed in constructing the spanning jre€his
preting mean occupation layer results, to follow shortly. Theweighted vertex degree criterioresults in GE dominating
central vertex is considered the parent of all other nodes i855.6% of the cases, followed by MER at 20.0%, and CBS at
the tree, also known as the root of the tree. It is used as th&.7%, the share of the top three being 94.3%.
reference point in the tree, against which the locations of all The third definition deals with the global quantity @én-
other nodes are relative. Thus all other nodes in the tree ater of massIn considering a tre@" at timet, the vertexv;
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defined center in the tree. The reason for the coincidence of
wurf ' ' ' I ' ' N the criteria seems clear, intuitively speaking. A vertex with a
MERF i Hi 1 high vertex degree, the central vertex, in particular, carries a
FM P * * 1 lot of weight around i{the neighboring nodgswhich in turn
QM:; * 1 may be highly connected to otheits their children, and so
e .l . | on. Two different interpretations may be given to these re-
cash - ) sults. One may have eithép static(fixed at all time$ or (ii)
GEF  -— FO—— F— dynamic (updated at each time stepentral vertex. If the
Kop . . o . . . E first approach is opted for, the above evidence well substan-
1982 1984 1986 1988 ﬁm;%z;ear)w les4 199 1998 tiates the use of GE as the central vertex. In the second

approach, the results will vary somewhat depending on
FIG. 3. Central vertices according () vertex degree criterion which of the three criteria are used in determining the central

(top), (2) weighted vertex degree criteridmiddle), and(3) center ~ Vertex.

of mass criterior(bottom). The mean occupation layd(t) is depicted in Fig. 4,

where also the effect of different central vertices is demon-

I(t,v;) is the center of mass, given that all nodes are assignee€-» GE, and the dotted one to dynamic central vertex evalu-

definition. With thiscenter of mass criteriowe find that the  the time, as the above central vertex considerations lead us to

most dominant company, again, is GE, as it is 52.8% of th&Xpect. The two dips at 1986 and 1990, located symmetri-
time the center of mass of the graph, followed by MER atcally at half a window width from Black Monday, corre-
15.4%, and Minnesota Mining & MFG at 14.9%. These topspond to the topological shrinking of the tree associated with
three candidates constitute 83.1% of the total. Should théhe famous market crash of 19810]. Roughly between

revenue, profit, et¢.of the company, it is obvious that GE’s concordance with our earlier results obtained for a different

dominance would increase. set of datg 14]. High values ofl (t) are considered to reflect
As Fig. 3 shows, the three alternative definitions for the@ finer market structure, whereas in the other extreme low

central vertex lead to very similar results. The vertex degreélips are connected to market crashes, where the behavior of
and the weighted vertex degree criteria coincide 91.8% of théhe system is very homogeneous. The finer structure may
time. In addition, the former coincides with center of massresult from general steady growth in asset prices during that
66.7% and the latter 64.6% of the time, respectively. Overallperiod as can be seen, for example, from the S&P 500 index.
the three criteria yield the same central vertex in 63.6% of

Fhe cases, indicati.ng considerqble mutua[ agreem(_an_t. The ex- IV TREE CLUSTERS AND THEIR

istence of a _me_anlngful_ center in the tree is not a trivial issue, ECONOMIC MEANINGEULNESS

and neither is its coincidence with the center of mass. How-

ever, since the criteria applied, present a mixture of both As mentioned earlier, Mantegna’s idea of linking stocks in
local and global approaches, and the fact that they coincidan ultrametric space was motivatagosterioriby the prop-
almost 2/3 of the time, does indicate the existence of a wellerty of such a space to provide a meaningful economic tax-
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onomy. We will now explore this issue further, as the mean-as a subset of a branch. Let us now examine some of the
ingfulness of the emerging economic taxonomy is the keyclusters that have been formed in the sample tree. We use the
justification for the use of the current methodology. In Ref.terms completeand incompleteto describe, in rather strict
[1], Mantegna examined the meaningfulness of the taxterms, the success of clustering. A complete cluster contains
onomy by comparing the grouping of stocks in the tree withall the companies of the studied set belonging to the corre-
a third party reference grouping of stocks by their industry,sponding business sector, so that none are left outside the
etc., classifications. In this case, the reference was providetluster. In practice, however, clusters are mostly incomplete,
by Forbes[15], which uses its own classification system, containing most, but not all, of the companies of the given
assigning each stock with a sectbrgher leve] and industry  business sector, and the rest are to be found somewhere else
(lower leve) category. in the tree. Only the Energy cluster was found complete, but
In order to visualize the grouping of stocks, we con-many others come very close, typically missing just one or
structed a sample asset tree for a smaller dafadgtshown  two members of the cluster.
in Fig. 5. This was obtained by studying our previous dataset Building upon the normalized tree length concept, we can
[14], which consists of 116 S&P 500 stocks, extending fromcharacterize the strength of clusters in a similar manner, as
the beginning of 1982 to the end of 2000, resulting in a totakhey are simply subsets of the tree. These clusters, whether
of 4787 price quotes per sto¢k6]. complete or incomplete, are characterized byrtbemalized
Before evaluating the economic meaningfulness of groupeluster length defined for a clustec as follows:
ing stocks, we wish to establish some terminology. We use
the term sector exclusively to refer to the given third party
classification system of stocks. The tebranchrefers to a Lo(t)=— 2 dt. (8)
subset of the tree, to all the nodes that share the specified ¢ Negoo
common parent. In addition to the parent, we need to have a !
reference point to indicate the generational directipa.,
who is who’s parentin order for a branch to be well defined. whereN, is the number of stocks in the cluster. This can be
Without this reference there is no way to determine wherecompared with the normalized tree length, which for the
one branch ends and the other begins. In our case, the ref@ample tree in Fig. 5 at timg" is L(t*)~1.05. A full ac-
ence is the central node. There are some branches in the tresunt of the results is to be found in RgL6], but as a short
in which most of the stocks belong to just one sector, indi-summary of results we state the following. The Energy com-
cating that the branch is fairly homogeneous with respect t@anies form the most tightly packed cluster resulting in
business sectors. This finding is in accordance with those dfgnerg(t*)~0.92, followed by the Health-care cluster with
Mantegnd 1], although there are branches that are fairly het-L yeaum carkt)~0.98. For the Utilities cluster we have
erogeneous, such as the one extending directly downwardsiies(t*)~1.01 and for the diverse Basic Materials cluster
from the central vertex, see Fig. 5. L gasic materialbt™ ) = 1.03. Even though the Technology cluster
Since the grouping of stocks is not perfect at the branchhas the fewest number of members, its mean distance is the
level, we define a smaller subset whose members are moreghest of the examined groups of clusters being
homogeneous as measured by the uniformity of their sectdrrechnoiogft™)~1.07. Thus, most of the examined clusters
classifications. The termlusteris defined, broadly speaking, seem to be more tightly packed than the tree on average.
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One could find and examine several other clusters in théhink of one factor having equal influence on, say, companies
tree, but the ones that were identified are quite convincingin the Consumer/Noncyclical business sector. This unifor-
The minimum spanning tree, indeed, seems to provide a taynity of external risks influences the stock price of these
onomy that is well compatible with the sector classificationcompanies, in coarse terms, leading to their more complete
provided by an outside institution, Forbes in this case. This iglustering than that of companies facing less uniform exter-
a strong vote for the use of the current methodology in stock@l risks. In conclusion, regarding all the above listed fac-
market analysis. Some further analysis of the identified clustors, the success of the applied method in identifying market
ters is presented in Relf16]. taxonomy is remarkable.

There are, however, some observed deviations to the clas-
sification, which call for an explanation. For them the fol- V. SCALE-FREE STRUCTURE OF THE ASSET TREE
lowing points are raised.

(i) The seemingly random asset price fluctuations steny |
not only from standard economic factors, but also from PSY
chological factors, introducing noise in the correlation ma-
trix. Therefore, it is not reasonable to expect a one-to-on

So far we have characterized the asset tree as an important
bgraph of the fully connected graph derived from all the
ements of the correlation matrix. Since the asset tree is
expected to reflect some aspects of the market and its state, it
. X §s therefore of interest to learn more about its structure. Dur-
mapping between business sectors and MST clusters. g the |ast few years, much attention has been devoted to

th (i) Busjne;s sector de:]initiolns z_re notlimique, b(l;t r\}/aryl b3fhe degree distribution of graphs. It has become clear that the
e organization issuing them. In this work, we used the clasg, c5|jeq scale-free graphs, where this distribution obeys a

sification system by Forbgd5], where the studied compa- .. law, are very frequent in many fields, ranging from

nies are divided into 12 business sectors and 51 industrieg,;a velationships through cell metabolism to the Internet

Forbes has i_ts own classificati_on principle, baseq on com 18,19. Scale-free trees have also been extensively studied
pany dynamics rather than size alone. Alternatively, on see, e.g., Refi20]). Recently, examples for scale-free net-

could have used, say, the Global Industry Classification Staq/'vorks in econom :
y and finance have been foie@1,23.
dard (GICS), released on January 2, 2001, by Standard & \nqewalleet al. [6] found scale-free behavior for the

Poor’'s[17]. Within this framework, companies are divided sset tree in a limitetbne year, 1998time window for 6358

into 10 sectors, 23 industry groups, 59 industries, and 12 tocks traded at the NYSE, NASDAQ, and AMEX. They
subindustries. Therefore, the classification system clearl roposed the distribution of’the vertex ,degré(as) o .fol-

makes a difference,'and there are discrepaqcies even at t a power law behavior:
topmost level of business sectors amongst different systems.
(iii) Historical price time series is, by definition, old. f(n)~n~¢, 9)
Therefore, one should use contemporary definitions for busi-
ness sectors, etc., as those most accurately characterize thigh the exponentr~2.2, wheren is the vertex degreéor
company. Since these were not available to the authors, th@umber of neighbors of a nogéerhis exponent implies that
current classification scheme by Forbes was used. The errthhe second moment of the distribution would diverge in the
caused by this approach varies for different companies. infinite market limit, or in other words, the second moment
(iv) In many classification systems, companies engaged inf the distribution is always dominated by the rare but ex-
substantially different business activities are classified actremely highly connected vertices.
cording to where the majority of revenues and profits comes Our aim here is to study the property of scale freeness in
from. For highly diversified companies, these classificationghe light of asset tree dynamics. First, we conclude that the
are more ambiguous and, therefore, less informative. As asset tree has, most of the time, scale-free properties with a
consequence, classification of these types of companigather robust exponen&~2.1+0.1 for normal topology
should be viewed with some skepticism. This problem has itgi.e., outside crash periods of “business as usya’ result
roots in the desire to categorize companies by a single labetjose to that given in Refl6]. For most of the time the
and the approach fails where this division is unnatural. distribution behaves in a universal manner, meaning that the
(v) Some cluster outliers can be explained through theexponente is a constant within the error limits. However,
MST clustering mechanism, which is based on correlationsvhen the behavior of the market is not business as yseal
between asset returns. Therefore, one would expect, for exvithin crash periods the exponent also changes, although
ample, investment banks to be grouped with their investthe scale-free character of the tree is still maintained. For the
ments rather than with other similar institutions. ThroughBlack Monday period, we have~1.8+0.1. This resultis in
portfolio diversification, these banks distance themselvesull agreement with the observation of the shrinking of the
from the price fluctuationg&risks) of a single-business sector. tree during market crashes, which is accompanied by an in-
Consequently, it would be more surprising to find a totallycrease in the degree, thus explaining the lower value of the
homogeneous financial cluster than a fairly heterogeneousxponenta. The observation concerning the change in the
one currently observed. value of the exponent for normal and crash period is exem-
(vi) The risks imposed on the companies by the externaplified in Fig. 6.
environment vary in their degree of uniformity from one  When fitting the data, in many cases we found one or two
business sector to another. For example, companies in thaitliers, i.e., vertices whose degrees did not fit to the overall
Energy sectofprice of their stocksare prone to fluctuations power law behavior since they were much too high. In all
in the world market price of oil, whereas it is difficult to cases these stocks corresponded either to the highest con-
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0

10

FIG. 6. Typical plots of vertex degree for nor-
mal (left) and crash topologyright), for which
the exponents and goodness of fit are-2.15,
R2~0.96 anda~1.75, R°~0.92, respectively.
The plot on the left is centered at 28.2.1994 and
the right one at 1.5.1989, and for both= 1000
days, i.e., 4 years.

10'

n n

nected nodéi.e., the central verte»or were nodes with very can reflect real changes in the asset taxonomy, others may
high degrees. This result suggests that it could be useful teimply be due to noise. On lettingT—0, we find that
handle these nodes with special care, thus providing further(t)— 1, indicating that the treeare stable in this limit[9].
support to the concept of the central node. However, for the A sample plot of single-step survival ratio fdr=21000
purpose of fitting the observed vertex degree data, sucHays andsT~20.8 days is shown in Fig. 7. The following
nodes were considered outliers. To give an overall measur@bservations are made.

of goodness of the fits, we calculated tR& coefficient of (i) Alarge majority of connections survives from one time
determinationwhich can be interpreted as the fraction of the Window to the next. o

total variation that is explained by the least-squares regres- (i) The two prominent dips indicate a strong tree recon-
sion line. We obtained, on average, valuesR3t~0.86 for  figuration taking place, and they are window widitapart,

the entire dataset with outliers included aRé~0.93 with positioned symmetrically around Black Monday, and thus

outliers excluded. Further, the fits for the normal market pe-Imply topological reorganization of the tree during the mar

. ; . ket crash 10].

riod were better than those obtained for the crash period as™ ...\ <. . . . .
(iii) Single-step survival ratior(t) increases as the win-

H - 2
characterized b_y the average values R3~0.89 ano_IR dow width T increases whileST is kept constant. Thus an
~0.93, respectively, with outliers excluded. In addition to. P . )
; increase in window width renders the trees more stable with
the market period based dependence, the expomewas

also found to depend on the window width. We examined respect to single-step survival of connections. We also find
P : : : 3hat the rate of change of the survival ratio decreases as the
range of values for the window width between 2 and 8 yr

and found, without excluding the outliers, the fitted exponentWIndOW width increases and, in the limit, as the window

to depend linearly o width is increased towards infinitf—oe,o(t)—1 for all t.
In Fc):onclusion )\/Ne Have found the scalina exponent to Ole:I'he survival ratio seems to decrease very rapidly once the
’ . . g exp ~window width is reduced below roughly 1 yr. As the window
pend on the market period, i.e., crash vs normal market cir- . . : L
cumstances and on the window width. These results als\(l)v'dth is decreased further towards zero, in the limitTas
raise the question of whether it is reasonable to assume that 0 (V)0 for allt
different markets share the scaling exponent. In case they d 1 - . - - ' . ' -

not, one should be careful when pooling stocks together from
different markets for the purpose of vertex degree analysis. os} M
MA/\AA | "

M A N

VI. ASSET TREE EVOLUTION Q_o_avvv V\/\\NV A/ W | VV \JV' Vvvvv'
©
In order to investigate the robustness of asset tree topolg
ogy, we define theingle-step survival ratiof tree edges as §°'7'

the fraction of edges found common in two consecutive treesg
at timest andt—1 as

survival
o
o0

T

hed
o

1
a(t)=m|E(t)ﬂE(t—l)|. (10

0.4

In this E(t) refers to the set of edges of the tree at titpe
is the intersection operator, and- -| gives the number of

_ _ 03 . . . . . . . .
elements in the set. Under normal circumstances, the tree fo tos4  1e86 1988 ﬁm:s(’;ear) fez 1994 1996 1998
two consecutive time steps should look very similar, at least

for small values of window step length parame#ar. With FIG. 7. Single-step survival ratie(t) as a function of time. The

this measure it is expected that while some of the differenceaverage value is indicated by the horizontal line.
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FIG. 9. Plot of half-lifet;, as a function of window widtfT.

FIG. 8. Multistep survival ratiar(t,k) as a function of time for

different parametric values df (in days. We can also define a characteristic time, the so called

half-life of the survival ratid,,,, ortree half-lifefor short, as

(iv) Variance of fluctuations around the mean is ConStar’_'rre time interval in which half the number of initial connec-

over time, except for the extreme events and the interi
period, and it gets less as the window width increases.

In order to study the long term evolution of the trees, we
introducethe multistep survival rati@t timet as

ions have decayed, i.az(t,t1,/ T)=0.5. The behavior of
12 @s a function of the window width is depicted in Fig. 9
and it is seen to follow a clean linear dependence for values
of T being between 1 and 5 yr, after which it begins to grow
faster than a linear function. For the linear region, the tree
half-life exhibitst,,~0.12T dependence.

1 This can also be seen in Fig. 8, where the dashed horizon-
o(tk)= m|E(t)ﬂE(t—l)- —E(t=k+ 1)NE(t-K)], tal line indicates the level at which half of the connections

(11)  bhave decayed. For the studied values of the window width,

tree half-life occurs within the first region of the multistep

where only those connections that have persisted for thgurvival plot, where decaying was found to depend on the
only tho ; . Ve p . window width. Consequently, the dependence of half-life on
whole time period without any interruptions are taken into

account. According to this formula, when a bond betvveenWindOW width T does not contradict the window width inde-
WO corﬁpanies breaks even oncek’irsteps and then reap- pendent power law decaying of connections, as the two oc-

ears, it is not counted as a survived connection. It is found - in different regions. In general, the number of stobks
b ' i as well as the their type, is likely to affect the half-lives.

that many connections in the asset trees evaporate quite rap- .
e ; . . arlier, for a set oN=116 S&P 500 stocks, half-life was
idly in the early time horizon. However, this rate decrease ound to depend on the window width &g,~0.20T [9]. A

significantly with time, and even after several years there ar - L ) ; _
maller tree, consisting primarily of important industry gi-

some connections that are left intact. This indicates that som%nts would be expected to decay more slowly than the laraer
companies remain closely bonded for times longer than gn's, P Y Y 9

decade. The behavior of the multi-step survival ratio forset of NYSE-traded stocks studied in this paper.
three d!ﬁergnt values of W|_ndow W|dt(12,_ 4, an_d 6 yris VIl. PORTEOLIO ANALYSIS
shown in Fig. 8, together with the associated fits.

In this figure the horizontal axis can be divided into two  Next, we apply the above discussed concepts and mea-
regions. Within the first region, decaying of connections issures to the portfolio optimization problem, a basic problem
faster than exponential, and takes place at different rates faf financial analysis. This is done in the hope that the asset
different values of the window width. Later, within the sec- tree could serve as another type of quantitative approach to
ond region, when most connections have decayed and onbnd/or visualization aid of the highly interconnected market,
some 20%-30% remaiffior the shown values of), there is  thus acting as a tool supporting the decision making process.
a crossover to power law behavior. The exponents obtained/e consider ageneral Markowitz portfolioP(t) with the
for the window widths ofT =500, T=1000, andT=1500, asset weightsw;,w,, ... wy. In the classic Markowitz
in days, are—1.15, —1.19, and—1.17, respectively, and so portfolio optimization scheme, financial assets are character-
remains the same within error margins. Thus, interestinglyized by their average risk and return, where the risk associ-
the power law decay in the second region seems independeatied with an asset is measured by the standard deviation of
of the window width. returns. The Markowitz optimization is usually carried out
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FIG. 10. Plot of the weighted minimum risk portfolio layer ~ FIG. 11. Plot of the weighted minimum risk portfolio layer
Ip(t, =0) with no short sellingdotted and mean occupation layer !p(t, 6=0) with short selling alloweddotted and mean occupation
I(t,vo) (solid) against time. Top—static central vertex, bottom— layer I(t,vc) (solid) against time. Top—static central vertex,

dynamic central vertex according to the vertex degree criterion. bottom—dynamic central vertex according to the vertex degree cri-
terion.

by using historical data. The aim is to optimize the asse
weights so that the overall portfolio risk is minimized for a
given portfolio returnrp [23]. In the dynamic asset tree

framework, however, the task is to determine how the assets Abbve we assumed the no short-selling condition. How-

are located with respect to the central vertex. - ever, it turns out that, in practice, the weighted portfolio layer
L(_at Fm andry denot_e the retu”?s of the minimum and never assumes negative values and the short-selling condi-
maximum return portfolios, respectively. The expected portyjq, 'in fact, is not necessary. Fig. 11 repeats the earlier plot,
folio return varies between these two extremes, and-can is time allowing for short selling. The weighted portfolio
expressed asp = (1—O)ry+0ry, whered is a fr?‘?t'on layer is now 99.5% of the time higher than the mean occu-
between 0 and 1. Hence, whér-0, we have the minimum o401 ayer and, with the same central vertex configuration
risk portfolio, and wherg=1, we have the maximum return oq pefore, the difference between the two is 1.18 and 1.14 in
(maximum risk portfolio. The higher the value of, the  {he ypper and lower plots, respectively. Thus we conclude
higher the expected portfolio retum , and, consequently, hat only minor differences are observed in the previous plots
the hlgher the risk the investor is Wllllng_ to absorb. We de-petween banning and allowing short selling, although the
fine a single measure, thveeighted portfolio layers difference between weighted portfolio layer and mean occu-
pation layer is somewhat larger in the first case. Further, the
difference in layers is also slightly larger for static than dy-
Ip(t,0)= Z wiL(v)), (12 namic central vertex, although not by much.
teP(t.0) As the stocks of the minimum risk portfolio are found on
the outskirts of the tree, we expect larger tréagherL) to
whereEiNz W,=1 and further, as a starting point, the con- have greatedivers'ific.:ation potgr!tial_i.e., the scope of th_e
straintw,=0 for all i, which is equivalent to assuming that St0Ck market to eliminate specific risk of the minimum risk
there is no short selling. The purpose of this constraint is té)or_tfoho. In or_der to look at this, we calculated the mean-
prevent negative values fdp(t), which would not have a variance frontler_s for th? ensem_ble of 477 stocks uding
meaningful interpretation in our framework of trees with — 1000 as the window width. In Fig. 12, we plot the level of
central vertex. This restriction will shortly be discussed fur-Portfolio risk as a function of time, and find a similarity
ther. between the risk curve and the curves of the mean correlation

Figure 10 shows the behavior of the mean occupatiorfoefficientp and normalized tree length. Earlier, in Ref.
layer I(t) and the weighted minimum risk portfolio layer [14], when the smaller dataset of 116 stocks—consisting of
Is(t,6=0). We find that the portfolio layer is higher than the Primarily important industry giants—was used, we found
mean layer at all times. The difference between the layerfearson’s linear corre_lation between the risk and the mean
depends on the window width, here sefTat 1000, and the correlation coefficienip(t) to be 0.82, while that between
type of central vertex used. The upper plot in Fig. 10 isthe risk and the normalized tree lengil{t) was —0.90.
produced using the static central veri&E), and the differ- Therefore, for that dataset, the normalized tree length was
ence in layers is found to be 1.47. The lower one is producedble to explain the diversification potential of the market

By using a dynamic central vertex, selected with the vertex
degree criterion, in which case the difference of 1.39 is
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folio stocks are located furthest away from the central vertex,
and as we move towards portfolios with higher expected re-
turn, the stocks included in these portfolios are located closer
to the central vertex. When static central node is used, the
T84 1986 1988 1900 1992 1904 1996 198 average values of the weighted portfolio laygft, 8) for 6
time (vear) : : : =0, 1/4, 1/2, and 3/4 are 6.03, 5.70, 5.11, and 4.72, respec-
tively. Similarly, for a dynamic central node, we obtain the
values of 5.68, 5.34, 4.78, and 4.37. We have not included
the weighted portfolio layer fo#=1, as it is not very infor-
T P ) mz_itive. Thi_s is due to the fact that the_ maximum return p_ort-
time (year) folio comprises only one asséhe maximum return asset in
' ' the current time windoyvand, therefore|p(t, #=1) fluctu-
ates wildly as the maximum return asset changes over time.
We believe these results to have potential for practical
- . . . application. Due to the clustering properties of the MST, as
1984 fes6  foss 1990 1992 1994 1996 1998 well as the overlap of tree clusters with business sectors as
time (year) defined by a third party institution, it seems plausible that
companies of the same cluster face similar risks, imposed by
the external economic environment. These dynamic risks in-
fluence the stock prices of the companies, in coarse terms,
leading to their clustering in the MST. In addition, the radial
better than the mean correlation coefficient. For the currenlf:)Catlon of stocks depends on the chosen portfolio risk level,

set of 477 stocks, which includes also less influential Compharactenzed by the value 6t Stocks included in low-risk

panies, the Pearson’s linear and Spearman’s rank-order COt?prtfolios are consistently located further away from the cen-

relation coefficients between the risk and the mean correIé[—rsgdietaga?atdhiglsedi'gggggdo'fn;'gg;{fki Zort{g'%%cgogtsi;
tion coefficient are 0.86 and 0.77, and those between the ris{ﬁ Yi . . N P
ayer, is meaningful. Thus, it can be conjectured that the

and the normalized tree length are0.78 and—0.65, re- ; L . o
spectively. Io_catlon of a c_ompanywthln the Cluste_r _reflgcts its p03|t|qn
So far, we have only examined the location of stocks inV.v'th regard to mterngl, or cluster specific, ”S.k' Chqractgrga-
o . . o . tion of stocks by their branch, as well as their location within
the minimum risk portfolio, for whichd=0. As we increase

9 towards unity, portfolio risk as a function of time soon the branch, enables us to identify the degree of interchange-

. . . ability of different stocks in the portfolio. For example, in
starts behaving very differently from the mean correlation X .
- ) .. most cases we could pick two stocks from different asset tree
coefficient and normalized tree length. Consequently, it is no . :
. - i A . clusters, but from nearby layers, and interchange them in the
longer useful in describing diversification potential of the

market. However, another interesting result emerges: The aportfolio without considerably altering the characteristics of

erage weighted portfolio laydp(t, 8) decreases for increas- Yhe portfolio. Therefore, dynamic asset trees provide an
ing values ofé, as shown in Fig. 13. This means that out Ofmtumon-fnendly approach to and facilitaiecorporation of

all the possible Markowitz portfolios, the minimum risk port- subjective judgmerin the portfolio optimization problem.

o
)

mean correlation
o

mean length

o

08 : .

0.07
5 0.06
2

0.05

FIG. 12. Plots of(a) the mean correlation coefficiea(t), (b)
the normalized tree length(t), and(c) the risk of the minimum
risk portfolio, as functions of time.

VIIl. SUMMARY AND CONCLUSION

In summary, we have studied the distribution of correla-
tion coefficients and its moments. We have also studied the
dynamics of asset trees: the tree evolves over time and the
normalized tree length decreases and remains low during a
crash, thus implying the shrinking of the asset tree particu-
larly strongly during a stock market crisis. We have also
found that the mean occupation layer fluctuates as a function
of time, and experiences a downfall at the time of market
crisis due to topological changes in the asset tree. Further,
our studies of the scale-free structure of the MST show that
this graph is not only hierarchical in the sense of a tree but
there are special, highly connected nodes and the hierarchical
structure is built up from these. As for the portfolio analysis,

los4 16 1988 ﬁmg‘g(‘;,ear) 1982 1994 199 1998 it was found that the stocks included in the minimum risk
portfolio tend to lie on the outskirts of the asset tree: on

FIG. 13. (Color online Plots of the weighted minimum risk average the weighted portfolio layer can be almost one and a
portfolio layerlp(t, ) for different values off. half levels higher, or further away from the central vertex,

DO DD

layer
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than the mean occupation layer for window width of four market and can be used to add subjective judgment to the
years. portfolio optimization problem.

For many of the quantities we have studied, the behavior
is significantly different for those data windows containing

the dates around October 19, 198lack Monday from ACKNOWLEDGMENTS
windows without them. We have studied the effects of this
crash, more specifically in Reff10]. We should clarify that J.-P.O. is grateful to European Science Foundation for

the period 1986—1990 which has shown a “crashlike” be-REACTOR grant to visit Hungary, the Budapest University
havior is an artifact of the four-year window width used to of Technology and Economics for the warm hospitality, and
analyze the data and except for the dates around October 1the Graduate School in Computational Methods of Informa-
1987 this period 1986—-1990 was “normal.” tion Technology (ComMIT), Finland. The role of Harri

Correlation between the risk and the normalized tre€loivonen at the Department of Accounting, Helsinki School
length was found to be strong, though not as strong as thef Economics, is acknowledged for carrying out CRSP data-
correlation between the risk and the mean correlation coeffibase extractions. We are also grateful to R. N. Mantegna for
cient. Thus we conclude that the diversification potential ofvery useful discussions and suggestions. This research was
the market is very closely related also to the behavior of theartially supported by the Academy of Finland, Research
normalized tree length. Finally, the asset tree can be viewe@enter for Computational Science and Engineering, Project
as a highly graphical tool, and even though it is stronglyNo. 44897 (Finnish Center of Excellence Program 2000—
pruned, it still retains all the essential information of the 2005 and OTKA (Grant No. T02998b

[1] R.N. Mantegna, Eur. Phys. J. B, 193(1999. [13] J.-P. Onnela, A. Chakraborti, K. Kaski, and J. Keztéunpub-
[2] L. Kullmann, J. Kertez, and R.N. Mantegna, Physica2&7, lished.
412 (2000. [14] J.-P. Onnela, A. Chakraborti, K. Kaski, and J. KerteEur.
[3] L. Giada and M. Marsili, Physica 815, 650(2002. Phys. J. B30, 285 (2002.
[4] L. Laloux et al, Phys. Rev. Lett83, 1467 (1999; V. Plerou  [15] Forbes at http://www.forbes.com/, referenced in March-April,
et al, ibid. 83, 1471(1999. 2002.

[5] The Economy as an Evolving Complex Systenedited by
W.B. Arthur, S.N. Durlauf, and D.A. LanéAddison-Wesley,
Reading, MA, 199Y.

[6] N. Vandewalle, F. Brisbois, and X. Tordoir, Quant. Finaidce
372(2002.

[7] H.M. Markowitz, J. Finance, 77 (1952.

[8] S. Gallucio, J.-P. Bouchaud, and M. Potters, Physic258

[16] Supplementary material is available at http://www.lce.hut.fi/
“jonnela/

[17] Standard & Poor’s 500 index at http://
www.standardandpoors.com/, referenced in June, 2002.

[18] R. Albert and A.-L. Barabasi, Rev. Mod. Phy&}, 47 (2002.

[19] S.N. Dorogovtsev and J.F.F. Mendes, Adv. Phys, 1079

o (2002.
449(1998; A. Gabor and I. Kondoripid. 274, 222(1999; L. . .
Bon;ini 3 al, Eur. Phys. J. 7 2(2'3'(2002, (1999 [20] G. Szabp M. Alava, and J. Kertez, Phys. Rev. 66, 026101
[9] J.-P. Onnela, M. Sc. thesis, Helsinki University of Technology, (2002). . )
Finland. 2002. [21] M. Marsili, Quant. Finance, 297 (2002.
[10] J.-P. Onnela, A. Chakraborti, K. Kaski, and J. KerePhysica [22]I. Yang, H. Jeong, B. Kahng, and A.-L. Barabasi, e-print
A 324, 247 (2003. cond-mat/0301513; H.-J. Kim, Y. Lee, B. Kahng, and I. Kim,
[11] S. Drozdzet al, Physica A287, 440 (2000. J. Phys. Soc. Jpi71, 2133(2002.
[12] J.-P. Onnela, A. Chakraborti, K. Kaski, and J. KegtePhys. [23] Several software packages based on standard procedures are
Scr. T106, 48 (2003. available. We usediaTLAB with Financial Toolbox.

056110-12



