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The Asymptotic Distribution
of Extreme Stock Market
Returns*

I. Introduction

Extreme price movements like stock market
booms and crashes are some of the most puzzling
phenomena in finance. These events, which are
of great importance for investors and for the
whole economy, are not well understood by
financial scholars. Several years after October
1987, we are still wondering what caused the
stock market breakdown. Moreover, it is difficult
to match extreme price movements with rational
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This article presents a
study of extreme stock
market price move-
ments. According to ex-
treme value theory, the
form of the distribution
of extreme returns is
precisely known and in-
dependent of the pro-
cess generating returns.
Using data for an index
of the most traded
stocks on the New
York Stock Exchange
for the period 1885-
1990, I show empiri-
cally that the extreme
returns obey a Fréchet
distribution.
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explanations. Cutler, Poterba, and Summers (1989), analyzing large
daily price movements from 1928 to 1987 to see whether they are
related to the arrival of information, conclude that some extreme re-
turns are not associated with major news stories.

The profusion of financial databases and the advent of the com-
puter have made possible new approaches to the study of the stock
market. Most of the empirical studies and models concern aver-
age properties like expected returns, volatility, or correlations,
and little attention has been given to the extreme movements them-
selves. Notable exceptions are Mandelbrot (1963) and Fama (1965),
who suggest the use of stable Paretian laws for returns to take
into account the large number of outliers; Rothschild and Stiglitz
(1970), who use the weight of the tails of two random variables to
propose a better definition of increasing risk than the standard
one (i.e., the usual variance); Parkinson (1980), who recognizes
that extremes could contain information useful for a more efficient
computation of the variance; McCulloch (1978), who studies the
discontinuities of the price process associated with large falls and
rises; Jansen and De Vries (1991), who use extremes to investigate
the fatness of the distribution tails; and Loretan and Phillips (1994),
who use the extremal index for testing the covariance stationarity of
time series.

This article examines the extreme movements of the U.S. stock
market over a century of daily observations (1885-1990). An extreme
movement is defined as the lowest daily return (the minimum) and the
highest daily return (the maximum) of the stock market index observed
over a given period. Extremes are random variables depending on the
distribution of returns and on the length of selection period. Extreme
value theory shows that certain results which are distribution-free can
be reached: the form of the asymptotic distribution of the extreme
returns is independent of the process generating returns; only the dis-
tribution parameters’ value depends on it. It is shown empirically in
this study that the distribution of minima and maxima is a Fréchet
distribution. It is accurately estimated and shown to fit well with data
for an index of the most traded stocks on the New York Stock Ex-
change.

The remainder of the article is organized as follows: Section II pre-
sents extreme value theory; Section III reviews different methods of
estimating extreme value distribution parameters; the empirical analy-
sis starts in Section IV by estimating the asymptotic distribution of
extreme returns, followed by results concerning the time stability of
the distribution of extremes and the distribution of extremes obtained
from lower frequency returns; finally, Section V sums up the study
and outlines the economic implications and the applications of the
results.
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II. Theory of Extremes

This section presents exact and asymptotic statistical results pertaining
to the theory of extremes. Recent advances in extreme value theory
are also discussed. This presentation draws on Gumbel’s (1958) book
which gives an excellent exposition of the subject.!

A. Exact Results

Stock market price movements are measured by the daily logarithmic
return of a stock market index denoted by X. Let us call f the probabil-
ity density function, and F the cumulative distribution function of X.
The support of the density function is denoted by (¢, u). Let X,
X,, . . ., X, be the returns observed on days 1, 2, . . ., n. Extremes
are defined as maxima and minima of the n random variables X,,
X,, . .., X,. Let Y, denote the highest daily return (the maximum)
observed over n trading days.? In the empirical study, from the first n
observations of daily returns contained in the database X;, X,, . . .,
X, one takes the largest observation denoted by Y, ;. From the next
n observations, X, ., X,12, . . . , Xp,, another maximum called Y, , is
taken. From n-N observations of daily returns, one thus obtains N
observed maxima, Y, ;, Y,,, ..., ¥, 5. If the variables X are statisti-
cally independent and drawn from the same distribution (hypothesis
of the random walk for stock market prices), then the exact distribution
of the maximum Y, can be written immediately as a function of the
parent distribution Fy and the length of selection period n: Fy (x) =
[Fx(x)]". From this formula, it can be concluded that the limiting distri-
bution of Y, is null for x less than the upper bound # and equal to
one for x greater than u. Such an exact expression is not, however,
especially interesting since the exact limiting distribution is degener-
ate. In practice, the distribution of the parent variable is not precisely
known and, therefore, if this distribution is not known, neither is the
exact distribution of the extremes. For theoretical purposes as well as
for practical ones, this study focuses on the asymptotic behavior of
the extremes.

B. A Limiting Result: The Extreme Value Theorem

To find a limiting distribution of interest, the maximum variable Y, is
reduced with a location parameter B, and a scale parameter «, (as-

1. Galambos’s (1978) textbook gives a detailed and rigorous account of the probabilis-
tic aspects of extreme value theory. The textbook by Leadbetter, Lindgren, and Rootzén
(1983) gives advanced results for conditional processes.

2. The remainder of the article presents theoretical results for the maximum only,
since the results for the minimum Z, can be directly deduced from those of the maximum
by transforming the random variable X into — X, by which maximum becomes minimum
and vice versa. The following relation is used: Z,(X) = min(X,, X,, . . . , X,) =
-max(—X;, - X,, ..., -X,) = -Y,(-X).
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sumed to be positive) such that the distribution of standardized ex-
tremes (Y, — B,)/a, is nondegenerate. Gnedenko (1943) proves the
so-called extreme value theorem which specifies the form of the lim-
iting distribution Fy as the length of the period over which extremes
are selected tends to infinity. Three possible types of limiting extreme
value distributions can be reached: the Gumbel distribution (type 1),

Fy(y) = exp(—e™) fory €R, (D
the Fréchet distribution (type 2),

F()—{ 0 fory=0 @
Y= lexp(=y%) fory>0(k>0),
and the Weibull distribution (type 3),
exp(—(—y)™% fory<0(k<0)
F =
r) { 1 fory=0. ®)

Gnedenko (1943) gives necessary and sufficient conditions for a partic-
ular distribution to belong to one of the three types: for type 1,

lim n[l — Fy(a, x + B,)] = e~ (C1)

n—+x

For type 2,

1= Fyx)
MM TTRO Y (€2

where t+ > 0 and k& > 0. Condition (C2) expresses the fact that
the variable X varies regularly at infinity (Feller 1971, chap. 8). For

type 3,
1 - Fy(t-x+uw x
tl_r)n() 1-Fy(x+u) o €3

where u is the end point of the distribution X(Fy(x) = 1), t > 0, and
k<0.

The shape parameter k& reflects the weight of the tail of the distribu-
tion of the parent variable X. The shape parameter k as well as the
normalizing coefficients o, and B, may be different for minima and
maxima. The tail of the distribution Fy is either declining exponentially
(type 1) or by a power (type 2) or is finite (type 3). For the first and
third cases, all moments of the distribution of X are well defined. For
the second case the shape parameter k corresponds to the maximal
order moment: the moments of order r greater than & are infinite, and
the moments of order r less than k are finite (Gumbel 1958, p. 266);
the distribution of X is fat-tailed. The lower k, the fatter the distribution
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of X; for example, if k is greater than unity, then the mean of the
distribution exists; if k is greater than two, then the variance is finite,
if k is greater than three, then the skewness is well defined, and so
forth. The shape parameter is an intrinsic parameter of the process of
daily returns and does not depend on the number of daily returns n
from which the maximal return is selected.

Basic results from Gnedenko’s (1943) article are that only distribu-
tions unbounded (to the right) can have a Fréchet distribution as limit,
only distributions with finite right end point (u# < + «) can have Wei-
bull as limit, while the Gumbel distribution can be the limit of bounded
or unbounded distributions.

Conditions (C1)-(C3) may be employed in specific cases to derive
the type of asymptotic distribution of extremes. For example, the nor-
mal distribution commonly used in finance leads to the Gumbel distri-
bution for the extremes. The Student-¢ distributions considered by
Praetz (1972) obey the Fréchet distribution with a shape parameter k
equal to its degree of freedom (k = 2). A stable Paretian law introduced
by Mandelbrot (1963) also leads to a Fréchet distribution with a shape
parameter k equal to its characteristic exponent (0 < k < 2).

Jenkinson (1955) proposes a generalized formula (4) which groups
the three types distinguished by Gnedenko (1943):

fory>t"! ifr<0,

4
fory<t~! ifr>0. @

Fy(y) = exp[—(1 — -] {

The parameter 7 called the tail index is related to the shape parameter
k by 1 = —1/k. The tail index determines the type of distribution:
7 < 0 corresponds to a Fréchet distribution (type 2), T > 0 to a Weibull
distribution (type 3), and the intermediate case (1 = 0) corresponds to
a Gumbel distribution (type 1). The Gumbel distribution can be re-
garded as a transitional limiting form between the Fréchet and the
Weibull distributions, as (1 — 7 - y)''" is interpreted as e . For small
values of 7 (or large values of k), the type 2 and type 3 distributions
are very close to the type 1 distribution.

The extreme value theorem has been extended to time series; Ber-
man (1964) shows that the same result stands if the variables are corre-
lated (the sum of squared correlation coefficients remaining finite);
Leadbetter, Lindgren, and Rootzén (1983) consider various processes
based on the normal distribution: autoregressive processes with nor-
mal disturbances, discrete mixtures of normal distributions as studied
in Kon (1984), and mixed diffusion jump processes as advanced by
Press (1967) all have thin tails so that they lead to a Gumbel distribution
for the extremes; and De Haan et al. (1989) show that if X follows an
ARCH process introduced by Engle (1982), then the maximum has a
Fréchet distribution. For an ARCH(1) model defined by X, = €,(e, +
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e; - X?_)'? where ¢, are independent and identically distributed as a
N(0,1), the shape parameter k is greater than two and obtained from
the equation I'(k + 0.5) = w'2(2 - ¢;)7%.

III. Statistical Estimation Procedures

Estimated empirically, the asymptotic distribution of extremes con-
tains three parameters only: 7, a,, and B,. A first approach, called
parametric, consists of estimating these parameters by assuming that
realized extremes are drawn exactly from this distribution. Two para-
metric techniques are commonly used: the maximum likelihood method
which provides efficient estimates and the regression method which
provides a graphical method for determining the type of asymptotic
distribution. A second approach called nonparametric is based on the
direct tail estimation of the parent variable X and does not assume that
extremes are drawn exactly from the asymptotic distribution. These
different methods should enable us to determine the asymptotic distri-
bution of returns by many ways: statistical tests, graphical determina-
tion, and study of power.

A. Parametric Approach

1. The maximum likelihood method. The maximum likelihood
method gives parameter estimators which are unbiased, asymptotically
normal, and of minimum variance. Parameters’ estimates are obtained
by solving a set of nonlinear equations given by the first-order condi-
tions of the maximization problem (see Tiago de Oliveira 1973). A
likelihood ratio test will be computed to discriminate among the three
types of asymptotic distributions of extremes.

2. The regression method. The regression method described in
Gumbel (1958, pp. 226, 260, 296) is based on order statistics of the
extremes Y. The sequence of observed maxima (Y, ;);-, y is arranged
in increasing order to get an order statistic (Y}, ;);-, 5, for which: Y, ,
=Y,,=...=Y,y. Foreach value of i, the frequency Fy,(Y,,) is
a random variable lying between zero and one. The distribution of
these variables is independent of the variable Y, The mean of the ith
frequency E[Fy,(Y, )] is equal to i/(N + 1). The method compares
the ordered extreme observation Fy (Y} ) to its theoretical counter-
part i/(N + 1). This is done by estimating the reduced equation (5)
obtained by twice taking the logarithm of both quantities:

Vel Y=oy, - -2 :
_ln[—ln(N+1>:|—'r Ine, T ln( T<Y"'i B T))+¢""'

&)
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For the intermediate Gumbel case (1 = 0), the following regression is

run:
i _Yr,ui_Bn
el e @

n

Consistent parameter estimates are obtained for both nonlinear equa-
tions (5) and (6) by minimizing the sum of squared residuals. A graphi-
cal test derived by Jenkinson (1955) allows the establishment of a pref-
erence for one of the three types of extreme value distribution (see
also Gumbel 1958, p. 178). The theoretical values —In[—In(i/(N +
1))] are plotted against the observations of ordered extremes Y, ; on
probability paper. The curvature of the resulting graph is related to the
type of distribution: for a Gumbel distribution, a straight line should be
obtained. The Fréchet distribution leads to a concave curve, while the
Weibull distribution gives a convex curve. Gumbel (1958, p. 215) gives
the confidence bounds for the graphs.

B. Nonparametric Approach

Estimators for the tail index = which do not assume that the observa-
tions of extremes follow exactly the asymptotic distribution have been
developed by Pickands (1975) and Hill (1975). In this situation such
estimators may be more efficient than maximum likelihood estimators
as claimed by Jansen and De Vries (1991). These estimators are based
on order statistics of the parent variable X. For the maximum they are
given by formulae (7) and (8):

1 Xivobs 41 = Xivobs _2q+1
Tpickands = — m ’ ln<x 2 < >, )

! !
Nobs—2g+1 — X Nobs _4q+1

and
1 &
THi = z (I X ;= In Xyt g), ®
i=1

where (X,),,- noss is the series of daily returns ranked in an increasing
order and g (the number of tail observations to consider) is an integer
depending on the number of observations of daily returns in the data-
base N°%, Pickands’s estimator is consistent if q increases at a suitably
rapid pace with N°* (see Dekkers and De Haan 1989). Normalized
Pickands’s statistic (Tp;ungs — T) * "2 is asymptotically normally dis-
tributed with mean zero and variance 22~ 2*! + 1)/[22~" — 1)In 2]>.
Pickands’s estimator can be computed for all types of distribution and
used for a ¢-test to discriminate among the three distributions of ex-
tremes and study the power of the test. Hill’s estimator can be used
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in the case of the Fréchet distribution only (v < 0). In this situation,
Hill’s estimate is more efficient than Pickands’s. Mason (1982) shows
that Hill’s estimate is consistent, and Goldie and Smith (1987) show
that (tgy — 7)g"? is asymptotically normally distributed with mean
zero and variance 72. Consistency is still obtained under weak depen-
dence on the parent variable X. For both estimators an optimal value
for q is computed by Monte Carlo simulations as suggested by Jansen
and De Vries (1991).

IV. Empirical Analysis

A. Data

The database used is described in Schwert (1990a). The sample in-
cludes 29,641 daily observations of an index of the most traded stocks
on the New York Stock Exchange. Using logarithmic daily percentage
returns, the returns can take any value ranging from —o to +, and
then any type of extreme value distribution can be obtained a priori.

The daily returns have a positive mean of 0.031% and a high standard
deviation of 1.053% (in annual unit an average return of 8.70% and a
volatility of 17.60%). The returns distribution is slightly skewed
(—0.506) and presents excess kurtosis (22.057) which suggests depar-
ture from the normal distribution. The first-order autocorrelation is
small (0.047) but significantly positive. Little serial correlation is found
at higher lags. For the second moment, a strong positive serial correla-
tion (0.229 at lag 1) is found, which suggests ARCH effects.

Some statistics for the extremes are as follows. Minima and maxima
defined as the largest daily fall in the stock market and the largest daily
rise over a year (containing on average 279 daily returns) are widely
spread. For the largest declines, the minimal value (—22.90) is ob-
tained in 1987 during the crash and the maximal value (—1.26) in 1964.
For the largest rises, the minimal value (0.89) is obtained in 1964 and
the maximal value (15.37) in 1933, after the bank holidays declared by
President Franklin Roosevelt. A characteristic of the extremes is their
clustering: there are 28 years (from among 106) during which the min-
ima and the maxima occur in the same week. In general, the price
decrease precedes the price increase.

B. Asymptotic Behavior of the Distribution of the Extreme Returns

The asymptotic distributions of minima and maxima selected over non-
overlapping periods of varying length, from 1 month to 2 years, are
estimated first. This enables examination of the way the asymptotic
distribution coverges. As the number of days n from which extremes
are selected increases (from n = 23 to n = 559), one should observe
(1) the stability of the tail index around a particular value, since it is
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an intrinsic parameter of the process of returns; (2) an increase in
absolute value of the location parameter, since extremes selected over
longer periods are automatically larger; and (3) the behavior of the
scale parameter is not specified a priori as the distribution of extremes
may contract or expand (Gumbel 1958, p. 154).

A graphical representation of the asymptotic behavior of parame-
ters’ estimates is given in figure la for the minimum and figure 15 for
the maximum, while panels A and B of table 1 give the estimates’
values obtained with the maximum likelihood method for the following
lengths of the selection period: 1 month, 1 quarter, 1 semester, 1 year,
and 2 years.

The tail index is stable, especially for selection periods longer than a
semester, for both types of extremes, as the value seems to converge
around —0.40 for minima and —0.35 for maxima. Nonparametric esti-
mates of the tail index are also computed (table 2) using all the relevant
information contained in the tails. Pickands’s estimates are very close
to the ones obtained by the parametric method: —0.415 for minima
and —0.380 for maxima.

For both types of extremes, the location parameter increases in ab-
solute value as expected. For example, the location parameter for the
minimum observed over 1 month is —1.193%, while it equals —3.185%
for the longer time period of 2 years.

As the tail index is negative and greater than minus one, the scale
parameter is expected to increase with the length of selection period
(Gumbel 1958, p. 154). It is indeed the case for both extremes. For
example, for the minima, it increases from 0.623 to 1.569.

To complete the statistical analysis of the asymptotic behavior of
the distribution of extremes, the quality of convergence of the extreme
value distribution is assessed by carrying out a numerical test. It is
desirable to estimate the error resulting from the replacement of the
exact distribution of extremes by the limiting one, in other words the
speed of convergence of the asymptotic distribution of extremes. The
Sherman (1957) test for goodness of fit is used here to compare the
probability given by the asymptotic distribution to the observed fre-
quency used as a proxy of the exact probability.> Such an exercise
combines two kinds of errors: the sampling error due to the limited
number of observations and the error due to the incompleteness of
the passage to the limit as the length of selection period n increases
indefinitely. The test statistic is computed as follows: Q, =
SNy (Ys) = Fy, (Vo) — UN + D], with Fy,(¥,e) = 0
and Fy,(Y, y.;) = 1. The variable Q, is asymptotically normal, with

3. Sherman’s (1957) test has good small-sample properties as it quickly converges
toward normality. It is also more suitable than the Kolmogorov-Smirnov and chi-squared
tests since it does not require the arbitrary division of data into groups (Gumbel 1958,
p. 38).
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Fic. 1.—Asymptotic behavior of the parameters of the distribution of ex-
treme returns. g, minimal returns. b, maximal returns. Extreme returns are
selected over nonoverlapping periods of varying length: from 1 month (n =
23) to 2 years (n = 559). Estimates of the location parameter, the scale parame-
ter, and the tail index are obtained by the maximum likelihood method.

mean (N/(N + 1)V*! and variance (2¢ — 5)/(e2N). The result of the
test is reported in the last column of table 1. As the length of selection
period n increases, the asymptotic distribution describes the behavior
of extremes better: the goodness of fit cannot be rejected at the one-
per-thousand confidence level for extreme returns selected over a se-
mester, nor at the 10% level for extremes selected over longer periods.
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TABLE 1 Asymptotic Behavior of the Distribution of Extreme Returns
Sherman’s
Scale Location Tail  Goodness-of-
Parameter Parameter Index  Fit Statistics
Length of Selection Period o, B T (p-Value)
A. Minimal returns:
1 month (n = 23, N = 1,288) .623 -1.193 —.285 53.587
(.011) (.013) 016) (p <1079
1 quarter (n = 69, N = 429) 7 -1.701 -.322 8.964
(.025) (.029) 026) (p <107
1 semester (n = 139, N = 213) .873 —2.084 —.39%4 3.264
(.043) (.047) (.043) (p = .001)
1 year (n = 279, N = 106) 1.092 —2.549 —.441 0.411
(.079) (.085) (.067) (p = .681)
2 years (n = 559, N = 53) 1.569 -3.185 —.413 -1.257
(.155) (.172) (.109)  (p = .208)
B. Maximal returns:
1 month (n = 23, N = 1,288) .552 1.201 —.309 58.444
(.010) (.012) 016) (p <1073
1 quarter (n = 69, N = 429) .706 1.630 —-.306 13.370
(.022) (.027) 027) (p <1079
1 semester (n = 139, N = 213) .856 2.009 -.277 2.506
(.037) (.045) (.0349) (p = .012)
1 year (n = 279, N = 106) .993 2.385 -.323 .628
(.064) (.075) (.051) (p = .530)
2 years (n = 559, N = 53) 1.329 2.857 —.359 -.977
(.131) (.133) (.096) (p = .328)

Note.—This table gives the parameters’ maximum likelihood estimates of the distribution of
extreme returns. Asymptotic standard errors are given in parentheses. A minimal return (panel A)
corresponds to the lowest daily return reached over time periods of different length: 1 month, 1
quarter, 1 semester, and 1 and 2 years. A maximal return (panel B) corresponds to the highest daily
return over these periods. The number of daily returns » from which extreme returns are selected
and the resulting number of extreme observations N are given in the first column. The last column
reports Sherman’s (1957) goodness-of-fit statistic for the distribution of extremes, with the p-value
in parentheses.

TABLE 2 Nonparametric Estimates of the Tail Index

Variable Pickands’s Estimate Hill’s Estimate

Minimal returns —.415 —.361
(.093) (.027)

Maximal returns —.380 —.330
(.094) (.024)

Note.—This table gives nonparametric estimates of the tail index obtained by Hill’s (1975) and
Pickands’s (1975) formulae. Asymptotic standard errors are given in parentheses. The optimal num-
ber of tail observations ¢ used to compute these estimates is found by simulation. It is equal to 416
for Pickands’s formula and to 179 for Hill’s formula for both minimal and maximal returns.
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For yearly extreme returns, the p-values of Sherman’s test are rather
high: 0.681 for minima and 0.530 for maxima. The distribution of ex-
tremes converges relatively quickly as the length of selection period n
increases, and the asymptotic formula can be used reliably for ex-
tremes selected over periods longer than a semester.

C. The Type of Asymptotic Distribution of the Extreme Returns

Turning now to the determination of the type of extreme value distribu-
tion: as the statistical behavior of extremes selected over periods
longer than a semester seems well represented by the asymptotic distri-
bution, let us concentrate on yearly minima and maxima. Table 3 gives
maximum likelihood estimates of the constrained Gumbel case and of
the unconstrained case for the asymptotic distribution of extremes.
The empirical results are clear-cut and allow one to determine umambi-
guously the type of asymptotic distribution: for both the yearly largest
falls and rises, the asymptotic distribution belongs to the domain of
attraction of the Fréchet distribution. Both cases give a tail index
significantly different from zero. For the minima, the estimate of 7 is
equal to —0.441, with a ¢-ratio equal to —6.68. For the distribution of
the maxima, the estimate of 7 is equal to —0.323, with a ¢-ratio equal
to —6.33. Equivalently, the shape parameter values are 2.266 (0.344)
for minima and 3.094 (0.489) for maxima. A likelihood ratio test be-

TABLE 3 Maximum Likelihood Estimates of the Scale Parameter, Location
Parameter, and Tail Index of the Asymptotic Distribution of Yearly
Extreme Returns

Scale Location Tail Log Likelihood
Parameter Parameter Index Value
Variable o, B T (LR Test, p-Value)
Minimal returns,
Gumbel distribution 1.496 —2.854 0 —221.679
(.153) (.113) . R
Minimal returns,
Fréchet distribution 1.092 —2.549 —.441 —203.448
(.079) (.085) (.067) (LR = 36.46; p < 107%)
Maximal returns,
Gumbel distribution 1.238 2.580 0 —201.922
(.126) (.093) R R
Maximal returns,
Fréchet distribution .993 2.385 -.323 —186.872
(.064) (.075) (.051) (LR = 30.10; p < 107%)

Norte.—This table gives parameters’ parametric estimates of the distributions of extreme returns.
Asymptotic standard errors are given in parentheses. Minimal (maximal) return corresponds to the
lowest (highest) daily return reached over a year containing on average n (= 279) trading days over
the period 1885-1990. Estimates of the three parameters (a,, B,, and 7) are obtained using the
maximum likelihood method and reported for the constrained Gumbel distribution (r = 0) and for
the unconstrained Fréchet distribution. The statistic of the likelihood ratio test (LR) between the
two models is reported in the last column, with the p-value in parentheses. The test is asymptotically
distributed as a chi-square with 1 degree of freedom.
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tween the Fréchet case and the Gumbel case leads to a firm rejection
of the Gumbel distribution (and a fortiori a rejection of the Weibull
distribution). The test value is equal to 36.46 for the minima and 30.10
for the maxima, with p-values less than 1072,

These estimations, tests, and conclusions are similar to those given
by the regression method. The value of the objective function of non-
linear equation (5) is greatly improved when the constraint (+ = 0) is
relaxed in equation (6). For minima the sum of squared residuals of
the Gumbel equation (6) is equal to 27.680, while it is equal to 1.756
for the Fréchet equation (5) with an unconstrained tail index of
—0.455. For the maxima, the corresponding sums of squared residuals
equal 22.369 and 1.723, with an unconstrained tail index of —0.414.
Additionally, the graphical test described in Subsection IIIA is per-
formed. Figures 2a and 2b plot the ordered extreme returns against
the theoretical values. The values predicted by the Gumbel distribution
lie on the straight lines in figure 2a for minima and figure 2b for
maxima. Clearly, the data do not lie close to these straight lines, as
they would if the extremes were drawn from a Gumbel distribution;
around 30% of the observations lie outside the confidence bounds. The
curvature is rather concave, which suggests that the limiting distribu-
tion is a Fréchet distribution. Figures 3a and 3b give a graphical repre-
sentation of the fit of the Fréchet distribution with the data. The obser-
vations lie close to a straight line, which confirms the good fit of the
Fréchet distribution with the data; all observations but one lie inside
the 1 standard deviation confidence bounds. For the minima, even the
great crashes of October 1929 and 1987 are close to their predicted
values. This tends to dismiss the view of the crashes as singular
events.*

Nonparametric estimates of the tail index reported in table 2 also
lead to the rejection of the Gumbel in favor of the Fréchet distribution.
Pickands’s estimator (valid for all types of distribution) produces nega-
tive values which are significantly different from zero (t = —4.46 for
minima and ¢ = —4.08 for maxima). The tests based on Pickands’s
estimator are quite powerful as shown now. For the null hypothesis
defined by Hy: = = 0 and a type 1 risk fixed at 5%, the type 2 risk
(i.e., the acceptance of the Gumbel case while it is in fact not true)
can be computed. This requires the definition of an alternative hypoth-
esis. The most general alternative hypothesis is defined by the compos-

4. From a statistical point of view, this empirical result is not surprising. As suggested
by the referee, most stock market crashes can be considered as extremes of extremes.
According to the theory, the distribution of extremes of extremes is of the same type
as the distribution of extremes itself (see Gumbel [1958], pp. 157-62, for an exposition
of the so-called stability postulate). From condition (C2) it can be directly verified that
extremes drawn from a Fréchet distribution also follow a Fréchet distribution with the
same shape parameter value.
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Fic. 2.—Graphical determination of the type of asymptotic distribution for
yearly extreme returns. a, minimal returns. b, maximal returns. If extreme
returns were drawn from a Gumbel distribution, observed ordered extremes
should lie on a straight line. Concavity suggests a Fréchet distribution.

ite hypothesis H;: T # 0, but it is necessary to consider simple alterna-
tive hypotheses in order to get a specific value for the error of the
second type. Table 4 gives the type 2 risks and the power of the test for
various alternative hypotheses corresponding to fat-tailed distributions
with different tail index values. The lower the tail index value, the
higher the power of the test as the Fréchet distribution moves away
from the Gumbel distribution. For a tail index value similar to those
found empirically, the power is quite high at around 80%.
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Fic. 3.—Adjustment of the Fréchet distribution to yearly extreme returns.
a, minimal returns. b, maximal returns.

Hill’s estimator can also be used as the tail index is very likely
negative. Similar values are obtained: —0.361 for minima and —0.330
for maxima. Standard errors are lower since Hill’s estimator is more
efficient than Pickands’s estimator in the case of the Fréchet distri-
bution.

In sum, as extremes are selected over a longer time period, the
distribution of extremes is a Fréchet distribution which shifts to the
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TABLE 4 Power of the Test (1 = 0) Based on Pickands’s Estimator

For Alternative Hypothesis H, ,, Shape Parameter &,
and Optimal Value for g

T=—-10 7=-25 7=-33 7=-50 = -1.00
k=10 k=4 k=13 k=2 k=1
q=239 gqg=298 g=416 q=1535 gq=1,128

Type 2 risk (%) 92.22 55.47 22.14 .08 .00
Power of the test (%) 7.78 44.53 77.86 99.92 100.00

Note.—This table gives the type 2 risk and the power of the test of the tail index value T for
various alternative hypotheses H, .. The null hypothesis is defined by H: 7 = 0 and corresponds to
the Gumbel case. The type 1 error of 5% corresponds to a critical level of —0.264. For each hypothe-
sis the optimal value of g used to compute the variance of Pickands’s estimator t2(2-2"*! + 1)/
[2(27" — D)In 2]%q is obtained by simulation. For the case (r = 0) 179 tail observations are used.

right for maxima and to the left for minima and expands, while the
shape of the distribution remains the same. This behavior is graphically
represented in figure 4. As suggested by this figure, the distributions
of minima and maxima appear quite symmetric. This is confirmed by
a statistical test: whether the distributions of minima and maxima are
symmetric can be tested by directly comparing the coefficients from
the two distributions: a™® = @M, Mt = gmax gpd 7™M = rmax Jsing
yearly extremes, the values of the tests of equality are equal to 0.964
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Fic. 4.—Asymptotic behavior of the distributions of extreme returns. Mini-
mal and maximal returns are selected over periods of different length: 1 month
(n = 23), 1 semester (n = 139), and 2 years (n = 559). Maximum likelihood
estimates given in table 3 are used to compute the asymptotic distributions of
extreme returns. As extremes are selected over a longer time period, the
Fréchet distribution of extremes shifts to the left for minima and to the right
for maxima and expands, while the shape of the distribution remains the same.
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(p = 0.334) for the scale parameter, 1.438 (p = 0.150) for the location
parameter, and —1.404 (p = 0.160) for the tail index. For the three
parameters, the equality cannot be rejected at standard confidence
levels. This result is robust to the choice of estimator and remains
valid across subperiods.

Tail index estimates can be used to determine the maximal order
moment (highest finite moment) of the distribution of returns. As noted
earlier, if the distribution of returns belongs to the domain of attraction
of a Weibull or Gumbel extreme value distribution (let us say for the
maximum), then all moments (truncated to the left) exist: [ “x"dFy(x)
is finite for all r. If the distribution of returns belongs to the domain
of attraction of a Fréchet extreme value distribution with a tail index
7 (= —1/k), then only some truncated moments exist; more precisely:
J & “x"dFx(x) is finite for » = k and infinite for r > k. We have already
seen that the null hypothesis H,: T = 0 is strongly rejected, indicating
that not all moments are defined and that the distribution of returns is
fat-tailed. One now tests the null hypotheses H,: T = 7%, where 7*
takes the values —0.25, —0.33, —0.50, and —1 to determine how
fat-tailed the distribution is. With these selected values, one tests
whether the kurtosis, the skewness, the variance, and the mean of the
distribution of returns are defined. Results reported in table 5 for the
left and right tails, obtained with three different estimators, homoge-
neously lead to the following conclusions: the mean is certainly well
defined, as 7 is greater than —1 with a probability very close to one;

TABLE § Determination of the Maximal Order Moment of the Distribution of
Returns Based on Tail Index Estimates

Null Hypothesis H: T = 7* (Equivalently, k = k*)

Extreme and 7=0 T=-25 11=2-33 1=-50 1= -1.00
Estimator k= +o k=4 k=3 k=2 k=1
Left-tail Pickands —4.462 -1.774 -.913 914 6.290
(.000) (.038) (.180) (.819) (1.000)
Right-tail Pickands —4.082 —1.383 -.531 1.276 6.595
(.000) (.083) (.297) (.899) (1.000)
Left-tail Hill -13.370 —-4.111 —1.148 5.148 23.666
(.000) (.000) (.125) (1.000) (1.000)
Right-tail Hill -13.750 -3.333 .000 7.083 27.916
(.000) (.000) (.500) (1.000) (1.000)
Left-tail ML —6.681 —2.893 —1.681 .894 8.469
(.000) (.002) (.046) (.814) (1.000)
Right-tail ML -6.333 —1.431 137 3.471 13.274
(.000) (.076) (.554) (1.000) (1.000)

Note.—This table gives the ¢-test for the null hypotheses Hy: T = v* where 7*, takes the values
0, —.25, —.33, —.5, and —1. These tail index values correspond to shape parameter values k* of
+, 4, 3, 2, and 1, respectively. Estimates and standard errors used for the test come from table 2
for Pickands’s and Hill’s estimators and from table 3 for the maximum likelihood (ML) estimator.
The p-value in parentheses indicates the probability that the tail index 7 is greater than t* or,
equivalently, the probability that the moment of order k* is finite.
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the variance is also likely defined, as 7 is in most of the cases greater
than the critical —0.50 with a high probability (it ranges from 81% to
almost 100%); as for the skewness, the results are less clear as the
probability of T being greater than —0.33 is small but not negligible (it
ranges from 4.6% to 55%); and the kurtosis is likely not defined, as
the null hypothesis H,: 7 = —0.25 is always rejected at the 10% level
and sometimes at the 1% level.

These conclusions based on extreme values are in line with ‘‘con-
verging moment’’ tests suggested by Mandelbrot (1963). The four first
moments are computed sequentially by using more and more observa-
tions. If theoretical moments are finite, then corresponding empirical
moments should converge. The sequential mean, variance, skewness,
and kurtosis are plotted in figure 5. While the first and second moments
seem to stabilize, the third and fourth moments tend to diverge as the
sample size is increased. The sequential mean and variance show less
erratic behavior than do the sequential skewness and kurtosis. For
example, the crash of 1987 occurring at the end of the period has a
small effect on the mean and the variance but produces a big jump in
the skewness and kurtosis, although many observations have already
been used to compute these moments.

D. Time Stability of the Asymptotic Distribution of Extremes

The behavior of the asymptotic distribution over time can be examined
by dividing the whole period 1885-1990 into 5 subperiods as in Schwert
(1990a) and by estimating for each subperiod the parameters of the
asymptotic distribution. Empirical results are reported in panel A of
table 6 for minima and panel B of table 6 for maxima. Clearly, the
parameters cannot be as accurately estimated as those for the whole
period, since for each subperiod the number of observations is far
fewer. A test is conducted for each coefficient separately: a! = o2,
B! = B2, and 1! = 12, where the indexes 1 and 2 refer to subperiods.
The null hypothesis of equality for adjacent subperiods is rejected only
once at the 1% level: the period 1928-47 containing the stock market
boom of the late twenties and the Great Depression seems different
from the others. For both minima and maxima, the location and scale
parameters are much higher, indicating that extreme returns were
much larger and more widely dispersed during this period. The tail

Fic. 5.—Converging moment tests. a, Behavior of the mean of the distribu-
tion of daily returns. b, Behavior of the variance of the distribution of daily
returns. ¢, Behavior of the skewness of the distribution of daily returns.
d, Behavior of the kurtosis of the distribution of daily returns. The first four
moments (mean, variance, skewness, and kurtosis) are sequentially computed.
Stability of the empirical moment suggests that the corresponding theoretical
moment is finite, while an erratic behavior suggests that it is infinite.
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index, however, is much more stable than the two other coefficients,
suggesting that the shape of the tails does not change over time. This
result confirms and extends over a much longer period the finding of
Loretan and Phillips (1994, p. 242) who found the shape parameter to
be stable over the recent period 1962-87.

The results for the extremes support the hypothesis of the stability
of the statistical process for daily returns. Schwert (1990a) comes to
the same conclusion when he studies other features of the database:
the mean and the standard deviation of the daily returns and the sea-
sonal pattern. As with Schwert, one can only be surprised by ‘‘the
remarkable homogeneity for the series through time.”’ This is surpris-
ing because many changes have occurred since the end of the last
century: changes in the U.S. economy, in the trading environment, in
the technology which transmits information, in the regulation of the
securities markets, and so forth.

E. The Asymptotic Distribution of Extreme Returns under
Temporal Aggregation

Finally, the distribution of extremes selected from basic returns of
different frequency is investigated by considering time-aggregated re-
turns corresponding to investment periods of 1 day, | week, and 1
month. Feller (1971, p. 279) shows that if 1 — F,(x) varies regularly
at infinity (i.e., verifies condition [C2]), then the maximum of any
convolution follows the same limit law. This proposition specifies our
understanding of the asymptotic behavior of time-aggregated returns.
From the central limit theorem one already knows that values around
the center of the distribution of time-aggregated returns are drawn
asymptotically from a normal law if the variance is finite or from a
stable Paretian law if the variance is infinite. Extreme value theory
specifies the behavior of the tails of the time-aggregated distribution
as it shows that they are stable under aggregation. Applied to finance,
Feller’s interesting mathematical result says that standardized ex-
tremes from returns with different frequencies are drawn from Fréchet
distributions with the same tail index value. However, the scale and
location parameters of the distribution of observed extremes can vary.

Empirical results are presented in panel A of table 7 for minima and
panel B of table 7 for maxima. Basic returns are computed with a
frequency of 1 day, 1 week, and 1 month. Extremes are selected in
two different ways: (1) such that the number of extreme observations
is kept constant (N = 56) which allows the direct comparison of pa-
rameters’ estimates; and (2) such that the number of basic returns from
which extremes are selected is kept constant (n = 23). The first method
holds constant the sampling error, while the second holds constant the
error due to the passage to the limit. Looking at the tail index, which
should remain invariant under temporal aggregation, both methods of
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TABLE 6 Behavior of the Distribution of Extreme Returns over Time
Maximum Likelihood Estimates
Scale Location Tail Hill’s Estimate,
Subperiod Parameter a, Parameter §, Index T Tail Index 7
A. Minimal returns:
1885-1906 739 —1.980 —.376 —.285
(.076) (.086) (.092) (.033)
1907-27 714 —2.018 -.191 —.295
(.066) (.085) (.080) (.041)
1928-47 1.519** —3.622%* —.233 315
(.157) (.192) (.104) (.032)
1948-67 582%* —1.775%* —.344 —.315
(.065) (.075) (.095) (.032)
1967-90 .679 —1.845 —.517 —-.293
(.083) (.086) (.113) (.034)
B. Maximal returns:
1885-1906 .646 2.012 -.230 —.299
(.059) (.073) (.075) (.036)
1907-27 .592 1.818 —.200 —.244
(.056) (.071) (.085) (.034)
1928-47 1.345%* 2.858%* —.542 332
(.170) (.172) (.124) (.036)
1948-67 .585%* 1.586** —.093* —.273
(.056) (.075) (.080) (.041)
1967-90 .831 2.085 —.115 —.239
(.077) (.102) (.076) (.034)

Note.—This table gives the parameters’ maximum likelihood estimates for the distribution of
extreme returns obtained over 5 subperiods. Asymptotic standard errors are given in parentheses.
The number of basic returns » from which extreme returns are selected is constant, at 179. Nonpara-
metric Hill’s estimate of the tail index is reported in the last column. Optimal values found by
simulation are equal to 67, 51, 49, 95, and 71 for minima and to 67, 51, 84, 43, and 59 for maxima.

* Significantly different from the parameter of the previous subperiod at the 5% level.

** Significantly different from the parameter of the previous subperiod at the 1% level.

selection give a similar result: the tail index is stable across frequency.
For minima, tail index values obtained with the maximum likelihood
method are very close to, and not statistically different from, each
other: —0.285, —0.293, and —0.355. Similar comments apply to max-
ima: —0.309, —0.254, and —0.287. Hill’s nonparametric estimates
confirm these results. The scale and location parameters increase with
the length of the investment period, suggesting that extremes from
time-aggregated returns become larger and more dispersed. This was
expected since the distributions of time-aggregated returns themselves
become more dispersed by application of the central limit theorem.

V. Conclusion

This study concerns the extreme price movements of the U.S. stock
market. The statistical distribution of minimal and maximal returns,
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TABLE 7 Behavior of the Distribution of Extreme Returns under
Temporal Aggregation

Maximum Likelihood Estimates

Hill’s
Return Frequency Scale Location Tail Estimate,
of Basic Returns Parameter o, Parameter 8, Index 7 Tail Index 7
A. Minimal returns:
1 day (n = 23, N = 1,288) .623 -1.193 —.285
(.011) (.013) (.016) —.361
1 day (n = 529, N = 56) 1.461 —3.184 —.426 (.027)
(.148) (.162) (.103)
1 week (n = 23, N = 257) 1.396 —2.963 -.293
(.059) (.070) (.040) -.336
1 week (n = 105, N = 56) 2.080 -5.223 —.244 (.043)
(.180) (.221) (.077)
1 month (n = 23, N = 56) 3.201 -6.721 —-.355 —-.338
(.307) (.352) (.095) (.050)
B. Maximal returns:
1 day (n = 23, N = 1,288) 552 1.201 —.309
(.010) (.012) (.016) -.330
1 day (n = 529, N = 56) 1.127 2.854 —.442 (.024)
(.115) (.125) (.102)
1 week (n = 23, N = 257) 1.060 2.881 —.254
(.042) (.052) (.032) —.255
1 week (n = 105, N = 56) 1.564 4.310 —-.286 (.027)
(.154) (.181) (.114)
1 month (n = 23, N = 56) 2.386 7.113 —.287 -.270
(.206) (.249) (.067) (.057)

Note.—This table gives the parameters’ maximum likelihood estimates for the distribution of
extreme returns obtained from returns of frequency equal to 1 day, 1 week, or 1 month. Asymptotic
standard errors are given in parentheses. The number of basic returns n from which extreme returns
are selected and the resulting number of extreme observations N are given in the first column.
Results are reported for two methods of selection of extremes: (1) n is kept constant and equal to
23, and (2) N is kept constant and equal to 56. Nonparametric Hill’s estimate is also reported in the
last column. Optimal values found by simulation are equal to 179, 61, and 45 for minima and to 179,
84, and 22 for maxima.

defined as the lowest and highest daily return over a given period, is
estimated using extreme value theory. Statistical theory states that the
asymptotic distribution of extremes has a well-determined form which
is independent of the process of returns. The major findings are:

1. The asymptotic distribution of extreme returns is a Fréchet distri-
bution. As extremes are selected over a longer time period, the distri-
bution of extremes shifts to the right for maxima and to the left for
minima and expands, while the shape of the distribution remains the
same.

2. The tail index value allows one to determine the degree of fatness
of the distribution of returns: the mean and the variance are certainly
well defined, while the skewness, the kurtosis, and all higher order
moments may be infinite.

3. The results are fairly stable over time, although the period of the
Great Depression exhibits larger and more dispersed extremes. The
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shape of the tails, however, seems constant over the entire period,
even during the thirties.

4. The distribution of extremes is also found to be stable under
temporal aggregation. Extremes selected from daily, weekly, and
monthly returns follow a Fréchet distribution.

With regard to the economic implications and applications of these
results, Fama (1963) discusses two extreme cases: the discontinuous
stable Paretian hypothesis and the continuous Gaussian hypothesis. In
a stable Paretian market, a large price change over a long interval is,
most of the time, the result of one or a few very large price changes
that took place during smaller subintervals, and the price path contains
discontinuities. In a Gaussian market, a large price change is more
likely the result of many very small price changes, and the price path
is continuous. This study of the U.S. market over a long period rejects
both hypotheses (the tail index is significantly different from 0 and
—0.5) and suggests an intermediate situation (the tail index is between
0 and —0.5). The market under study—a Fréchet market—presents
more extremes and so more risk for investors than a Gaussian market
but fewer extremes and so less risk than a stable Paretian market. The
market price may or may not exhibit discontinuities according to the
process governing returns.’ Such a market characteristic has a direct
economic implication for investors following stop-loss, arbitrage, or
portfolio insurance strategies: in the case of continuity, these strategies
may be as reliable as in a Gaussian market, although in practice larger
price movements may occur on a short interval, and in the case of
discontinuity, these strategies may be more efficient than in a stable
Paretian market as large price movements occur less often. In a
Fréchet market investors may have to use specific instruments to pro-
tect their position during high volatility periods. Longin (1996) has
suggested the use of boom options and crash options to insure invest-
ors’ portfolios against extreme price movements.

The results shed new light on the statistical process of returns. The
behavior of extreme returns could be used to improve our understand-
ing about the whole process. The tail index can be used to choose a
model of returns from among those encountered in the financial litera-
ture: normal processes, Student-¢ distributions, ARCH processes, and
stable Paretian laws. As the weight of the tails is different for the above
distributions, different values for the tail index are obtained. A test on
this parameter can be carried out to discriminate among these non-
nested, competitive models. Such an approach should be used in situa-

5. A Fréchet distribution with a tail index between 0 and —0.5 is compatible with
both cases: for example, continuity would be obtained with a GARCH diffusion process
as in Nelson (1990) and discontinuity with a jump process with the jump size drawn
from a Student- distribution.
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tions where extremes matter. The loss of efficiency obtained when a
small data subset (the extremes) is used may offset the bias when the
whole data set (including central values without information relevant
for the problem) is considered.

The empirical statistical results obtained in this article improve our
understanding of extreme price movements which include booms and
crashes. The results are statistical and complete the historical analysis
by Kindleberger (1978) and economic studies by Schwert (1990b) on
the volatile behavior around crashes, and by Jones, Sylla, and Wilson
(1988) on the links between stock market crises and problems in the
banking system. Here it is shown that even if these events may be
explained by a variety of reasons (banking problems, news announce-
ments, liquidity shocks), extreme values exhibit a regular statistical
behavior as they are drawn from a well-known distribution. Such a
result could be helpful in testing economic models of booms and
crashes which could result from speculative bubbles, market structure
deficiencies, or asymmetric information, as featured in Gennotte and
Leland’s (1990) model.

These results can be applied to problems in finance and economics
where extreme values are significant. Two potential applications of
extreme value theory are given below: margins in derivatives markets
and minimum capital requirements for securities firms.

Margin setting in futures markets is well known to be sensitive to
the occurrence of large price changes. Margin committees and brokers
in futures markets face a trade-off when setting the margin level: a high
level protects brokers against insolvent customers and then reinforces
market integrity, but it also increases the cost supported by investors
and in the end makes the market less attractive. Extreme value theory
can be used to derive the margin level for a given probability of margin
violation desired by margin committees or brokers. Longin (1995) pro-
poses a new method to set margins along this line. The method takes
into account the appropriate amount of extremes in the distribution of
price changes and provides a simple analytical formula to compute the
margin level.

A similar use of extreme value theory can be made in situations
where risk is associated with the tails of the distribution rather than
with the distribution as a whole. Regulators concerned with capital
requirements for securities firms should be interested in the possibility
of bankruptcy which could result from a extremely large change in the
value of a firm’s portfolio. Regulation currently imposed in the United
States or that suggested by the Basles Committee on Banking supervi-
sion, does not however recognize this relation (Dimson and Marsh
1995). In this case risk measured by extreme value statistics may be
more efficient than the usual measure of variance.
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