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Correlations in economic time series 
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Abstract 

A financial index of the New York stock exchange, the S&P500, is analyzed at 1 min intervals 
over the 13yr period, January 84-December 96. We quantify the correlations of the absolute 
values of the index increment. We find that these correlations can be described by two different 
power laws with a crossover time tx ~ 600min. Detrended fluctuation analysis gives exponents 
~ -- 0.66 and ~2 ~-- -  0.93 for t < t× and t > t×, respectively. Power spectrum analysis gives 
corresponding exponents fll = 0.31 and f12 = 0.90 for f > f×  and f < f× ,  respectively. 

A topic of considerable recent interest to both the economics and physics commu- 

nities is whether there are correlations in economic time series and, if so, how to best 

quantify these correlations [ 1-5]. Here we study the S&P500 index of the New York 

stock exchange over a 13yr period (Fig. la). We calculate the logarithmic increments 

9(t) - lnZ(t  + 1 ) -  lnZ(t)  over a fixed time lag of 1 min, where Z(t) denotes the 
index at time t (t counts the number of  minutes during the opening hours of  the stock 
market), and quantify the correlations as follows: 

(i) We find that the correlation function of 9(0 decays exponentially with a char- 
acteristic time of the order of 1-10min, but the absolute value 1O(t)[ does not. This 

result is consistent with previous studies on several economic series [ 3-5].  

(ii) We calculate the power spectrum of 19(t)[ (Fig. 2a), and find that the data fit 
not one but rather two separate power laws: for f > f ×  the power law exponent is 

fl~ = 0.31, while for f < f ×  the exponent f12 = 0.90 is three times larger; here f ×  
is called the crossover frequency. 

(iii) We confirm these results using the DFA (detrended fluctuation analysis) method 
(see Fig. 2b), which allows accurate estimates of  exponents independent of local trends 
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Fig. 1. (a) Raw data analyzed: The S&P500 index Z(t) for the 13year period 1 January 1984 - 31 December 
1996 at intervals of 1 min (these data extend by 7yr the data set analyzed by Mantegna and Stanley [6 8]). 
Note the large fluctuations, such as that on 19 October 1987 ("black Monday"). (b) Results of dragging a 
window of size 1 yr down the same data base, one month at a time, and calculating the best fit exponent 
:q (dashed line) and ~2 (full line) for the time intervals t < t× and t > t×, respectively. 

[9]. From the behavior o f  the power spectrum, we expect that the DFA method will 

also predict two distinct regions of  power law behavior, with exponents ~1 = 0.66 

and ~2 = 0.95 for t less than or greater than a characteristic time scale t× - l / f × ,  

where we have used the general mathematical result [10] that ~ = (1 + f l ) /2 .  The 

data o f  Fig. 2b yield 21 = 0.66, ~2 = 0.93, thereby confirming the consistency o f  the 

power spectrum and DFA methods. Also the crossover time is very close to the result 

obtained from the power spectrum, with t× ~ 1 / f ×  ~ 600min (about 1.5 trading 

days). 
We observed the crossover behavior noted above by considering the entire 13 yr  

period studied, so it is natural to enquire whether it will still hold for periods smaller 

than 13yr. Therefore, we choose a sliding window (with size l yr)  and calculate both 

exponents ~1 and ~2 within this window as the window is dragged, down the data set. 

We find (Fig. lb )  that the value of  ~l is very "stable" (independent of  the position of  

the window) fluctuating around the mean value 2/3. Surprisingly, however, the variation 

of  ~2 is much greater, showing sudden jumps when very volatile periods enter or leave 

the time window. 
We studied several standard mathematical models, such as fractional Brownian mo- 

tion [ 10-15]  and fractional A R I M A  processes [16], commonly used to account for 

long-range correlation in a time series and found that none o f  them can reproduce the 

large fluctuation of  ~2. 
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Fig. 2. Plot of  (a) the power spectrum S ( f )  and (b) the detrended fluctuation analysis F(t) of the absolute 
values of  the 1 min increments. The lines show the best power law fits (r values are better than 0.99) to 
the data above and below the crossover frequency of f ×  = (1/570)rain- l  in (a) and of the crossover time 
t× = 600min in (b). To remove artificial correlations resulting from the intra-day pattern of the market 
activity [11 14], we analyze normalized data Ign(t)[ - Ig(t)[/A(t), where A(t) is the activity at the same 
time of the day averaged over all days of the data set. For the DFA method, we integrate Ion(t)[ once; then 
we determine the fluctuations F(t)  of the integrated signal around the best linear fit in a time window of 
size t. 
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