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Abstract. Among analysts, technical trading rules are widely used for forecasting security returns. Recent

literature provides evidence that these rules may provide positive profits after accounting for transaction costs.

This would be contrary to the theory of the efficient market hypothesis which states that security prices cannot be

forecasted from their past values or other past variables. This paper uses the daily Dow Jones Industrial Average

Index from 1963 to 1988 to examine the linear and nonlinear predictability of stock market returns with

simple technical trading rules, by using the nearest neighbors and the feedforward network regressions.

Evidence of nonlinear predictability is found in the stock market returns by using the past returns and the buy

and sell signals of the moving average rules.
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1 Introduction

Technical analysts test historical data to establish specific rules for buying and selling securities with the

objective of maximizing profit and minimizing risk of loss. Technical trading analysis is based on two main

premises. First, the market’s behavior patterns do not change much over time, particularly the longer-term

trends. While future events can indeed be very different from any past events, the market’s way of responding

to brand-new uncertainties is usually similar to the way it handled them in the past. The patterns in market

prices are assumed to recur in the future, and thus, these patterns can be used for predictive purposes.

Second, relevant investment information may be distributed fairly efficiently, but it is not distributed perfectly,

nor will it ever be. Even if it were, some investors, through superior analysis and insight, would always have
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an edge over the majority of investors and would act first. Therefore, valuable information can be deduced by

studying transaction activity.

One common component of many technical rules is the moving-average rule. This rule basically involves

the calculation of a moving average of the raw price data. The simplest version of this rule indicates a buy

signal whenever the price climbs above its moving average, and a sell signal whenever it drops below. The

underlying notion behind this rule is that it provides a means of determining the general direction or trend of

a market by examining the recent history. For instance, an n-period moving average is computed by adding

together the n most recent periods of data, then dividing by n. This average is recalculated each period by

dropping the oldest data and adding the most recent, so the average moves with its data, but does not

fluctuate as much.

A typical moving average rule can be written as

mt = (1/n)
n−1∑
i=0

pt−i (1)

According to Equation (1), a buy signal is generated when the current price level pt is above mt ,

(pt −mt ) > 0; otherwise a sell signal is generated. The most popular moving-average rule as reported in

Brock, Lakonishok, and LeBaron (1992) is the 1–200 rule, where the short period is one day and the long

period is 200 days. Other popular ones are the 1–50, 1–150, 5–200, and the 2–200 rules.

Contrary to technical trading analysis, the efficient market hypothesis states that security prices fully reflect

all available information. A precondition for this strong version of the hypothesis is that information and

trading costs are always zero. Since information and trading costs are positive, the strong form of the market

efficiency hypothesis is clearly not very useful empirically. A weaker version of the efficiency hypothesis

states that prices reflect information to the point where the marginal benefits of acting on information do not

exceed the marginal costs (Jensen 1978).

Earlier works find evidence that daily, weekly, and monthly returns are predictable from past returns. For

example, Fama (1965) finds that the first-order autocorrelations of daily returns are positive for 23 of the 30

Dow Jones Industrials. Fisher’s (1966) results suggest that the autocorrelations of monthly returns on

diversified portfolios are positive and larger than those for individual stocks. As surveyed in Fama (1970,

1991), the evidence for predictability in earlier works often lacks statistical power, and the portion of the

variance of returns explained by the variations in expected returns is so small that the hypothesis of market

efficiency and constant expected returns is typically accepted as a good working model.

Unlike the earlier literature which focused on the predictability of current returns from past returns, the

recent literature has also investigated the predictability of current returns from other variables such as

dividend yields and various term-structure variables. This literature also documents significant relationships

between expected returns and fundamental variables such as the price earnings ratio, the market-to-book

ratio, and evidence for systematic patterns in stock returns related to various calendar periods such as the

weekend effect, the turn-of-the-month effect, the holiday effect, and the January effect.

There has also been extensive recent work on the temporal dynamics of security returns. For instance, Lo

and MacKinlay (1988) find that weekly returns on portfolios of NYSE stocks grouped according to size show

positive autocorrelation. Conrad and Kaul (1988) examine the autocorrelations of Wednesday-to-Wednesday

returns (to mitigate the nonsynchronous trading problem) for size-grouped portfolios of stocks that trade on

both Wednesdays. Similar to the findings of Lo and MacKinlay (1988), they find that weekly returns are

positively autocorrelated. Cutler, Poterba, and Summers (1991) present results from many different asset

markets generally supporting the hypothesis that returns are positively correlated at the horizon of several

months, and negatively correlated at the 3–5 year horizon. Lo and MacKinlay (1990) report positive serial

correlation in weekly returns for indices and portfolios, and negative serial correlation for individual stocks.

Chopra, Lakonishok, and Ritter (1992), De Bondt and Thaler (1985), Fama and French (1986), and Poterba
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and Summers (1988) find negative serial correlation in returns of individual stocks and various portfolios over

three- to ten-year intervals. Jegadeesh (1990) finds negative serial correlation for lags up to two months, and

positive correlation for longer lags. Lehmann (1990) and French and Roll (1986) report negative serial

correlation at the level of individual securities for weekly and daily returns. Overall, the findings of recent

literature confirm the findings of earlier literature that the daily and weekly returns are predictable from past

returns and other economic and financial variables.

Evidence of the inefficiency of stock market returns led the researchers to investigate the sources of this

inefficiency. In Brock, Lakonishok, and LeBaron (1992) (BLL hereafter), two of the simplest and most popular

trading rules, moving-average and the trading-range brake rules, are tested through the use of bootstrap

techniques. They compare the returns conditional on buy (sell) signals from the actual Dow Jones Industrial

Average (DJIA) Index to returns from simulated series generated from four popular null models. These null

models are the random walk, the AR(1), the GARCH-M due to Engle, Lilien, and Robins (1987), and the

exponential GARCH (EGARCH) developed by Nelson (1991). They find that returns obtained from buy (sell)

signals are not likely to be generated by these four popular null models. They document that buy signals

generate higher returns than sell signals, and the returns following buy signals are less volatile than returns on

sell signals. In addition, they find that returns following sell signals are negative, which is not easily explained

by any of the currently existing equilibrium models. Their findings indicate that the GARCH-M model fails not

only in predicting returns, but also in predicting volatility. They also document that the EGARCH model

performs better than the GARCH-M in predicting volatility, although it also fails in matching the volatility

during sell periods.

The results in BLL document two important stylized facts. The first is that buy signals consistently generate

higher returns than sell signals. The second is that the second moments of the distribution of the buy and sell

signals behave quite differently because the returns following buy signals are less volatile than returns

following sell signals. The asymmetric nature of the returns and the volatility of the Dow series over the

periods of buy and sell signals suggest the existence of nonlinearities as the data-generation mechanism.

Overall, the findings of BLL show that the linear conditional mean estimators fail to characterize the temporal

dynamics of the security returns and suggest the existence of possible nonlinearities.

This paper uses the rule in Equation (1) to investigate the predictive power of simple technical trading rules

in forecasting the current returns. The test regressions of this paper contain the past buy and sell signals of the

technical trading rules in Equation (1) as regressors to forecast the current returns. To measure the

performance of the test regressions, the random walk model is studied as the benchmark model. The simple

GARCH-M (1, 1) model is used as the linear parametric conditional mean estimator. We use nonparametric

regressions to capture any possible nonlinearities in the conditional means. In this study, we compare the

out-of-sample performances of two nonparametric conditional mean estimators to those of the parametric

ones. These nonparametric regression models are the feedforward network regression and the nearest

neighbors regression models. The first one is a global estimator, whereas the second is a local procedure.

As a measure of performance, we use the out-of-sample root mean square prediction error (RMSPE). The

statistical significance of the RMSPEs of the test models against the random walk model are studied by the

Mizrach (1995) test. The data set is the daily DJIA Index from January 1, 1963 to June 30, 1988, studied in six

subsamples. For each subsample, the forecast horizon is chosen to be 250 observations, a year of price data in

daily frequency. There are two advantages of constructing the forecast horizon from six different subsamples.

The first one is to avoid spurious results caused by data snooping problems or sample-specific conditions.

The second one is that it enables us to analyze the performance of the technical trading rules under different

market conditions. This is particularly important in observing the performance of these rules in trendy versus

sluggish market conditions in which there is no clear trend in either direction.

The results of this paper indicate that in general the nonparametric regression forecasts provide

improvements over the forecasts of the parametric model that we considered in terms of reduced RMSPE,
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Table 1
Summary Statistics of the Log First Differenced Daily DJIA Series: January 1963–June 1988

Description 1963–1988 1963–1967 1968–1971 1972–1975 1976–1979 1980–1983 1984–1988

Sample Size 6,404 1,258 982 1,008 1,009 1,011 1,136

Mean*100 0.0187 0.0267 −0.0019 −0.0042 −0.0023 0.0418 0.0472
Std.*100 0.9598 0.5780 0.7503 1.0960 0.7709 0.9775 1.3752
Skewness −2.8059 0.0589 0.4932 0.2091 0.1650 0.3592 −5.7253
Kurtosis 86.8674 7.1234 6.3526 3.9791 4.1694 4.3425 113.2671

Maximum 0.0967 0.0440 0.0495 0.0460 0.0436 0.0478 0.0967
Minimum −0.2563 −0.0293 −0.0319 −0.0357 −0.0304 −0.0359 −0.2563

ρ1 0.1036 0.1212 0.2929 0.2118 0.1130 0.0470 0.0126
ρ2 −0.0390 0.0269 −0.0024 −0.0531 0.0090 0.0480 −0.1051
ρ3 −0.0083 0.0243 0.0046 −0.0099 0.0197 −0.0228 −0.0172
ρ4 −0.0231 0.0480 0.0485 −0.0260 −0.0188 −0.0361 −0.0466
ρ5 0.0247 0.0267 0.0248 −0.0627 −0.0051 −0.0243 0.1015
ρ6 −0.0098 0.0153 −0.0639 −0.0360 −0.0530 0.0293 0.0058
ρ7 0.0065 0.0014 −0.0314 0.0072 0.0114 −0.0130 0.0234
ρ8 −0.0029 0.0396 0.1087 −0.0054 −0.0632 −0.0164 −0.0151
ρ9 −0.0133 0.0107 0.0086 −0.0487 0.0216 0.0099 −0.0230
ρ10 −0.0133 −0.0064 −0.0619 −0.0048 0.0166 −0.0205 −0.0131

Bartlett Std. 0.0125 0.0282 0.0319 0.0315 0.0315 0.0314 0.0297

LBP 89.6 25.3 109.0 57.3 21.8 8.96 29.5
χ2

0.05(10) 18.307

Notes: ρ1, . . . , ρ10 are the first 10 autocorrelations of each series. LBP refers to the Ljung-Box-Pierce statistic, and it is distributed χ2(10)
under the null hypothesis of identical and independent observations.

both for the trading rules we considered as well as for an even simpler model based on past returns. Among

the nonparametric models, the forecasts of the local procedure (nearest neighbors regression) offers more

gains than the forecasts of the global procedure (feedforward regression) when measured against the

benchmark random walk model. The nonparametric models that use past buy-sell signals provide better

RMSPEs relative to the models that use past returns. The RMSPE test of Mizrach (1995) is a test for comparing

predictors of univariate time series in the mean squared error. We use this test to compare the forecasts of the

random walk model against the parametric and the nonparametric model forecasts. Mizrach (1995) tests

indicate that RMSPEs of the nonparametric models are statistically significant against the RMSPEs of the

random walk model.

In Section 2, a brief description of the data is presented. Estimation techniques are described in Section 3,

and empirical results are in Section 4. Conclusions follow thereafter.

2 Data Description

The data series includes the first trading day in 1963 of the Dow Jones Industrial Average Index to June 30,

1988, a total of 6,404 observations. All of the stocks are actively traded and problems associated with

nonsynchronous trading should be of little concern with the DJIA.

The data set is studied in six subsamples. The summary statistics of the daily returns for all subsamples are

presented in Table 1. The daily returns are calculated as the log differences of the Dow level. None of the

subperiods except the 1983–1988 period show significant skewness, and the majority of the subperiods

exhibit excess kurtosis.

The first 10 autocorrelations are also given in the rows labelled ρn. The Bartlett standard errors from these

series are also reported in Table 1. All periods show some evidence of autocorrelation in the first lag, except

the 1983–1988 period. The Ljung-Box-Pierce statistics are shown in the last row. These are calculated for the
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first 10 lags, and are distributed χ2(10) under the null of identical and independent observations. In five

subperiods out of six, the null hypothesis of identical and independent observations is rejected.

3 Estimation Techniques

Let pt , t = 1, 2, . . . , T be the daily Dow series. The return series are calculated by rt = log(pt )− log(pt−1). Let

mn
t denote the time t value of a moving-average rule of length n. Consequently, mn

t is calculated by

mn
t = (1/n)

n−1∑
i=0

pt−i (2)

The buy and sell signals are calculated by

sn1,n2
t = mn1

t −mn2
t (3)

where n1 and n2 are the short- and long-moving averages, respectively. The rules used in this paper are

(n1,n2) = [(1, 50), (1, 200)], where n1 and n2 are in days. The GARCH-M(1,1) is used as the parametric test

model and is written as

rt = α +
p∑

i=1

βi s
n1,n2
t−i + γh1/2

t + εt (4)

where εt ∼ N (0,ht ) and ht = δ0 + δ1ht−1 + δ2ε2
t−1. The GARCH-M specification allows for the conditional

second moments of the return process to be serially correlated. This specification implies that periods of high

(low) volatility are likely to be followed by periods of high (low) volatility. The GARCH-M specification allows

for the volatility to change over time and the expected returns are a function of past returns as well as

volatility.

There are numerous nonparametric regression techniques available, such as flexible Fourier forms, nearest

neighbors regression, nonparametric kernel regression, wavelets, spline techniques, and artificial neural

networks. Here, a class of artificial neural network models, namely the single-layer feedforward networks and

nearest neighbors regression models, are used. These two nonparametric regression models are described

below.

3.1 Nearest neighbors regression

The conditional mean of a random variable x , given a vector of conditioning variables w, can be written as

E (x |w) = M (w). In parametric estimation, M (w) is typically assumed to be linear in w, but in the

nonparametric approach, M (w) remains a general functional form. In this paper, we take a simple approach

to forecasting M (w), using the nearest neighbor method of Stone (1977). Applications of nearest neighbor

methods include the work of Robinson (1987) in a regression context, as well as the work of Yakowitz (1987)

in a time-series forecasting context.

Consider now the time-series process {xt }, and in particular, the problem of estimating the mean of xt

conditional on (xt−1, . . . , xt−n). The nearest neighbor method can be intuitively explained in the following

way. Take the time series {xt }Tt=1and convert it into a series of vectors of n components each, denoted as

xn
t = (xt , xt−1, . . . , xt−n+1). The above n vectors represent n past histories of the process {xt }. Now for the

nearest neighbor forecasting problem, one takes the most recent history available and searches over the set of

all n histories to find the k nearest neighbors. For instance, if one wants to forecast xt from the information

available at t − 1, one computes the distance of the vector xn
t−1 defined as xn

t−1 = (xt−1, xt−2, . . . , xt−n) and its

k nearest neighbors to form an alternative estimator of E (xt |xt−1, xt−2, . . . , xt−n) by
∑k

i=1 ωt ixi , where ωt i

represents the k nearest neighbor weight. Typically, one uses the Euclidean distance to compute these

weights. For a more thorough discussion of the weighting schemes that are available for the construction of
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the above distance, see Robinson (1987). From a computational point of view, uniform weights are the most

popular in the literature; see Härdle (1990). Also, the choice of weights will only affect the bias and the

variance contribution terms to the mean square error up to a proportionality factor. Hence, asymptotically, the

choice of weights is not important, although there may be small sample effects. In the present application, we

used uniform weights to weigh the contribution of the k nearest neighbors in the overall estimate of the

regression function E (xt |xt−1, xt−2, . . . , xt−n). The choice of nearest neighbors was determined by

cross-validation; see Härdle (1990). In the context of the present application, the estimator of the regression

function is given as

Ê (rt |sn1,n2
t−1 , sn1,n2

t−2 , . . . , sn1,n2
t−p ) =

k∑
i=1

ωt i ri . (5)

In using Equation (5) above, for p = 2, the k nearest neighbors are chosen to be the ones closest to

(sn1,n2
t−1 , sn1,n2

t−2 ) from the set of (sn1,n2
t−1 , sn1,n2

t−2 ), t = 2, . . . ,n. Then, the estimator of E (rt |sn1,n2
t−1 , sn1,n2

t−2 ) is computed

as a simple average of the rs terms, corresponding to the k nearest neighbors.

For each one-step-ahead forecast observation, the nearest neighbors regression is re-estimated and the

optimal nearest neighbors regression complexity is determined according to the one-leave-out cross-validated

performance measure. Accordingly, a different model may be indicated by the cross-validated performance

measure at different forecast horizons. A rolling sample approach is used, so that the same number of

observations are used as the in-sample observations at every one-step-ahead prediction. The maximum

number of nearest neighbors (k = {1, 2, . . . , 100}) and the maximum number of lags (p = 5) is chosen

according to the computational limitations.

3.2 Feedforward networks

The single-layer feedforward network regression model with past buy and sell signals and with d hidden units

is written as

rt = α0 +
d∑

j=1

βj G

(
αj +

p∑
i=1

γij s
n1,n2
t−i

)
+ εt εt ∼ I D(0, σ 2

t ) (6)

where G is the known activation function that is chosen to be the logistic function. This choice is common in

the artificial neural networks literature. Many authors have investigated the universal approximation properties

of neural networks (Gallant and White 1988, 1992; Cybenko 1989; Funahashi 1989; Hecht-Nielson 1989;

Hornik, Stinchcombe, and White 1989, 1990). Using a wide variety of proof strategies, all have demonstrated

that under general regularity conditions, a sufficiently complex single-hidden-layer feedforward network can

approximate any member of a class of functions to any desired degree of accuracy, where the complexity of a

single-hidden-layer feedforward network is measured by the number of hidden units in the hidden layer. For

an excellent survey of the feedforward and recurrent network models, the reader may refer to Kuan and

White (1994).

To compare the performance of the regression models in Equations (4), (5), and (6), the random walk

rt = α + εt εt ∼ I D(0, σ 2) (7)

is used with the lagged returns as the benchmark model. The out-of-sample forecast performance of

Equations (4), (5), and (6) is measured by the ratio of their RMSPEs to that of the linear benchmark model in

Equation (7). A number of papers in the literature suggest that conditional heteroskedasticity may be

important in the improvement of the forecast performance of the conditional mean. For this reason, the

RMSPE of the GARCH-M (1,1) model with lagged returns

rt = α +
p∑

i=1

βi rt−i + γh1/2
t + εt εt ∼ N (0,ht ) ht = δ0 + δ1ht−1 + δ2ε2

t−1 (8)
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is compared to that of the benchmark model in Equation (7). The out-of-sample forecast performance of the

single-layer feedforward network model with lagged returns

rt = α0 +
d∑

j=1

βj G

(
αj +

p∑
i=1

γij rt−i

)
+ εt εt ∼ I D(0, σ 2

t ) (9)

is also compared to that of the benchmark model in Equation (7). Feedforward network regression models

require a choice for the number of hidden units in a network. Let

ot = α0 +
d∑

j=1

βj G

(
αj +

p∑
i=1

γij xt−i

)
(10)

where xt−i is either past returns (Equation 9) or past buy-sell signals (Equation 6). The cross-validated

performance measure is formally defined as

CT (d) ≡ T −1
T∑

t=1

[rt − ôd
T (t)]

2 (11)

where ôd
T (t) ignores information from the t th observation, and consequently provides a measure of network

performance superior to average squared error. A completely automatic method for determining network

complexity appropriate for any specific application is given by choosing the number of hidden units d̂T to be

the smallest solution to the problem

min
d∈NT

CT (d) (12)

where NT is some appropriate choice set.

For each one-step-ahead forecast observation, the feedforward network regression is re-estimated, and the

optimal network complexity is determined according to the cross-validated performance measure.

Accordingly, a different model may be indicated by the cross-validated performance measure at different

forecast horizons. A rolling sample approach is used, so that the same number of observations are used as the

in-sample observations at every one-step-ahead prediction. The maximum number of hidden units (NT = 10)

and the maximum number of lags (p = 5) in a given feedforward regression is chosen according to the

computational limitations.

4 Empirical Results

For each subsample, the forecast sample is chosen to be the last 250 days, a year of price data in daily

frequency. The complete data set consists of six subsamples, a total of 1,500 observations for the forecast

sample. There are two advantages to constructing the forecast sample from multiple different subsamples. The

first one is to avoid spurious results as a result of data-snooping problems or sample-specific conditions. The

second one is that it enables us to analyze the performance of the trading rules under different market

conditions. This is particularly important in observing the performance of these rules in trendy versus sluggish

market conditions in which there are no clear trends in either direction.

One-step-ahead predictions for all models are reported below. To measure the out-of-sample performance

between the test regression and the benchmark model, we calculate the ratio of the respective RMSPEs. This

ratio is less than 1 if the test model provides more accurate predictions. Similarly, the ratio is greater than 1 if

the predictions of the test model are less accurate relative to the benchmark model. We also use a test by

Mizrach (1995) to assess the statistical significance of the difference of the RMSPEs of the test regressions and
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Table 2
Out-of-Sample Predictions of the Random Walk Model

1963–1967 RMSPE 0.589× 10−2

σ 2 0.346× 10−4

1968–1971 RMSPE 0.696× 10−2

σ 2 0.483× 10−4

1972–1975 RMSPE 0.106× 10−1

σ 2 0.113× 10−3

1976–1979 RMSPE 0.726× 10−2

σ 2 0.527× 10−4

1980–1983 RMSPE 0.865× 10−2

σ 2 0.746× 10−4

1984–1986 RMSPE 0.242× 10−1

σ 2 0.584× 10−3

Note: RMSPE refers to the the root mean square pre-
diction error of the random walk model. σ 2 refers
to the sample variance in the forecast sample.

that of the benchmark random walk model. The Mizrach (1995) test is a test for comparing predictions of

univariate time series in the mean squared error.1

4.1 Empirical results with past returns

The RMSPEs of the random walk model and the sample variance of the forecast sample are presented in

Table 2. The results with past returns are presented in Table 3. The RMSPEs of the GARCH-M (1,1), nearest

neighbors, and feedforward network regression models are reported as ratios to the RMSPE of the random

walk model. (The RMSPEs of the random walk model are reported in levels in Table 2.) The Mizrach (1995)

test is used to calculate the statistical significance of the difference between the RMSPEs of the test and the

random walk models. It is distributed as a standard normal variate under the null hypothesis so that there is

no difference between the RMSPEs of the test and the benchmark2 models.

The GARCH-M (1,1) model does not provide any forecast gain over the benchmark model. The difference

between the average RMSPEs of the benchmark and the GARCH-M (1,1) models is on average less than 1%.

Furthermore, none of the RMSPE test statistics are significant, indicating that the GARCH-M (1,1) model offers

no forecasting improvement over the random walk model. However, the feedforward and the nearest

neighbors regressions provide significant RMSPE improvements over the benchmark model. The feedforward

network provides on average about 3% forecast improvement over the benchmark model. Also, the RMSPE

test statistics are significant in three out of the six samples. The average RMSPE improvement of the nearest

neighbors regression is also about 3%. The RMSPE statistics in this case are significant in five out of the six

cases. Note that the estimation of all three models has been carried out using five lags. Using the RMSPE test,

one can say that both nonparametric conditional mean estimators, the local procedure (nearest neighbors

1This test is very similar to the Diebold and Mariano (1995) test. For the data studied in this paper, Diebold and Mariano (1995) and Mizrach
(1995) tests yield similar results. We only report the Mizrach (1995) test in the tables below.

2One referee also suggested that we use the Chong and Hendry (1986) encompassing test. This test is developed for forecasts generated
by parametric models, and it is based on the t -statistic of the nesting parameter in an artificial regression that combines the two forecasts.
However, in the case of two nonparametric forecasts, the asymptotic properties of this test statistic are unknown. In fact, in the context
of a comparison between neural network and nearest neighbor forecasts, some preliminary results suggest that the above test over-rejects
substantially, using critical values from the standard normal variate. Furthermore, in the context of our analysis, the information sets of the
two models are nested and that would render any non-nested-type testing procedure inappropriate. Hence, we do not apply the above test
in our empirical analysis.
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Table 3
Out-of-Sample Predictions of the Models with Past Returns

GARCH-M (1,1) Feedforward Nearest Neighbor

1963–1967 Ratio 0.997 0.978 0.983
RMSPE test 0.387 1.887 1.956

1968–1971 Ratio 1.001 0.965 0.967
RMSPE test −0.468 2.195 2.132

1972–1975 Ratio 0.998 0.986 0.976
RMSPE test 0.676 1.898 2.121

1976–1979 Ratio 0.997 0.981 0.972
RMSPE test 0.854 1.876 2.121

1980–1983 Ratio 0.995 0.962 0.961
RMSPE test 1.019 2.287 2.356

1984–1988 Ratio 0.997 0.971 0.977
RMSPE test 1.064 2.898 2.856

Note: Ratio refers to the ratio of the root mean square prediction error (RMSPE) of the model
in consideration to that of the random walk model. The RMSPE test is the Mizrach (1995) test
statistic, and measures the statistical significance of the difference between the RMSPE of the
test and the random walk models. It is distributed as a standard normal variate under the null
hypothesis that there is no difference between the RMSPE of the test regression and that of
the random walk model. The test statistics that are significant at the 5% level are underlined.

regression), and the global procedure (feedforward network regression) dominate their parametric

counterpart, the GARCH-M (1,1) model, in forecast comparisons. Between the two, the nearest neighbors

regression seems to be more successful in providing improvements over the benchmark random walk model

using the RMSPE test.

4.2 Empirical results with past buy-sell signals

The predictability of the current returns with the past buy-sell signals of the moving-average rules are

investigated with two different moving-average rules. These are the (1,50) and (1,200) moving-average rules.

For convenience, we will call these rules A and B, respectively. The results are presented in Tables 4 and 5.

All models are estimated as in the case of past returns, using five lags.

The GARCH-M(1,1) model with past buy-sell signals does not provide any forecast gain over the random

walk model. The reported gains are always less than 1% forecast improvement over the random walk model.

Also, none of the RMSPE test statistics are significant. The forecast gains of the feedforward and the nearest

neighbors regressions are of the same order as in the case of past returns. Both models provide a forecast

improvement of about 3% on average. Furthermore, five out of six for rules A and B of the RMSPE statistics

were significant for the feedforward networks. All six of the RMSPE statistics were significant for the nearest

neighbors regression. On the whole, both nonparametric test regressions outperform the benchmark random

walk model, whereas the same cannot be said for the GARCH-M (1,1) model. Between the two nonparametric

models, the nearest neighbors regression appears to be a little more successful in providing improvements

over the benchmark random walk model using the RMSPE test. The comparison of the models with past

returns and past buy-sell signals indicates that the latter provide more accurate forecast predictions for the

current returns. Overall, the results indicate that the predictability of the current returns from the

nonparametric models is statistically significant against the random walk model. Furthermore, the models with

past buy-sell signals provide more consistent evidence of this predictability.
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Table 4
Out-of-Sample Predictions of the Models with Rule = [1,50]

GARCH-M (1,1) Feedforward Nearest Neighbor

1963–1967 Ratio 0.994 0.976 0.981
RMSPE test 0.446 2.243 1.983

1968–1971 Ratio 0.997 0.955 0.960
RMSPE test 0.998 2.332 1.995

1972–1975 Ratio 0.998 0.963 0.970
RMSPE test 0.695 2.121 2.289

1976–1979 Ratio 0.994 0.975 0.971
RMSPE test 1.176 1.798 2.112

1980–1983 Ratio 0.994 0.981 0.959
RMSPE test 1.213 1.991 2.432

1984–1988 Ratio 0.992 0.969 0.965
RMSPE test 1.321 2.654 2.675

Note: Ratio refers to the ratio of the root mean square prediction error (RMSPE) of the model
in consideration to that of the random walk model. The RMSPE test is the Mizrach (1995) test
statistic, and measures the statistical significance of the difference between the RMSPE of the
test and the random walk models. It is distributed as a standard normal variate under the null
hypothesis that there is no difference between the RMSPE of the test regression and that of
the random walk model. The test statistics that are significant at the 5% level are underlined.

Table 5
Out-of-Sample Predictions of the Models with Rule = [1,200]

GARCH-M (1,1) Feedforward Nearest Neighbor

1963–1967 Ratio 0.996 0.964 0.965
RMSPE test 0.565 2.563 2.031

1968–1971 Ratio 0.995 0.965 0.959
RMSPE test 0.676 2.307 2.012

1972–1975 Ratio 0.995 0.975 0.969
RMSPE test 0.787 2.016 2.147

1976–1979 Ratio 1.002 0.964 0.963
RMSPE test −1.134 2.165 1.989

1980–1983 Ratio 0.993 0.987 0.958
RMSPE test 1.254 1.816 2.213

1984–1988 Ratio 0.995 0.965 0.962
RMSPE test 1.143 2.314 2.413

Note: Ratio refers to the ratio of the root mean square prediction error (RMSPE) of the model
in consideration to that of the random walk model. The RMSPE test is the Mizrach (1995) test
statistic, and measures the statistical significance of the difference between the RMSPE of the
test and the random walk models. It is distributed as a standard normal variate under the null
hypothesis that there is no difference between the RMSPE of the test regression and that of
the random walk model. The test statistics that are significant at the 5% level are underlined.
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5 Conclusions

This paper has compared the out-of-sample performances of two parametric and two nonparametric

conditional mean estimators to forecast security returns with past returns and past buy-sell signals of the

moving-average rules. The forecasts generated by the nonparametric models dominate the parametric ones.

Among the nonparametric models, the forecasts of the local procedure (nearest neighbors regression) seems

to offer more gains than the forecasts of the global procedure (feedforward regression) when measured

against the benchmark random walk model using the RMSPE test. The nonparametric models that use past

buy-sell signals provide more accurate RMSPEs relative to the models that use past returns. However, the

reported gains may not seem to be high enough to translate into profits after transaction costs are taken into

account. It would be worthwhile to carry out the above analysis as well as investigate the performance of

more elaborate rules and their profitability after transaction costs and brokerage fees are taken into account.

This question is left for future research.
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