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TEMPORAL AGGREGATION OF GARCH PROCESSES

By Feike C. Drost aND THEO E. NuMman!

We derive low frequency, say weekly, models implied by high frequency, say daily,
ARMA models with symmetric GARCH errors. Both stock and flow variable cases are
considered. We show that low frequency models exhibit conditional heteroskedasticity of
the GARCH form as well. The parameters in the conditional variance equation of the low
frequency model depend upon mean, variance, and kurtosis parameters of the corre-
sponding high frequency model. Moreover, strongly consistent estimators of the parame-
ters in the high frequency model can be derived from low frequency data in many
interesting cases. The common assumption in applications that rescaled innovations are
independent is disputable, since it depends upon the available data frequency.

Keyworps: ARMA-GARCH, GARCH models, heteroskedasticity, temporal aggrega-
tion.

1. INTRODUCTION

IT 1s wELL KNOWN, nowadays, that many financial time-series such as exchange
rates and stock returns exhibit conditional heteroskedasticity, i.e. big shocks are
clustered together. GARCH models are often used to parameterize conditional
heteroskedasticity. The GARCH model generalizes the ARCH model of Engle
(1982) and is proposed by Bollerslev (1986). In applications, GARCH models
have been specified for data at different frequencies, typically assuming that the
rescaled innovations are i.i.d. and are generated by either normal or ¢ distribu-
tions. Implicitly it is assumed that a GARCH process at one frequency, say
daily, is consistent with some GARCH process at another frequency, say weekly.
The aggregation properties of ARIMA models are well-known: high frequency
ARIMA processes aggregate to low frequency ARIMA processes. For an
extensive literature we refer to, e.g., Amemiya and Wu (1972), Harvey and
Pierse (1984), Palm and Nijman (1984), Liitkepohl (1986), and Nijman and Palm
(1990a, b). Little is known about the impact of temporal aggregation upon
GARCH processes. Only the limiting cases of an increasing sampling interval
and of an increasing sampling frequency have been considered in the literature.
Diebold (1988) shows that conditional heteroskedasticity disappears if the
sampling time interval increases to infinity. In case of flow variables the im-
plied marginal low frequency distribution converges to the normal distribution.
Nelson (1990) considers an increasing sampling frequency. A continuous time
model is derived that yields accurate approximations to high frequency data.
This model is close to I-GARCH. See also Drost and Nijman (1992b).

! Herman Bierens, James Davidson, Svend Hylleberg, the co-editor, and three anonymous
referees provided helpful comments. The authors also benefited from discussions with the partici-
- pants of the International Conference on ARCH Models and Applications to Financial or Monetary
Econometrics (Paris, June 25-26, 1990). Both authors gratefully acknowledge financial support of
the Royal Netherlands Academy of Arts and Sciences (K.N.A.W.).
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It is the purpose of this paper to derive results on temporal ‘aggregation over
a finite number of periods. We show that the classical GARCH assumptions are
not robust to the specification of the sampling interval. Independent daily
rescaled innovations, e.g., imply dependent rescaled innovations at the weekly
frequency. In applied work these dependencies are neglected (cf., e.g., Baillie
and Bollerslev (1989)). The dependencies also complicate attempts to construct
efficient semi-parametric estimators of the variance parameters (cf., e.g.,
Gallant and Tauchen (1989) and Engle and Gonzélez-Rivera (1991)).

Three definitions of GARCH are adopted in this paper, which will be
referred to as respectively strong, semi-strong, and weak GARCH. The respec-
tive definitions are of increasing generality. Strong GARCH requires that
rescaled innovations are independent, semi-strong GARCH assumes that
rescaled innovations are uncorrelated, while in weak GARCH models only
projections of the conditional variance are considered.

In this paper, first of all, we show that the classical (semi-)strong GARCH
assumptions on the available data frequency are arbitrary. Generally a
(semi-)strong GARCH process aggregates to some weak GARCH process that
is not semi-strong GARCH. Second, we show that the assumption of symmetric
weak GARCH models at different frequencies is internally consistent. More
generally, we show that every ARMA model with symmetric weak GARCH
errors aggregates to a model in this class. Third, our results imply that strongly
consistent estimation of low frequency parameters is possible with the low
frequency data set. A straightforward consistent estimator of these parameters
can be derived from the ARMA model that generates the squared observations
(cf. Bollerslev (1988)). Simulations suggest that the popular quasi maximum
likelihood estimates are also close to the true parameters even if the low
frequency model is weak GARCH (see Drost and Nijman (1992a)). Finally we
note that high frequency parameters can be identified from the corresponding
low frequency ones in many interesting cases.

The paper is organized as follows. Notations and several GARCH concepts
are presented in Section 2. Temporal aggregation of the commonly used
GARCH(1, 1) model is considered in Section 3. The class of weak GARCH(1, 1)
models appears to be closed both in case of stock and flow variables. In both
cases (semi-)strong GARCH(1,1) only aggregates to weak GARCH(, 1); see
Examples 3 and 4. In the stock variable case the low frequency conditional
variance parameters depend only upon the high frequency variance parameters.
In the case of flow variables the low frequency variance parameters depend also
upon the kurtosis of the high frequency observations. In both cases the low
frequency parameters are expressed as explicit functions of the high frequency
parameters. Our main results are presented in Section 4: the class of ARMA
models with weak GARCH errors is closed under temporal aggregation. The
proof of this result is deferred to the Appendix. Our results are easily extended
to ARIMA models. Various examples illustrate the main theorem. In general

the high frequency orders of the ARMA part of ARMA-GARCH models
influence the low frequency orders of the GARCH part (see Table I). E.g.,
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temporal aggregation of an ARMAC(1, 1) model with GARCH(1, 1) errors leads
to low frequency ARMAC(1, 1)-GARCH(2, 2) models. In Section 5 we illustrate
the empirical implications of our results. We compare the daily, weekly, and
monthly models of six major exchange rates presented in Baillie and Bollerslev
(1989). Finally Section 6 contains some concluding remarks.

2. DEFINITIONS AND NOTATION

In order to define the models properly let {¢,, t €Z} be a sequence of
stationary errors with finite fourth moments. Define operators A(L)=1+
Y4 ,a;L' and B(L)=1—-XF_,B;L' and let the sequence {A,, t € Z} be defined
as the stationary solution of
(1) B(L)h,=y+{A(L) - 1}s2.

We assume that B(L) and B(L)+ 1 —A(L) have roots outside the unit circle
and hence are invertible.?

Three definitions of GARCH will be adopted in this paper.

DermniTioN 1 (Strong GARCH): The sequence {e,, t € Z} is defined to be
generated by a strong GARCH(p,q) process if , A(L), and B(L) can be
chosen such that

() ¢&=s,yh, ~iid. D(0,1),

where D(0, 1) specifies a distribution with mean zero and unit variance.

DEeriNITION 2 (Semi-strong GARCH): The sequence {g,, ¢t € Z} is defined to
be generated by a semi-strong GARCH(p, q) process if ¢, A(L), and B(L) can
be chosen such that

3) Elele,_1,€,_5,...]=0  and
(4) E[e,zls,_l,s,_z,...] =h,.

DermniTioN 3 (Weak GARCH): The sequence {¢,, ¢t € Z} is defined to be
generated by a weak GARCH(p, q) process if s, A(L), and B(L) can be chosen
such that

% Plele,_1,6,_5,...] =0  and

(6) Plelle, 1,8, 2,...] =h,,

where Plx,le,_q,€,_5,...] denotes the best linear predictor of x, in terms of
1,8 1,80y r €2 1,2 5,..., i€,

@) E(x,—P[x,le,_1,6,_5,...])e;_;=0 for i>1 and r=0,1,2.

2 In the literature attention is restricted to parameter values satisfying ¢ >0, 8, >0, and ;>0
(Vi). However, this condition seems to be unnecessarily restrictive. Defining 7(L) = ;2 m; L' =
B(L) Y A(L) — 1} the weaker assumption ¢ >0 and ;> 0 (Vi) also guarantees the nonnegativity
of h,. Moreover, one can easily construct examples to show that even the nonnegativity of m; (Vi) is
not necessary.
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Observe that all thess GARCH definitions require X7 ,B;+ X7 ,a;<1.
The strong GARCH definition has been adopted by, e.g., Engle (1982) and
Bollerslev (1986). The most popular distributions are normal and ¢ distributions.
The second definition has been adopted by, e.g., Weiss (1986). Evidently a
strong GARCH process will also be semi-strong GARCH. On the other hand a
semi-strong GARCH process with time-varying higher order conditional mo-
ments of the rescaled innovations ¢, =g, /‘/h_, is not strong GARCH (see, €.g.,
Example 3). Finally the requirements for weak GARCH are met both by strong
and semi-strong GARCH processes. Observe that the weak GARCH definition
is quite general and captures the characterizing features of the other GARCH
formulations. As we will prove below, it is still possible to obtain strongly
consistent estimators of the GARCH parameters in this general formulation.

The most general model considered in this paper is the ARMA model with
GARCH errors:

(8) I'(L)y,=6(L)s,
where I'(L) =TI (1 —v,L) and O(L)=TIZ (1 —6,L). Throughout we as-
sume that all standard regularity conditions are fulfilled. This implies that the
roots of I'(L) and @(L) are all outside the unit circle and that no roots of I'(L)
coincide with roots of @(L).

High frequency observations are assumed tobe on y, (¢=1,...,T7).If y, isa
stock variable, low frequency observations are assumed to be on y, (t=
m,2m,...,T), where m is some known integer (for simplicity we suppose that T
is a multiple of m). If y, is a flow variable, low frequency observations are
assumed to be on ,,,, = L75'y,_; (¢t =m,2m,...,T) with m and T as before.
Note that this case applies if, e.g., y,=A4x,, where x, is a stock variable.
Extensions to ARIMA models are easily added by constructing slightly more
general observation schemes (compare, e.g., Palm and Nijman (1984, Section

2).

3. AGGREGATION OF GARCH(1,1)

In this section we consider temporal aggregation of GARCH(1,1) models
with either stock or flow variables. Example 1 considers stock variables and
Example 2 presents aggregation results in case of flow variables. Higher order
models are treated in a similar manner. The discussion of the general case is
deferred to Section 4. In both cases the class of symmetric weak GARCH(1, 1)
models is shown to be closed against temporal aggregation. The proofs of these
results rely upon aggregation techniques in ARMA models. The high frequency
parameters ¢, B, @, and k, determine the corresponding low frequency param-
eters. Explicit formulas for the aggregated GARCH(1, 1) model are available.
The unconditional kurtosis «, = Ey} /(Ey,z)2 of the observations influences the
low frequency GARCH parameters only in case of flow variables. Each example
is followed by a discussion of the implications of aggregation. In both cases it is
“easy to construct (semi-)strong GARCH(1, 1) processes showing that the class of
(semi)-strong GARCH(1, 1) models is not closed under temporal aggregation;
see Examples 3 and 4.
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ExampLE 1 (GARCH(1, 1), Stocks): The class of symmetric weak
GARCH(1, 1) processes with stock variables is closed under temporal aggrega-
tion. More precisely stated, if {y,, t € Z} is weak GARCH(1, 1) with symmetric
marginal distributions and h, = + Bh,_, + ay? , then {y,,, t € Z} is symmet-
ric weak GARCH(1, 1) With A ,,,3,., = Wiy + BonyPmyim —m + @y Y im —m» Where

1-(B+a)” m
(9) lp(m)=¢ 1_(B+a) ) a(m)=(B+a) _B(m)a
and B, € (0,1) is the solution of the quadratic equation
Bim B(B+a)" ™!
(10) 1+( )2 = _ 2m—2 :
B(m) 1 (B ) 2 2m—2
1+a +B*(B +a)
1-(B+a)’

Proor: We restrict attention to m = 2. Along the same lines one obtains
results for general m. Obviously relation (5) is satisfied for {y,,, t € Z}. To
derive the projection of y2? consider the ARMAC(1,1) model that is known to
generate the squared observations (cf. Bollerslev (1988)). Put n,=y2—h,,
observe that the 1, are uncorrelated (use equation (7) with x, =y?) and rewrite
the equation determining 4,:

(11)  y?=v+(B+a)y? +n,—Bn,_;.

To obtain the low frequency GARCH model we derive the low frequency model
corresponding to the ARMA(1,1) model in squared observations. We proceed
as in Palm and Nijman (1984). Substituting (11) into itself yields

(12)  y2=¢(1+B+a)+(B+a)’y2,+u,

with v, =n, + an,_; — B(B + a)n,_,. Equation (12) determines the autoregres-
sive part of the low frequency model. It remains to determine the moving
average structure. It is easily checked that (Vk > 1) Evw,_,, =0. Put 0, =(1 —

AL?)~'v,, where A is such that the o, with even indices are uncorrelated i.e.
—A/(1+ M) =Evp,_,/Ev?. Since w, is a linear combination of y?2, yZ ,,..., it
follows that

P[y,2|y,_2,y,_4,...] —AP[y,z_zly,_4, y,_6,...]

=y(1+B+a)+{(B+a) —A)y2,,

proving that {y,,, ¢t € Z} is weak GARCH(1, 1) with parameters Yoy = yaA+B+
@), By =A, and a,, = (B + a)? — A (replacing the high frequency parameters i,
B, and a). Q.E.D.

Discussion: The class of ARCH(1) models is also closed under temporal
aggregation in case of stock variables (B, =0 if B =0). Note that (10) is a
simple quadratic problem admitting a real solution in closed form. Observe that
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FIGURE 1.—Aggregation of GARCH(Y,1): Stocks. Subsequent marks indicate the variance
parameters of weak GARCH(1, 1) models generated by repeated doubling or halving the sampling
interval, starting with models where B=.8and a=.05, .1, .15, .19, .199, and .1999 respectively.

Bimy + @(my=(B + @)™ tends to zero as m tends to infinity. Hence, conditional
heteroskedasticity disappears in the limit if the process is aggregated more and
more (compare, e.g., Diebold (1988)). On the other side, assume for the
moment that the current observed process is a low frequency process generated
by some very high frequency GARCH(1, 1) process. Then the data generating
process (DGP) of the original series is close to I-GARCH(1, 1) with 8 =1 and
a = 0 (compare, e.g., Nelson (1990) and Drost and Nijman (1992b)).

Next we derive strongly consistent estimators of the high and low frequency
parameters only based upon low frequency data. Consider the low frequency
ARMA(1,1) model that is known to generate the squared observations (com-
pare Bollerslev (1988)):

2 _ 2
Yim = t,j(m) + (ﬂ(m) + a(m))ytm—m + Ny — B(m)ntm—m’
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where 7,,, =%, = R(py, and observe that the =, are uncorrelated (use
equation (7)). Assume that {y2} is ergodic. Then one easily derives strongly
consistent estimators of the GARCH parameters because the vector process
((¥2,s Yiu—ms Y2nu_2m)) is also ergodic. This implies that the sample mean and
the first two sample autocorrelations converge almost surely and a simple
one-one relation between these limits and the GARCH parameters determines
the required estimators. The assumption of ergodicity of the low frequency
process is, e.g., trivially satisfied if there exists an underlying high frequency
strong GARCH process. Then the low frequency GARCH parameters can be
consistently estimated using low frequency data. This implies that consistent
estimation of the high frequency parameters, based on low frequency data only,
is possible (the high frequency parameters are uniquely determined by the
corresponding low frequency ones). The problem of multiple high frequency
models that are consistent with the low frequency evidence, that can arise in
ARMA(, 1) models (cf., e.g, Palm and Nijman (1984)), is absent in the
GARCH(, 1) model because of the restriction that all parameters are nonnega-
tive.

The relation between high and low frequency GARCH models is displayed in
Figure 1. Subsequent marks to the left on the lines in the figure indicate the
effect of doubling the sampling period, while subsequent marks to the right
indicate the effect of doubling the sampling frequency. The six lines are
generated by doubling and halving the sampling interval starting with models
where B8 =.8 and a = .05, .1, .15, .19, .199, and .1999 respectively. E.g., if the
observed sample is weak GARCH with B = .800 and « = .050, then the corre-
sponding parameters for the weak GARCH model where observations with odd
indexes are skipped (m = 2) are 8 =.677 and «a = .046. Similarly it follows from
the figure that the parameter pairs for m = 4 and m = 8 are equal to (.488, .034)
and (.254,.018). If the observations are generated by a very high frequency
DGP, then the parameters corresponding to the model where the sampling
frequency is doubled are B =.873 and « = .048. Doubling once more and
redoubling yields respectively (.917,.043) and (.944,.036). Of course the latter
values are only valid if the true underlying DGP contains the calculated
frequency. Observe that GARCH(1, 1) models are close to ARCH(1) models if
the sampling interval is large and that conditional heteroskedasticity disappears
when the sampling period is very large. On the other side the figure shows that
highly aggregated models with nontrivial variance parameters are generated by
a DGP close to the integration in variance model.

ExamrpLE 2 (GARCH(1, 1), Flows): The class of symmetric weak GARCH(1, 1)
processes with flow variables is closed under temporal aggregation. More
precisely stated, if {y,, t € Z} is weak GARCH(1, 1) with symmetric marginal
distributions, h, =4+ Bh,_;+ay?,, and unconditional kurtosis «,, then
{3 myem> t € Z} is symmetric weak GARCH(1, 1) with

7 7 2 7 = =2
h(m)tm - ‘/’(m) + B(m)h(m)tm——m + a(m)y(m)tm —-m>
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and kurtosis K, where

_ 1—(B+a)m
(13) lp(m)_mlp 1—(I3+01) )

(14) k'(m)y=3+(r<y—3)/m+6(r<y— 1)
Jm—1-m(pra) + (Bra)")a-pa(B+a))
m2(1 - B —a)*(1- B2 -2Ba)
and | E(m)l < 1 is the solution of the quadratic equation
Bow _ _ a(Bra,k,m)(B+a)" —b(B,a,m)
L+BLy  a(B,ak,,m){1+(B+a)™} ~2b(B,a,m)’

Ay = (B +0‘)m _E(m)’

b

(15)

with

(16) a(B,a,k,,m)

(1-B—a)’(1-p*>~2Ba)
(k,—1){1 - (B+a)?}

4{m —1-m(B+a)+(B+a)"Ha—Ba(B +a)} ,

=m(1—-B)*+2m(m—1)

1-(B+a)’
1-— a 2m
() bBam) = {a-pa(p e T

Remark 1: For strong GARCH models the distribution of the rescaled
innovations is usually given. To make the aggregation results directly applicable
to this situation the relation between the kurtosis of the rescaled innovations
k= E&* and «, is given:

_ 1-(B+a)
(18) Ky_Kgl—(B+a)2—(K§—1)a2.

Proor: Once more we restrict derivations to the case with m = 2. Similar but
tedious calculations prove the general case. Equation (5) is easily checked. In
order to derive the projection P[32|9ay—2> Yay—ar---1 let m,=y?—h, be
defined as in the preceding example. Then equation (12) implies

y(22)t = 2¢(1 +B+ 0‘) + (B +a)2§(22),_2 + 7,
where
b=m+(1+a)n_;+{a—B(B+a)ln_,—B(B+a)n,_;
+2y,y,_1— 2B +a)2y,_2y,_3.
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As before we derive the low frequency ARMA(I, 1) equation corresponding to
this model in squared observations. The components of v, are uncorrelated and
hence (Vk > 1) E5,0,_,, =0. Put @, =(1—AL*)~'7,, where A is such that the
@,, are uncorrelated. Thus the low frequency ARMAC(1,1) equation is given by

- 2~ — -
y(zz), =2¢(1+B+a)+(B+a) y("’z),_2 +@,— AD,_,.

Finally a simple projection argument implies that the low frequency model is
weak GARCH(1, 1) with parameters Yoy =201+ B +a), Bpy=2, and &=
(B + a)? — A (replacing the parameters , B8, and a). The other conclusions of
the proposition are easy.

The main difference with the case of stock variables is the presence of the
cross-products y,y,_; and y,_,y,_3 in T,. This complicates the computation of
2 since Ey2y2 ,/En? has to be expressed in k,, «, and B. More details are
provided in Drost and Nijman (1992a). Q.E.D.

Discussion: Observe that the class of weak ARCH(1) models with flow
variables is not closed under temporal aggregation. Generally high frequency
ARCH(1) models aggregate to low frequency GARCH(1, 1) with E(m) # 0. The
relations (13)-(17) imply that the variance parameters of the low frequency
model depend upon the high frequency variance parameters but also on the
kurtosis of the observations. This contrasts the case of flow variables with the
case of stock variables. As in the preceding example ﬁ(m)+&(m)=([3 + a)™,
implying that conditional heteroskedasticity disappears when m is large and
that very high frequency processes are close to I-GARCH. Moreover Kimyy = 3
as m — o, suggesting asymptotic normality of ¥, /\/n_z . This result has been
established by Diebold (1988). As before the one-one correspondence between
high and low frequency parameters and the ARMA equation in squared
observations implied by the GARCH model permits consistent estimation of
high frequency parameters from low frequency data.

The results of temporal aggregation of GARCH(1,1) models with flow
variables are illustrated in Figure 2. Six different GARCH DGP’s are consid-
ered. The parameter vectors of B, a, and k, are given by (.871,.051,3.11),
(.887, .035, 3.05), (.800, .050, 3.06), (.871,.051, 10.47), (.887,.035,9.62), and
(.800, .050,9.70). For strong GARCH models these kurtosis values correspond
to normal rescaled innovations for the first three parameter vectors and fs
distributed rescaled innovations for the last ones (see Remark 1, equation (18)).
Similar to Figure 1 subsequent marks to the left indicate the effect of doubling
the sampling period. Stars “*” correspond to low frequency models obtained
with the first three parameter vectors and diamonds “{” to low frequency
models obtained with the last ones. From the figure it is evident that differences
in the high frequency kurtosis produce different low frequency variance parame-
ters. E.g., aggregation of the first, respectively fourth, model with m = 2 yields
(.800,.050,3.26), respectively (.777,.073,7.68). The first and fifth parameter
vectors are chosen such that the parameters a and B of the third pair are
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ALFA
0.10 4

0.08 4

0.08 4

0.04 4

0.02 4

BETA

FicUure 2.—Aggregation of GARCH(1,1): Flows. Subsequent marks indicate the variance
parameters of weak GARCH(1, 1) models generated by repeated doubling the sampling interval,
starting with strong GARCH(1,1) models where (8, a) = (.887,.035), (.871,.051), and (.800,.050).
The rescaled innovations are either normal (*) or student distributed with five degrees of freedom

).

obtained if the sampling period is doubled. This illustrates that knowledge of
the low frequency variance parameters is insufficient to identify the high
frequency ones unless information about k,,, is available. From the applied
point of view, nevertheless, the impact of the kurtosis on the low frequency
variance parameters appears to be minor. Numerical results for exchange rates
will be presented in Section 5.

Drost and Nijman (1992b) show that the kurtosis k), is a function of the
variance parameters only, rather than an independent parameter, if it is
assumed that the data are generated by a GARCH model at arbitrarily high
frequency. If the existence of an underlying continuous time model is assumed,
high frequency parameters can be identified from low frequency data only.

ExamrLE 3 (Strong GARCH not closed): To show that the class of strong
GARCH models is not closed under temporal aggregation consider the classical
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model

yt=§¢V¢+aY¢2—l =£t\/h—t

with £ ~iid. N(0,1). In the low frequency stock model with, e.g., m =2,
relation (2) is violated. Let v, =y,/1/hq, =V, /V¥(1+a) +ay?2, denote the
rescaled low frequency innovations and note that

(19) Vt=§t\/)‘t+‘ft2—1(l—)‘t)

with A, =4 /h,),. Therefore rescaled low frequency innovations depend upon
past observations. From (19) one can show that the conditional fourth moment
of v, depends on the information set. Rescaled innovations are not i.i.d. and
hence the low frequency model implied by a high frequency strong ARCH(1)
model does not satisfy the strong GARCH assumption. Therefore the common
assumption that rescaled disturbances are i.i.d. at the available data frequency is
disputable. Ideally, economic theory should indicate at which time intervals
innovations occur. It is easily checked that in this particular example the low
frequency model is semi-strong GARCH. This property does not generalize to
the case of flow variables or to higher order models.

ExampLE 4 (Semi-strong GARCH not closed): To show that the class of
semi-strong GARCH models is not closed under temporal aggregation consider
the model

y,=§,vt/1+ay,2_1 =§t¢h—t

where the ¢, are i.i.d. with the distribution determined by P{¢(,=0} = 1 — & and
P{¢, = —1Na}=P{¢,=1/Va} =a/2. A possible realization of the process is,
e.g, Vu/a0,—1,¥2,/3,-v4,0,0,1,0,0,0,1,— v2,0,...). In the low fre-
quency flow model with, e.g., m =2 the semi-strong GARCH definition is
violated. Assume, for instance, that {¥,y,,} is semi-strong GARCH(p, q) for
some p and g. Then it is clear that p =g = 1 since the conditional expectations
are necessarily equal to the projections in Example 2. Thus, with ¢, @, and B
determined by (13)-(17),

_ - ~ o, _—
hey =E[Y(2)t|Y(2):—2’Y(z)f—4v~] =y +ays_stBhyy_s-

However, the squared process {ay?/y} consists of sequences of successive
integers of different length starting at zero. Hence if ), = y¢n/a for some

integer n > 2, then y,=0 and y,_, = y/¢n/a . This remark implies, for n > 2,
E[y(ZZ)tlyQ)t—Z =vV¥n/a,Vay—4>-- ]
=E[Yt2 Y+ 291l =0,y, 3= Vyn/a, ?(2)1—4:---]

=E['//+ (1 +a)y,2_1|y,_2=0, Vi3 = V'//n/a ?y(Z)t—‘l""]
=y(2+a).
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TABLE 1

UrPER BounDs oN THE ORDERs OF Low FREQUENCY MODELS IMPLIED
BY HicH FREQUENCY MODELS.

High Frequency Model Low Frequency Model

ARCH(q) stock GARCH(q - 1,q)
ARCH(q) flow GARCH(q, q)
GARCH(1,1) stock GARCH(1,1)
GARCH(, ¢®) stock GARCH(g - 1,q)
GARCH(, q) flow GARCH(q, q)
MA(1)-ARCH(q) stock GARCH(q, q)
MA(1)-ARCH(q) flow MA1)-GARCH(qg + 1,g+ 1)
AR(1)-ARCH(q) stock AR(1)-GARCH(q, q)
AR(1)-ARCH(q) flow ARMA(,1)-GARCH(qg + 1, + 1)
ARMA(1,1)-GARCH(, q) stock ARMA(,1)-GARCH(q + 1, + 1)
ARMA(1, 1)-GARCH(, q) flow ARMA(1,1)-GARCH(g + 1, + 1)

g=2.
The RHS does not depend on n and ¥, _4; Y265 - Hence a=p =0,

contradicting both the values derived above and the assumption of semi-strong
GARCH.

4. AGGREGATION OF ARMA-GARCH

In this section we derive the low frequency ARMA-GARCH model corre-
sponding to a general high frequency ARMA model with weak GARCH errors.
As a corollary it follows that the class of ARMA-GARCH models is closed
under temporal aggregation both in the cases of stock and flow variables.
Furthermore we present two corollaries for pure GARCH models. The order of
low frequency models are explicitly given and some important cases are summa-
rized in Table I. Low frequency parameters are determined by high frequency
mean, kurtosis, and variance parameters. Numerical techniques are often neces-
sary to derive the low frequency parameters (similar to the ARIMA case; c.f.,
Palm and Nijman (1984)). The proof of Theorem 1 is deferred to the Appendix.
A relaxation of the symmetry condition is also discussed in the Appendix. In this
paragraph [x] is the largest integer less than or equal to x.

TueoreM 1 (ARMA-GARCH): Let {y,, t € Z} be generated by the
ARMA(P, Q) model (8) with symmetric weak GARCH(p, q) errors determined by
Q). Put W(L) =X w,L; then {W(L)y,,, t€Z} follows an ARMA(P,Q)
process with symmetric weak GARCH(p, ) errors, where P=P,0=P+[(Q-
P+ w)/m] andp=q4=r+ 10(Q + 1), where r = max(p, q).

If IZ(+yL+ - +y 'L HOLW(L) = O(L™) for some polyno-
mial 6, then the low frequency error process is GARCH(r + [(p —r)/m], r).

CoroOLLARY 2: The classes of ARMA models with symmetric weak GARCH
errors and either stock or flow variables are closed under temporal aggregation.
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CororLary 3 (GARCH, Stocks): If {y,, t € Z} is symmetric weak
GARCH(p, q), then \y,,,, t € 7} is symmetric weak GARCH(r + [(p — r)/m], r).

CoroLLAaRY 4 (GARCH, Flows): If {y,, t € Z} is symmetric weak
GARCH(p, q), then {3 ,,y,,, t € Z} is symmetric weak GARCH(r, r).

In Table I we present upper bounds on the orders of some low frequency
models. Observe that the orders of the variance equation are influenced by the
properties of the mean equation. The calculated true low frequency orders may
be smaller than the calculated upper bounds. Consider, e.g., a high frequency
ARMAC(1, 1)-GARCH(1, 1) model. Then the corresponding low frequency mod-
els with m=2 and m =4 are ARMA(1,1)-GARCH(2,2). However, if we
started at the level m = 2 with an ARMA(, 1)-GARCH(2, 2) model, Theorem 1
suggests an ARMAC(1, 1)-GARCH(3, 3) model for m = 4. Hence if the model
under consideration is already aggregated, there may be intricate connections
between the parameters. These connections influence the orders of more highly
aggregated models. Furthermore seasonal terms in the polynomials may influ-
ence the orders of the low frequency model. In the proof of Theorem 1 we did
not exploit possible special structures in the ARMA polynomials determining
the mean equation and the GARCH part. If these polynomials contain seasonal
factors of type 1 —cL™, then other factorizations can be used to show that the
orders of the low frequency ARMA-GARCH model are smaller.

Note also that high frequency parameters can be identified from low fre-
quency parameters in many interesting cases. The aliasing problem implying
that infinitely many high frequency models are consistent with the low frequency
parameters (well-known for ARMA models; see, e.g., Phillips (1973), Hansen
and Sargent (1983), and Palm and Nijman (1984)) is generally absent in
GARCH models. The condition from Palm and Nijman (1984) that the number
of autoregressive parameters is at least equal to the number of moving average
parameters is satisfied in the ARMA model for squared observations if p # g or
B, # a,. In higher order GARCH models the existence of a finite number of
observationally equivalent GARCH processes cannot be excluded (compare the
results on ARMA processes of Nijman and Palm (1990a)).

5. EMPIRICAL EXAMPLE: EXCHANGE RATES

In order to illustrate the empirical implications of the results in the previous
sections we compare the estimated daily, weekly, and monthly models of six
exchange rates presented in Baillie and Bollerslev (1989) (BB from now on). BB
analyzes observations on the exchange rates of the French Franc, Italian Lira,
Japanese Yen, Swiss Franc, British Pound, and German Mark with respect to
the US Dollar from the New York Exchange Market between March 1, 1980
~and January 28, 1985. BB assumes that rescaled innovations in the daily and

weekly GARCH(1, 1) model for the returns are ¢ distributed. Their estimates of
the parameters for the daily and weekly model are reproduced in the first six
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TABLE II

EsTIMATES OF WEEKLY PARAMETERS FOR S1X EXCHANGE RATEs. COMPARISON OF DIRECT
WEEKLY ESTIMATES WITH ESTIMATES IMPLIED BY DAILY ESTIMATES.

Daily Estimates Weekly Estimates Implied Weekly

B o Kg Bes) as) Res) Bs) as) Res)
FF/$ .829 114 492 .655 144 5.13 .589 157 5.81
IL/$ .848 113 3.89 .658 187 3.00 .663 157 5.13
JY/$ 941 .049 5.62 927 072 6.65 .839 112 4.71
SF/$ .907 .073 341 784 121 3.00 792 112 4.05
BP/$ 910 .061 4.16 .842 .049 3.00 .768 .096 4.09
GM/$ .881 .085 3.41 .636 249 3.00 728 113 4.11

columns of Table II. Weiss (1986) and Bollerslev and Wooldridge (1992) have
shown that the quasi maximum likelihood estimator (QMLE), that is based
upon strong GARCH and conditional normal distributions, is consistent if the
conditional variance of the semi-strong GARCH process is correctly specified.
Similar results are not available for QMLE based upon conditional ¢ distri-
butions (used by BB). Moreover, this paper shows that the assumption of
semi-strong exchange returns at all frequencies is internally inconsistent. No
analytical results are available for QMLE applied to weak GARCH models.
Drost and Nijman (1992a) have carried out a number of simulation experiments
where data were generated by strong GARCH models. Subsequently the
parameters at lower frequencies were estimated by QMLE. For large samples
the true GARCH parameters were close to the estimated ones. These results
suggest that the asymptotic bias of the QMLE, if there is any, is small. For ease
of reference with BB we present the calculated «, of the rescaled innovations in
Table II instead of «, although not all presented processes can be strong
GARCH. The k, are obtained along the lines of Remark 1. Note that the
dummy variables contained in the BB model drop out in the weekly model or
are insignificant. We use the results of Example 2 to estimate the variance and
kurtosis parameters in the weekly GARCH(1,1) model. Plugging in the daily
estimates in equations (13)-(18) we obtain an alternative estimation procedure
to direct weekly estimates. These estimates are given in the last three columns
of Table II. Except for the Japanese Yen and given the large standard errors
(cf. Baillie and Bollerslev (1989)) the direct estimators are close to the implied
weekly estimates. The latter estimates, based on daily data, are probably better.
The problems with the Japanese Yen are probably caused by the high kurtosis.
BB’s estimate of the kurtosis in the weekly JY/$ model equals «,= 6.65,
implying that the fourth moment of the observations does not exist. This
probably invalidates both the estimation procedure and our aggregation results
for the JY/$ case.

From the results in Example 2 it is clear that the high frequency GARCH(1, 1)
model can be identified from low frequency data. Hourly parameter estimates
are obtained by plugging in daily estimates in equations (13)-(18) (we take 8
hours a day and we neglect possible seasonal patterns). We also present the
high frequency variance parameter estimates if k, in the high frequency model
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TABLE III

EsTIMATES OF HOURLY PARAMETERS FOR S1x EXCHANGE RATES IMPLIED
BY DAILY ESTIMATES.

Hourly Estimates Implied by Daily Estimates with «; from

Daily Data Superimposed N Superimposed ¢¢

Bass a1 /8) K(1/8)% Ba/s 1 /8) Ry Bass a1 /8) R(ne
FF/$ 957 .035 7.36 934 .058 3.99 954 .039 4.63
IL/$ 936 .059 2.66 941 .054 3.96 959 .036 4.60
JY/$ .990 .009 18.12 978 .020 3.32 .985 .014 3.78
SF/$ 958 .039 231 965 .032 353 976 .022 4.04
BP/$ 979 .017 7.62 967 .029 3.42 977 .019 3.90
GM/$ 928 .067 1.69 956 .040 3.65 .969 .027 4.19

is assumed to be known (in that case the estimated kurtosis in the low frequency
model is neglected). We compare two superimposed values: the low value « e=3
(e.g., normal innovations) and the relatively high value k, =6 (e.g., t; innova-
tions). Observe that the estimated daily kurtosis values in Table II are between
these two values. For these cases we present the implied daily kurtosis instead
of repeating the superimposed hourly kurtosis. Table III illustrates that the
parameters do not change dramatically if the kurtosis varies in a reasonable
range. A warning applies at this moment. Calculation of high frequency parame-
ters is not always possible by plugging in the low frequency parameters in
equations (13)-(18). A solution does not always exist. If the inserted parameters
are the true parameters, this implies that an underlying high frequency model
does not exist. Disaggregating more and more is not feasible. In applications,
however, the fact that no solutions exist can be caused by discrepancies between
true and estimated parameters. This problem of embeddability is well-known in
the literature of Markov models. Stroock and Varadhan (1979) present general
conditions such that a sequence of discrete time models converges to an Ito
process. See also De Haan and Karandikar (1989). Nelson (1990) and Drost and
Nijman (1992b) discuss the implications of embeddability in the context of
GARCH processes.

Finally we present in Table IV the monthly variance and kurtosis estimates
implied by the daily and weekly ones. In both cases the monthly model still
contains strong conditional heteroskedasticity, although BB cannot reject the
homoskedasticity assumption by direct estimation of the monthly parameters.
The estimates in Table IV seem to be better than the direct estimates based on
59 monthly observations. Note that the estimated weekly parameters in the
JY /$ model imply that the fourth moment of the returns does not exist. Hence
we cannot apply the temporal aggregation results in this case.

6. CONCLUDING REMARKS

In this paper we derived the low frequency model that is implied by an
assumed high frequency GARCH model. We restricted ourselves primarily to
properties of the parameters in the mean and variance equations. Moreover we
showed that the i.i.d. assumption on the rescaled innovations at the data
frequency which one happens to have available is arbitrary. The low frequency
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TABLE IV

EsTIMATES OF MONTHLY PARAMETERS FOR SiX EXCHANGE RATES.
COMPARISON OF MONTHLY ESTIMATES IMPLIED
BY DAILY AND WEEKLY ESTIMATES.

Monthly Estimates Implied by

Daily Estimates Weekly Estimates

Baoy (20 Koy Baoy (20 Koy
FF/$ .206 .103 6.27 299 .109 5.56
IL/$ 325 126 6.04 391 119 4.48
JY/$ .661 157 5.48 — =2 - —?
SF/$ .553 115 4.54 570 101 3.90
BP/$ 472 .083 4.17 593 .037 3.26
GM/$ 411 .090 4.36 426 187 6.26

2 Temporal aggregation results not applicable since fourth moment does not exist.

variance parameters generally depend on mean, variance, and kurtosis parame-
ters of the high frequency model. Furthermore we showed that the orders of the
low frequency GARCH process can be affected by properties of the high
frequency mean equation. Identification of the parameters in a high frequency
strong GARCH model from low frequency data is often possible. In addition we
showed how high frequency observations can be used to obtain estimates of the
low frequency variance parameters which are likely to be better than direct
estimates from low frequency data. A menu-driven computer program yielding
aggregation and disaggregation results for GARCH(1, 1) models is available on
request from the authors. Estimates of parameters in a variance equation for
monthly exchange rates derived in this way suggest strong conditional het-
eroskedasticity, as opposed to direct estimates. Simulation results show that the
classical quasi maximum likelihood estimator yields parameter estimates close
to the true parameters of weak GARCH models. Although we do not claim that
this estimator is consistent, these simulations suggest that the bias is negligible
in applications.

Dept. of Econometrics, Tilburg University, P.O. Box 90153, 5000 LE Tilburg,
The Netherlands.

Manuscript received November, 1990; final revision received December, 1992.

APPENDIX

Proor or THEOREM 1: We introduce some more notation. If P(L)=TI/.{(1—p;L) is some
polynomial of order p, define P, (L") and P, (L) by

p
P, (L™= [T(1-prL™), and
i=1

P
Fm(L)= 1___!(1+piL+ +p,-m_1Lm_1).
i=

Note that P, (L™)=P,(L)P(L).
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First we derive the ARMA structure of the low frequency process Jj, = W(L)y,
(t=...,m,2m,3m,...). Multiplying the ARMA equation (8) by I,,(L)W(L) we obtain

L (L™, =T, (L)O(L)W(L)e, = v,.

The autoregressive part of the low frequency model is evident from this equation. To determine the
moving average structure note that (Vk > Q) Ev,v,_ mk = 0. This determines the order of the
MA part. To derive the MA parameters proceed as in Palm and Nijman (1984) and construct
a polynomial @(L™) = L€ (6;L"™ =1+ 6;L" + --- +§5L9™ such that {m=06L™" 1, is an
uncorrelated sequence. Explicit determination of the MA parameters 0 (i=1,. ,Q) usually
requires numerical procedures. Combining these results the low frequency ARMA equatron is given
by

L(L™)5, = O(L™)¢,.

Next we derive the GARCH structure of this equatron By construction the ¢{,,, are uncorrelated
and hence the proof is complete if the projection P[{?2 N s Lo—2m» - - - 118 Of the required form. Put
1, =&?—h,,C(L) = B(L) + 1 — A(L) with order r and observe that

@)  C(L)e2=y+B(Lyn,.

Let W(L)=X% oy, L = (L™~ 'T,(LYO(LW(L) such that {,=¥(L), and put vHL)=

T¥_o¥2L:. Multiplying equation (20) by C,(L)¥?(L) and rearranging some terms yields
Cn(L™)? = Ci (P2 (1) + C,i(L) B(LY¥*(L)7,

+ Ca(L™Y({¥(L)e,)” ~ W2(L)e?).

The second and third term of the right-hand side are uncorrelated since 7, and ¢,_;¢,_; are
uncorrelated by assumption (Vi #j € Z). The moving average structure of the right-hand side is not
necessarily finite. To obtain a suitable ARMA structure in {, we have to multiply the latter
equation once more by a polynomial. Note that O(L™W(L) is a polynomial of finite order
(m — 1P+ Q +w, hence (with §,= 1)

NaslsS

O _jm=0 for i>(m—1)P+Q+w.

j=0

This difference equation in ¢ of order O determines a difference equation in @2 of order

2Q(Q + 1), say

a/20(0+1)
Y, dpl,=0 for i>(m-1)P+Q+w+3mQ(Q-1).
j=0
Put
/290 +1)
170%0 EREED PN F

i=0

and observe that W(L™)¥2(L) is a polynomial of order (m — DP+ Q +w + %mQ—(Q— —1). Pre-mul-
tiplying with w(L™) yields

P(L™)C,(L™)2
=¥1)C,()¥2(1)¢ + C,,(L)B(L)F(L™Y¥*(L)n,
+ Cu( L"YF(L™)({¥(L)e,)* ~ ¥2(L)s?).

By construction of 1I"(L"’_) the variables in the right-hand side are: n,_;, (ief0,....(m—Dr+q+
(m—-DP+Q+w+;;mQ(Q—-1)) and &,_;5,_; (i#j, i or j€{0,...,mr+(m—-DP+Q+
w+ imQ(Q — 1))). Hence the order of the MA term in the low frequency model is equal
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to r+ %Q'(Q'+ 1). Calculation of the autocorrelations of the MA term requires knowledge of
Eg2e?_;/En?. Tedious calculations imply that these quantities depend only upon the high frequency
kurtosis «, and the high frequency variance parameters. This determines the autocorrelations and
similar to the ARMA mean equation one has to determine a low frequency MA term with the same
autocorrelation structure. This low frequency MA term determines the B’s of the low frequency
GARCH equation. The a’s are obtained by subtracting the low frequency MA polynomial from
v(L™)C,,(L™).

Under the conditions of the second part of the theorem ¢, = ¢,. In this case multiply relation (20)
by C,,(L) and obtain

C(L™)¢? = C()¥ + C,i(L)B(L),.
Proceed as before and replace the right-most term by the corresponding low frequency term. The
proof is complete. Q.E.D.

ReMark 2: The symmetry condition can be relaxed in Theorem 1. The proof needs (%)
W0 <i<j) Ey,y,_;y,—j=0and (*) VO<i<j<k,i#0o0rj+k) Ey,y,_;y,_;y,—, = 0. Recall that
equation (3) implies such results for i # 0. Conditions (*) and (*) are somewhat technical and,
therefore, they are replaced by the more appealing symmetry condition.
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