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Abstract
We present a set of stylized empirical facts emerging from the statistical
analysis of price variations in various types of financial markets. We first
discuss some general issues common to all statistical studies of financial time
series. Various statistical properties of asset returns are then described:
distributional properties, tail properties and extreme fluctuations, pathwise
regularity, linear and nonlinear dependence of returns in time and across
stocks. Our description emphasizes properties common to a wide variety of
markets and instruments. We then show how these statistical properties
invalidate many of the common statistical approaches used to study financial
data sets and examine some of the statistical problems encountered in each
case.

Although statistical properties of prices of stocks and
commodities and market indexes have been studied using data
from various markets and instruments for more than half a
century, the availability of large data sets of high-frequency
price series and the application of computer-intensive methods
for analysing their properties have opened new horizons to
researchers in empirical finance in the last decade and have
contributed to the consolidation of a data-based approach in
financial modelling.

The study of these new data sets has led to the settlement of
some old disputes regarding the nature of the data but has also
generated new challenges. Not the least of them is to be able to
capture in a synthetic and meaningful fashion the information
and properties contained in this huge amount of data. A set
of properties, common across many instruments, markets and
time periods, has been observed by independent studies and
classified as ‘stylized facts’. We present here a pedagogical
overview of these stylized facts. With respect to previous
reviews [10, 14, 16, 50, 95, 102, 109] on the same subject, the
aim of the present paper is to focus more on the properties of
empirical data than on those of statistical models and introduce
the reader to some new insights provided by methods based
on statistical techniques recently applied in empirical finance.

1 Web address: http://www.cmap.polytechnique.fr/˜rama

Our goal is to ‘let the data speak for themselves’ as much
as possible. In terms of statistical methods, this is achieved
by using so-called non-parametric methods which make only
qualitative assumptions about the properties of the stochastic
process generating the data: they do not assume that they
belong to any prespecified parametric family.

Although non-parametric methods have the great
theoretical advantage of being model free, they can only
provide qualitative information about financial time series and
in order to obtain a more precise description we will sometimes
resort to semi-parametric methods which, without completely
specifying the form of the price process, imply the existence
of a parameter which describes a property of the process (for
example the tail behaviour of the marginal distribution).

Before proceeding further, let us fix some notations. In
the following, S(t)will denote the price of a financial asset—a
stock, an exchange rate or a market index—andX(t) = ln S(t)
its logarithm. Given a time scale �t , which can range from a
few seconds to a month, the log return at scale �t is defined
as:

r(t,�t) = X(t +�t)−X(t). (1)

In many econometric studies, �t is set implicitly equal to
one in appropriate units, but we will conserve all along the
variable�t to stress the fact the properties of the returns depend
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(strongly) on�t . Time lags will be denoted by the greek letter
τ ; typically, τ will be a multiple of �t in estimations. For
example, if �t =1 day, corr[r(s + τ,�t), r(s,�t)] denotes
the correlation between the daily return at period s and the
daily return τ periods later. When �t is small—for example
of the order of minutes—one speaks of ‘fine’ scales whereas
if �t is large we will speak of ‘ coarse-grained’ returns.

1. What is a stylized fact?
As revealed by a casual examination of most financial
newspapers and journals, the view point of many market
analysts has been and remains an event-based approach in
which one attempts to ‘explain’ or rationalize a given market
movement by relating it to an economic or political event
or announcement [27]. From this point of view, one could
easily imagine that, since different assets are not necessarily
influenced by the same events or information sets, price series
obtained from different assets and—a fortiori—from different
markets will exhibit different properties. After all, why should
properties of corn futures be similar to those of IBM shares
or the Dollar/Yen exchange rate? Nevertheless, the result
of more than half a century of empirical studies on financial
time series indicates that this is the case if one examines their
properties from a statistical point of view: the seemingly
random variations of asset prices do share some quite non-
trivial statistical properties. Such properties, common across
a wide range of instruments, markets and time periods are
called stylized empirical facts.

Stylized facts are thus obtained by taking a common
denominator among the properties observed in studies of
different markets and instruments. Obviously by doing so
one gains in generality but tends to lose in precision of the
statements one can make about asset returns. Indeed, stylized
facts are usually formulated in terms of qualitative properties
of asset returns and may not be precise enough to distinguish
among different parametric models. Nevertheless, we will see
that, albeit qualitative, these stylized facts are so constraining
that it is not easy to exhibit even an (ad hoc) stochastic process
which possesses the same set of properties and one has to go
to great lengths to reproduce them with a model.

2. Stylized statistical properties of asset
returns
Let us start by stating a set of stylized statistical facts which
are common to a wide set of financial assets.

1. Absence of autocorrelations: (linear) autocorrelations
of asset returns are often insignificant, except for very
small intraday time scales (� 20 minutes) for which
microstructure effects come into play.

2. Heavy tails: the (unconditional) distribution of returns
seems to display a power-law or Pareto-like tail, with
a tail index which is finite, higher than two and less
than five for most data sets studied. In particular this
excludes stable laws with infinite variance and the normal
distribution. However the precise form of the tails is
difficult to determine.

3. Gain/loss asymmetry: one observes large drawdowns in
stock prices and stock index values but not equally large
upward movements2.

4. Aggregational Gaussianity: as one increases the
time scale �t over which returns are calculated,
their distribution looks more and more like a normal
distribution. In particular, the shape of the distribution
is not the same at different time scales.

5. Intermittency: returns display, at any time scale, a high
degree of variability. This is quantified by the presence of
irregular bursts in time series of a wide variety of volatility
estimators.

6. Volatility clustering: different measures of volatility
display a positive autocorrelation over several days, which
quantifies the fact that high-volatility events tend to cluster
in time.

7. Conditional heavy tails: even after correcting returns for
volatility clustering (e.g. via GARCH-type models), the
residual time series still exhibit heavy tails. However, the
tails are less heavy than in the unconditional distribution
of returns.

8. Slow decay of autocorrelation in absolute returns: the
autocorrelation function of absolute returns decays slowly
as a function of the time lag, roughly as a power law with
an exponent β ∈ [0.2, 0.4]. This is sometimes interpreted
as a sign of long-range dependence.

9. Leverage effect: most measures of volatility of an asset
are negatively correlated with the returns of that asset.

10. Volume/volatility correlation: trading volume is
correlated with all measures of volatility.

11. Asymmetry in time scales: coarse-grained measures of
volatility predict fine-scale volatility better than the other
way round.

3. Some issues about statistical
estimation
Before proceeding to present empirical results let us recall
some general issues which are implicit in almost any statistical
analysis of asset returns. These issues have to be kept in mind
when interpreting statistical results, especially for scientists
with a background in the physical sciences where orders of
magnitude may be very different.

3.1. Stationarity

‘Past returns do not necessarily reflect future performance’.
This warning figures everywhere on brochures describing
various funds and investments. However the most basic
requirement of any statistical analysis of market data is the
existence of some statistical properties of the data under study
which remain stable over time, otherwise it is pointless to try
to identify them.

The invariance of statistical properties of the return
process in time corresponds to the stationarity hypothesis:

2 This property is not true for exchange rates where there is a higher symmetry
in up/down moves.
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which amounts to saying that for any set of time instants
t1, . . . , tk and any time interval τ the joint distribution of
the returns r(t1, T ), . . . , r(tk, T ) is the same as the joint
distribution of returns r(t1 + τ, T ), . . . , r(tk + τ, T ). It is
not obvious whether returns verify this property in calendar
time: seasonality effects such as intraday variability, weekend
effects, January effects. . . . In fact this property may be taken
as a definition of the time index t , defined as the proper way to
‘deform’ calendar time in order to obtain stationarity. This time
deformation is chosen to correct for seasonalities observed in
calendar time and is therefore usually a cumulative measure
of market activity: the number of transactions (tick time) [3],
the volume of transactions [19] or a sample-based measure
of market activity (see work by Dacorogna and coworkers
[97, 105] and also [2]).

3.2. Ergodicity

While stationarity is necessary to ensure that one can mix data
from different periods in order to estimate moments of the
returns, it is far from being sufficient: one also needs to ensure
that empirical averages do indeed converge to the quantities
they are supposed to estimate! For example one typically wants
to identify the sample moment defined by

〈f (r(t, T ))〉 = 1

N

N∑
t=1

f (r(t, T )) (2)

with the theoretical expectation Ef (r(t, T )) where E is the
expectation (ensemble average) with respect to the distribution
FT of r(t, T ). Stationarity is necessary to ensure that FT
does not depend on t , enabling the use of observations at
different times to compute the sample moment. But it is not
sufficient to ensure that the sum indeed converges to the desired
expectation. One needs an ergodic property which ensures
that the time average of a quantity converges to its expectation.
Ergodicity is typically satisfied by IID observations but it is not
obvious—in fact it may be very hard to prove or disprove—
for processes with complicated dependence properties such as
the ones observed in asset returns (see below). In fact failure
of ergodicity is not uncommon in physical systems exhibiting
long-range dependence [12]. This may also be the case for
some multifractal processes recently introduced to model high-
frequency asset returns [90, 100], in which case the relation
between sample averages and model expectations remains an
open question.

3.3. Finite sample properties of estimators

Something which seems obvious to any statistician but which
is often forgotten by unsophisticated users of statistics is that
a statistical estimator, which is defined as a sample average,
has no reason to be equal to the quantity it estimates, which is
defined as a moment of the theoretical (unknown) distribution
of the observations (ensemble average).

This confusion is frequent in fields where ‘sample sizes’
are large: for example, in statistical mechanics where one
frequently identifies the sample average of a microscopic
quantity and its expected value or ensemble average. Since
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Figure 1. Daily returns of BMW shares on the Frankfurt Stock
Exchange, 1992–1998.

in a typical macroscopic system the number of particles is
around the Avogadro number N = 1023, the relative error is
of order N−1/2 � 10−12! The issue is completely different
when examining a data set of five years of daily returns of a
stock index where N � 103. In this case, a statistic without a
‘confidence interval’ becomes meaningless and one needs to
know something about the distribution of the estimator itself.

There is a long tradition of ‘hypothesis testing’ in financial
econometrics in which one computes the likelihood of a model
to hold given the value of a statistic and rejects/accepts the
model by comparing the test statistics to a threshold value.
With a few exceptions (see [8, 87, 88]), the large majority of
statistical tests are based on a central limit theorem for the
estimator from which the asymptotic normality is obtained.
This central limit theorem can be obtained by assuming that
the noise terms (innovations) in the return process are ‘weakly’
dependent [30]. In order to obtain confidence intervals for
finite samples, one often requires the residuals to be IID and
some of their higher-order (typically fourth order) moments
to be well defined (finite). As we shall see below, the
properties of empirical data—especially the heavy tails and
nonlinear dependence—do not seem to, in general, validate
such hypotheses, which raises the question of the meaning and
relevance of such confidence intervals. As we will discuss
below, this can have quite an impact on the significance
and interpretation of commonly used estimators (see also
discussions in [1, 31, 107]).

4. The distribution of returns: a tale of
heavy tails
Empirical research in financial econometrics in the 1970s
mainly concentrated on modelling the unconditional distribu-
tion of returns, defined as:

FT (u) = P(r(t, T ) � u). (3)
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Figure 2. Kernel estimator of the density of 30 minute price
increments. S&P 500 index futures.

The probability density function (PDF) is then defined as its
derivative fT = F ′

T . As early as the 1960s, Mandelbrot [80]
pointed out the insufficiency of the normal distribution for
modelling the marginal distribution of asset returns and their
heavy-tailed character. Since then, the non-Gaussian character
of the distribution of price changes has been repeatedly
observed in various market data. One way to quantify the
deviation from the normal distribution is by using the kurtosis
of the distribution FT defined as

κ = 〈(r(t, T )− 〈r(t, T )〉)4〉
σ(T )4

− 3, (4)

where σ(T )2 is the variance of the log returns r(t, T ) =
x(t + T ) − x(t). The kurtosis is defined such that κ = 0
for a Gaussian distribution, a positive value of κ indicating
a ‘fat tail’, that is, a slow asymptotic decay of the PDF.
The kurtosis of the increments of asset prices is far from its
Gaussian value: typical values for T = 5 minutes are (see
table 1): κ � 74 (US$/DM exchange rate futures), κ � 60
(US$/Swiss Franc exchange rate futures), κ � 16 (S&P500
index futures) [16, 21, 22, 102].

One can summarize the empirical results by saying that
the distribution f�t tends to be non-Gaussian, sharp peaked
and heavy tailed, these properties being more pronounced for

Table 1. Descriptive statistics for five minute price increments.

Data µ/σ Skewness Kurtosis

S&P 500 futures 0.003 −0.4 15.95
Dollar/ DM futures 0.002 −0.11 74
Dollar/ Swiss

Franc futures 0.002 −0.1 60
IID 95%

confidence interval − 0.018 0.036
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Figure 3. Second empirical moment of five minute price changes
as a function of sample size. S&P index futures.

intraday values of T (T < 1 day). Figure 2 gives an example
of the density of returns for T = 30 minutes.

These features are not sufficient for identifying the
distribution of returns and leave a considerable margin for the
choice of the distribution. Fitting various functional forms to
the distribution of stock returns and stock price changes has
become a popular pastime: there are dozens of parametric
models proposed in the literature, starting with the normal
distribution, stable distributions [80], the Student distribution
[9, 72], hyperbolic distributions [37, 104], normal inverse
Gaussian distributions [7], exponentially truncated stable
distributions [11,21] are some of the parametric models which
have been proposed. From the empirical features described
above, one can conclude that, in order for a parametric model
to successfully reproduce all the above properties of the
marginal distributions it must have at least four parameters:
a location parameter, a scale (volatility) parameter, a
parameter describing the decay of the tails and eventually an
asymmetry parameter allowing the left and right tails to have
different behaviours. For example, normal inverse Gaussian
distributions [7], generalized hyperbolic distributions [104]
and exponentially truncated stable distributions [11, 21] meet
these requirements. The choice among these classes is then a
matter of analytical and numerical tractability.

4.1. How heavy are the tails of the distribution?

The non-Gaussian character of the distribution makes it
necessary to use other measures of dispersion than the standard
deviation in order to capture the variability of returns. One
can consider for example higher-order moments or cumulants
as measures of dispersion and variability. However, given
the heavy-tailed nature of the distribution, one has to know
beforehand whether such moments are well defined. The
tail index k of a distribution may be defined as the order of
the highest absolute moment which is finite. The higher the

226



QUANTITATIVE FI N A N C E Empirical properties of asset returns: stylized facts and statistical issues

� ���  �� !�� $�� ���� ���� � �� �!�� �$�� ����
���

���

����"�
	
#�

��
�
�"
�

�
��

��
�

���

���

���

Figure 4. Fourth empirical moment of a Student distribution with
four degrees of freedom as calculated from a data set obtained from
a random number generator.

tail index, the thinner the tail; for a Gaussian or exponential
tail, k = +∞ (all moments are finite), while for a power-law
distribution with exponent α, the tail index is equal to α. But,
as we shall see below, a distribution may have a finite tail index
α without being a power-law distribution. Measuring the tail
index of a distribution gives a measure of how heavy the tail
is.

A simple method, suggested by Mandelbrot [80,89], is to
represent the sample moments (or cumulants) as a function of
the sample size n. If the theoretical moment is finite then the
sample moment will eventually settle down to a region defined
around its theoretical limit and fluctuate around that value. In
the case where the true value is infinite the sample moment will
either diverge as a function of sample size or exhibit erratic
behaviour and large fluctuations. Applying this method to
time series of cotton prices in [80], Mandelbrot conjectured
that the theoretical variance may be infinite since the sample
variance did not converge to a particular value as the sample
size increased and continued to fluctuate incessantly.

Figure 3 indicates an example of the behaviour of the
sample variance as a function of sample size. The behaviour of
sample variance suggests that the variance of the distribution
is indeed finite: the sample variance settles down to a limit
value after a transitory phase of wild oscillations. A systematic
analysis on a wide range of US and French stocks yields similar
results [22].

The behaviour of the fourth moment is usually more
erratic. The standard deviation of the sample kurtosis involves
a polynomial containing the theoretical moments up to order
eight! The eighth moment of the distribution having a
very large numerical value, it is not surprising to see the
fourth moment fluctuate wildly. As an illustration of this
phenomenon we have estimated (figure 4) the fourth moment
for a numerically generated series of IID random variables
with a Student distribution with four degrees of freedom which
displays a tail behaviour similar to many asset returns, with a
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Figure 5. The 1987 crash: evolution of the S&P500 index.

power-law decay of exponent four. It can be seen from figure
4 that the statistical fluctuations are very strong even for such
a familiar distribution, suggesting that fourth or higher-order
moments are not numerically stable as quantitative measures
of risk. This is linked to the fact that the behaviour of sample
moments is controlled by higher-order theoretical moments,
which may be infinite. Going beyond the graphical analysis
described above, the next section describes how extreme value
theory may be used to estimate the tail index of returns.

4.2. Extreme values

One of the important characteristics of financial time series
is their high variability, as revealed by the heavy-tailed
distributions of their increments and the non-negligible
probability of occurence of violent market movements. These
large market movements, far from being discardable as
simple outliers, focus the attention of market participants
since their magnitude may be such that they compose an
important fraction of the return aggregated over a long period:
figure 5 illustrates such an example. These observations
have motivated numerous theoretical efforts to understand
the intermittent nature of financial time series and to model
adequately the tails of the distribution of returns. Not only are
such studies of direct relevance for risk management purposes
but they are rendered necessary for the calculation of the Value-
at-Risk, which is required to determine regulatory capital
requirements. Value-at-Risk (VaR) is defined as a high quantile
of the loss distribution of a portfolio over a certain time horizon
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�t :
P(W0(r(t,�t)− 1) � VaR(p, t,�t)) = p (5)

whereW0 is the present market value of the portfolio, r(t,�t)
its (random) return between t and t +�t . �t is typically taken
to be one day or ten days and p = 1% or 5%. Calculating VaR
implies a knowledge of the tail behaviour of the distribution of
returns. In recent years there has been an upsurge of interest
in modelling the tails of the distributions of stock returns using
the tools of extreme value theory, a branch of probability theory
dealing precisely with the probabilities of extreme events. To
our knowledge, the first application of extreme value theory to
financial time series was given by Jansen and de Vries [70],
followed by Longin [76], Dacorogna et al [28], Lux [77] and
others.

Given a series of n non-overlapping returns r(t,�t), t =
0,�t, 2�t, . . . , n�t , the extremal (minimal and maximal)
returns are defined as:

mn(�t) = min{r(t + k�t,�t), k ∈ [1, n]}, (6)

Mn(�t) = max{r(t + k�t,�t), k ∈ [1, n]}. (7)

In economic terms, mn(�t) represents the worst relative loss
over a time horizon �t of an investor holding the portfolio
P(t). A relevant question is to know the properties of these
extremal returns, for example the distribution of mn(�t) and
Mn(�t). More generally one is interested in the properties
of large price fluctuations (not only minima and maxima).
Obviously if one knew the stochastic process generating the
returns, one could also evaluate the distribution of the extremes,
but this is unfortunately not the case as attested by the zoology
of parametric models used to fit the marginal distribution of
returns! This is where extreme value theory comes into play:
in this approach, one looks for a distributional limit ofmn(�t)
and Mn(�t) as the sample size n increases. If such a limit
exists, then it is described by the Fisher–Tippett theorem in the
case where the returns are IID.

Extreme value theorem for IID sequence [38].
Assume the log returns (r(t,�t))t�0 form an IID
sequence with distribution F�t . If there exist
normalizing constants (λn, σn) and a non-degenerate
limit distribution H for the normalized maximum
return:

P

(
Mn − λn
σn

� x
)

→
x→∞H(x) (8)

then the limit distribution H is either a Gumbel,
Weibull or Fréchet distribution (see table 2).

The three distributional forms can be parametrized in
the following unified form, called the Cramer–von Mises
parametrization:

Hξ(x) = exp[−(1 + ξx)−1/ξ ] (9)

where the sign of the shape parameter ξ determines the
extremal type: ξ > 0 for Fréchet, ξ < 0 for Weibull and
ξ = 0 for Gumbel. This result implies that one need not
know the exact parametric form of the marginal distribution

of returns F to evaluate the distribution of extremal returns.
The value of ξ only depends on the tail behaviour of the
distribution F�t of the returns: a distribution F�t with finite
support gives ξ < 0 (Weibull) while a distribution F�t with
a power-law tail with exponent α falls in the Fréchet class
with ξ = 1/α > 0. The Fréchet class therefore contains
most ‘heavy-tailed’ distributions. All other distributions fall
in the Gumbel class ξ = 0 which plays a role for extreme
values analogous to that of the normal distribution for sums
of random variables: it is the typical limit for the distribution
of IID extremes. For example, the normal, log-normal and
exponential distribution fall in the Gumbel class, as well as
most distributions with an infinite tail index (see section 4.1
for a definition).

This theorem also provides a theoretical justification for
using a simple parametric family of distributions for estimating
the extremal behaviour of asset returns. The estimation may
be done as follows: one interprets the asymptotic result above
as

P(Mn � u) = Hξ
(
u− λn
σn

)
= Hξ,λn,σn(x). (10)

The estimation of the distribution of maximal returns then
is reduced to a parameter estimation problem for the three-
parameter family Hξ,λ,σ . One can estimate these parameters
by the so-called block method [38,76]: one divides the data into
N subperiods of length n and takes the extremal returns in each
subperiod, obtaining a series ofN extremal returns (xi)i=1,...,N ,
which is then assumed to be an IID sequence with distribution
Hξ,λ,σ . A maximum likelihood estimator of (ξ, λ, σ ) can be
obtained by maximizing the log-likelihood function:

L(λ, σ, ξ) =
N∑
i=1

l(λ, σ, ξ, xi) (11)

where l is the log density obtained by differentiating
equation (9) and taking logarithms:

l(λ, σ, ξ, xi) = − ln σ −
(

1 +
1

ξ

)
ln

[
1 + ξ

(
xi − λ
σ

)]

−
[

1 + ξ

(
xi − λ
σ

)]1/ξ

. (12)

If ξ > −1 (which covers the Gumbel and Fréchet cases), the
maximum likelihood estimator is asymptotically normal and
well behaved [38].

These methods, when applied to daily returns of stocks,
market indices and exchange rates, yield a positive value of ξ
between 0.2 and 0.4, which means a tail index 2 < α(T ) � 5
[64, 70, 76, 77]. In all cases, ξ is bounded away from zero,
indicating heavy tails belonging to the Fréchet domain of

Table 2. Limit distributions for extreme values. Here 1x>0 and 1x�0

are indicator functions.

Gumbel H(x) = exp(−e−x)
Fréchet H(x) = exp(−x−α) 1x>0

Weibull H(x) = exp(−(−x)−α) 1x�0 + 1x>0
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Figure 6. Autocorrelation function of USD/Yen exchange rate
returns. Time scale: ticks.

attraction but the tail index is found to be larger than two—
which means that the variance is finite and the tails lighter than
those of stable Lévy distributions [41], but compatible with a
power-law (Pareto) tail with (the same) exponent α(T ) = 1/ξ .
These studies seem to validate the power-law nature of the
distribution of returns, with an exponent around three, using
a direct log–log regression on the histogram of returns [52].
Note however that these studies do not allow us to pinpoint
the exponent with more than a single significant digit. Also,
a positive value of ξ does not imply power-law tails [12] but
is compatible with any regularly varying tail with exponent
α = 1/ξ [38]:

F�t(x) ∼
x→∞

L(x)

xα
(13)

where L(.) verifies ∀y > 0, L(xy)/L(x)→ 1 when x → ∞.
L is then called a slowly-varying function, the logarithm and
the constant function being particular examples. Any choice of
L will give a different distribution F�t of returns but the same
extremal type ξ = 1/α, meaning that, in the Fréchet class, the
extremal behaviour only identifies the tail behaviour up to a
(unknown!) slowly-varying function which may considerably
influence in turn the results of the log–log fit on the histogram!

A more detailed study on high-frequency data using
different methods [28] indicates that the tail index varies only
slightly when the time resolution moves from an intraday (30
minutes) to a daily scale [64], indicating a relative stability
of the tails. However, the IID hypothesis underlying these
estimation procedure has to be treated with caution given the
dependence present in asset returns (see section 5 and [25]).

5. Dependence properties of returns
5.1. Absence of linear autocorrelation
It is a well-known fact that price movements in liquid
markets do not exhibit any significant autocorrelation: the

� �  ! $ �� �� � �! �$ ��

���

.��
/���(��
��
�
�)	0

��
�
�"
�

��
��
��
��
�"
��

�
�

*��������"��
��
�����
��
��
1.2
�
�)
������	

��$

��!

�� 

���

�

����

Figure 7. Autocorrelation function of tick by tick returns on KLM
shares traded on the NYSE. Time scale: ticks.

autocorrelation function of the price changes

C(τ) = corr(r(t,�t), r(t + τ,�t)) (14)

(where corr denotes the sample correlation) rapidly decays
to zero in a few minutes (see figures 6 and 7): for τ � 15
minutes it can be safely assumed to be zero for all practical
purposes [21]. The absence of significant linear correlations in
price increments and asset returns has been widely documented
[43,102] and is often cited as support for the ‘efficient market
hypothesis’ [44]. The absence of correlation is intuitively easy
to understand: if price changes exhibit significant correlation,
this correlation may be used to conceive a simple strategy with
positive expected earnings; such strategies, termed statistical
arbitrage, will therefore tend to reduce correlations except for
very short time scales, which represent the time the market
takes to react to new information. This correlation time is
typically several minutes for organized futures markets and
even shorter for foreign exchange markets. Mandelbrot [85]
expressed this property by stating that ‘arbitrage tends to
whiten the spectrum of price changes’. This property implies
that traditional tools of signal processing which are based on
second-order properties, in the time domain—autocovariance
analysis, ARMA modelling—or in the spectral domain—
Fourier analysis, linear filtering—cannot distinguish between
asset returns and white noise. This points out the need for
nonlinear measures of dependence in order to characterize the
dependence properties of asset returns.

In high-frequency return series of transaction prices, one
actually observes a negative autocorrelation at very short lags
(typically, one or a few trades). This is traditionally attributed
to the bid–ask bounce [16]: transaction prices may take place
either close to the ask or closer to the bid price and tend to
bounce between these two limits. However, one also observes
negative autocorrelations at the first lag in bid or ask prices
themselves, suggesting a fast mean reversion of the price at
the tick level. This feature may be attributed to the action of a
market maker [47].
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The absence of autocorrelation does not seem to hold
systematically when the time scale �t is increased: weekly
and monthly returns do exhibit some autocorrelation. However
given that the sizes of the data sets are inversely proportional to
�t the statistical evidence is less conclusive and more variable
from sample to sample.

5.2. Volatility clustering and nonlinear dependence

The absence of autocorrelations in return gave some empirical
support for ‘random walk’ models of prices in which the returns
are considered to be independent random variables. However
it is well known that the absence of serial correlation does
not imply the independence of the increments: independence
implies that any nonlinear function of returns will also have
no autocorrelation. This property does not hold however:
simple nonlinear functions of returns, such as absolute or
squared returns, exhibit significant positive autocorrelation or
persistence. This is a quantitative signature of the well-known
phenomenon of volatility clustering: large price variations are
more likely to be followed by large price variations. Figure 1
illustrates this phenomenon on daily returns of BMW shares.
Log prices are therefore not random walks [17, 21].

A quantity commonly used to measure volatility clustering
is the autocorrelation function of the squared returns:

C2(τ ) = corr(|r(t + τ,�t)|2, |r(t,�t)|2). (15)

Empirical studies using returns from various indices and
stocks indicate that this autocorrelation function remains
positive and decays slowly, remaining significantly positive
over several days, sometimes weeks [10, 20–22, 34, 35, 39].
This is sometimes called the ‘ARCH effect’ in the econometric
literature since it is a feature of (G)ARCH models [10,39] but
it is important to keep in mind that it is a model-free property
of returns which does not rely on the GARCH hypothesis.
This persistence implies some degree of predictability for the
amplitude of the returns as measured by their squares. In the
same way one can study autocorrelation functions of various
powers of the returns:

Cα(τ) = corr(|r(t + τ,�t)|α, |r(t,�t)|α). (16)

Comparing the decay of Cα for various values of α, Ding
and Granger [34, 35] remarked that, for a given lag τ , this
correlation is highest for α = 1, which means that absolute
returns are more predictable than other powers of returns.
Several authors [11,20–22,54,55,59,105] have remarked that
the decay ofCα(τ) as τ increases is well reproduced by a power
law:

Cα(τ) ∼ A

τβ
(17)

with a coefficient β ∈ [0.2, 0.4] for absolute or squared returns
[21, 22, 74]. This slow decay is sometimes interpreted as a
sign of long-range dependence in volatility and motivated the
development of models integrating this feature (see below).
More generally, one can ask what is the nonlinear function of
the returns which yields the highest predictability, i.e., which
maximizes the one-lag correlation? This question, which is
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Figure 8. Behaviour of some nonlinear correlation functions of
price changes.

the object of ‘canonical correlation analysis’, can yield more
insight into the dependence properties of returns [29]. Some
examples of autocorrelations of different nonlinear transforms
of returns are compared in figure 8. These autocorrelations
are actually weighted sums of covariances of various integer
powers of returns, weighted by the coefficients of the Taylor
expansion of the nonlinear transform considered [22]. Recent
work [90,100] on multifractal stochastic volatility models has
motivated yet another measure of nonlinear dependence based
on correlations of the logarithm of absolute returns:

C0(τ ) = corr(ln |r(t + τ,�t)|, ln |r(t,�t)|). (18)

Muzy et al [100] show that this function also exhibits a slow
decay, which they represent by a logarithmic form over a
certain range of values:

C0(τ ) = a ln
b

�t + τ
. (19)

Another measure of nonlinear dependence in returns is the
so-called ‘leverage effect’: the correlation of returns with
subsequent squared returns defined by

L(τ) = corr(|r(t + τ,�t)|2, r(t,�t)) (20)

starts from a negative value and decays to zero [13, 102],
suggesting that negative returns lead to a rise in volatility.
However this effect is asymmetric L(τ) �= L(−τ) and in
general L(τ) is negligible for τ < 0.

The existence of such nonlinear dependence, as opposed
to absence of autocorrelation in returns themselves, is usually
interpreted by stating that there is correlation in ‘volatility’
of returns but not the returns themselves. These observations
motivate a decomposition of the return as a product

r(t,�t) = σ(t,�t)ε(t) (21)
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where ε(t) is a white noise, uncorrelated in time, and
σ(t,�t) > 0 a conditional volatility factor whose dynamics
should be specified to match the empirically observed
dependences. Examples of models in this direction are
GARCH models [10,39] and long-memory stochastic volatility
models [20,59,100]. Note however that in this decomposition
the volatility variable σ(t,�t) is not directly observable,
only the returns r(t,�t) are. Therefore, the definition of
‘volatility’ is model dependent and ‘volatility correlations’ are
not observable as such, whereas the correlations of absolute
returns are computable.

5.3. How reliable are autocorrelation functions?

Autocorrelation functions (ACF) were originally developed
as a tool for analysing dependence for Gaussian time series
and linear models, for which they adequately capture the
dependence structure of the series under study. This is less
obvious when one considers nonlinear, non-Gaussian time
series such as the ones we are dealing with. In particular,
the heavy-tailed feature of these time series can make the
interpretation of a sample ACF problematic.

As shown by Davis and Mikosch [31], the sample
ACF of heavy-tailed nonlinear time series can have
non-standard statistical properties which invalidate many
econometric testing procedures used for detecting or
measuring dependence. In particular, if the marginal
distribution of the returns has an infinite fourth moment—a
property which is suggested by studies using extreme value
techniques (see section 4.2)—then, although the sample ACF
remains a consistent estimator of the theoretical ACF, the
rate of convergence is slower than

√
n and, more importantly,

asymptotic confidence bands for sample ACFs are wider than
classical ones. The situation is even worse for sample ACFs
of the squares of the returns, which are classically used to
measure volatility clustering. For example, the autocorrelation
coefficient of the squares of the returns is often used as a
moment condition for fitting GARCH models to financial time
series [48]. First, in order for autocorrelations of squared
returns to be well defined, one needs finiteness of fourth
moments of returns. On the other hand, the statistical analysis
of large returns (see section 4.2) indicates that the tail index
obtained for most assets is typically close to four (sometimes
less) which means that the fourth moment is not a well-
defined numerically stable quantity. This means that there
exists a great deal of variability in sample autocorrelations of
squared returns, which raises some doubts about the statistical
significance of quantitative estimates derived from them.

These criticisms can be quantified if one considers
analogous quantities for some time series models with fat-
tailed marginals, such as GARCH. In a critical study of
GARCH models, Mikosch and Starica [96] show that the
ACF of the squared returns in GARCH(1,1) models can have
non-standard sample properties and generate large confidence
bands, which raises serious questions about the methods used
to fit these models to empirical data.

To summarize, for such heavy-tailed time series,
estimators of the autocorrelation function of returns and

their squares can be highly unreliable and even in cases
where they are consistent they may have large confidence
intervals associated with them. Therefore, one should be
very careful when drawing quantitative conclusions from the
autocorrelation function of powers of the returns.

6. Cross-asset correlations
While the methods described above are essentially univariate—
they deal with one asset at a time—most practical problems in
risk management deal with the management of portfolios con-
taining a large number of assets (typically more than a hun-
dred). The statistical analysis of the risk of such positions
requires information on the joint distribution of the returns of
different assets.

6.1. Covariances and correlations of returns

The main tool for analysing the interdependence of asset
returns is the covariance matrix C of returns:

Cij = cov(ri(t, T ), rj (t, T )). (22)

The covariance between two assets may be seen as a product
of three terms: the two assets’ volatilities and their correlation
ρij :

Cij = σiσjρij ρij ∈ [−1, 1]. (23)

Obviously, the heteroskedastic nature of individual asset
returns results in the instability in time of covariances: the
covariance Cij may vary, not because the correlation between
the two assets change, but simply because their individual
volatilities change. This effect can be corrected by considering
the correlation matrix C = [ρij ] instead of the covariance:

C = 1(t)C1(t) (24)

where 1(t) = diag(σ1(t), . . . , σn(t)) is the diagonal matrix
of conditional standard deviations. The matrix C may be
estimated from time series of asset returns: Cij is estimated by
the sample correlation between assets i and j .

The most interesting features of the matrix C are its
eigenvalues λi and its eigenvectors ei , which have been
usually interpreted in economic terms as factors of randomness
underlying market movements.

In a recent empirical study of the covariance matrix
of 406 NYSE assets, Laloux et al [78] (see also [103])
showed that among the 406 available eigenvalues and principal
components, apart from the highest eigenvalue (whose
eigenvector roughly corresponds to the market index) and
the next few (ten) highest eigenvalues, the other eigenvectors
and eigenvalues do not seem to contain any information: in
fact, their marginal distribution closely resembles the spectral
distribution of a positive symmetric matrix with random entries
[94] whose distribution is the ‘most random possible’—i.e.,
entropy maximizing. These results strongly question the
validity of the use of the sample covariance matrix as an input
for portfolio optimization, as suggested by classical methods
such as mean-variance optimization, and support the rationale
behind factor models such as the CAPM and APT, where the
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correlations between a large number of assets are represented
through a small number of factors. To examine the residual
correlations once the common factors have been accounted for,
one can define conditional correlations by conditioning on an
aggregate variable such as the market return before computing
correlations [18].

6.2. Correlations of extreme returns

Independently of the significance of its information content,
the covariance matrix has been criticized as a tool for
measuring dependence because it is based on an averaging
procedure which emphasizes the centre of the return
distribution whereas correlations, which are used for portfolio
diversification, are mainly useful in circumstances when stock
prices undergo large fluctuations. In these circumstances, a
more relevant quantity is the conditional probability of a large
(negative) return in one stock given a large negative movement
in another stock:

Fij (x, y) = P(ri < −x|rj < −y). (25)

For example, one can consider high (95% or 99%) level
quantiles qi for each asset i

eij (q) = P(ri < −qi |rj < −qj ). (26)

It is important to remark that two assets may have extremal
correlations while their covariance is zero: covariance does not
measure the correlation of extremes. Some recent theoretical
work has been done in this direction using copulas [108] and
multivariate extreme value theory [64, 112, 113], but a lot
remains to be done on empirical grounds. For a recent review
with applications to foreign exchange rate data see Hauksson
et al [64].

7. Pathwise properties
The risky character of a financial asset is associated with
the irregularity of the variations of its market price: risk
is therefore directly related to the (un)smoothness of the
trajectory and this is one crucial aspect of empirical data that
one would like a mathematical model to reproduce.

Each class of stochastic models generates sample paths
with certain local regularity properties. In order for a model
to represent adequately the intermittent character of price
variations, the local regularity of the sample paths should try
to reproduce those of empirically observed price trajectories.

7.1. Hölder regularity

In mathematical terms, the regularity of a function may be
characterized by its local Hölder exponents. A function f is
h-Hölder continuous at point t0 iff there exists a polynomial of
degree < h such that

|f (t)− P(t − t0)| � Kt0 |t − t0|h (27)

in a neighborhood of t0, whereKt0 is a constant. Let Ch(t0) be
the space of (real-valued) functions which verify the above

property at t0. A function f is said to have local Hölder
exponent α if for h < α, f ∈ Ch(t0) and for h > α, f /∈
Ch(t0). Let hf (t) denote the local Hölder exponent of f at
point t . If hf (t0) � 1 then f is differentiable at point t0,
whereas a discontinuity of f at t0 implies hf (t0) = 0. More
generally, the higher the value of hf (t0), the greater the local
regularity of f at t0.

In the case of a sample pathXt(ω) of a stochastic process
Xt , hX(ω)(t) = hω(t) depends on the particular sample path
considered, i.e., on ω. There are however some famous
exceptions: for example for fractional Brownian motion with
self-similarity parameterH , hB(t) = 1/H almost everywhere
with probability one, i.e., for almost all sample paths. Note
however that no such results hold for sample paths of Lévy
processes or even stable Lévy motion.

7.2. Singularity spectrum

Given that the local Hölder exponent may vary from sample
path to sample path in the case of a stochastic process, it is not
a robust statistical tool for characterizing signal roughness: the
notion of a singularity spectrum of a signal was introduced to
give a less detailed but more stable characterization of the local
smoothness structure of a function in a ‘statistical’ sense.

Definition. Let f : R → R be a real-valued function
and for each α > 0 define the set of points at which
f has local Hölder exponent h:

8(α) = {t, hf (t) = α}. (28)

The singularity spectrum of f is the function D :
R+ → R which associates to each α > 0 the
Hausdorff–Besicovich dimension3 of 8(α):

D(α) = dimHB8(α). (29)

Using the above definition, one may associate to each
sample path Xt(ω) of a stochastic process Xt its singularity
spectrum dω(α). If dω is ‘strongly dependent’ on ω then the
empirical estimation of the singularity spectrum is not likely
to give much information about the properties of the process
Xt .

Fortunately, this turns out not to be the case: it has
been shown that, for large classes of stochastic processes, the
singularity spectrum is the same for almost all sample paths.
Results due to Jaffard [68] show that a large class of Lévy
processes verifies this property.

As defined above, the singularity spectrum of a function
does not appear to be of any practical use since its definition
involves first the continuous time (�t → 0) limit for
determining the local Hölder exponents and second the
determination of the Hausdorff dimension of the sets 8(α)
which, as remarked already by Halsey et al [58], may be
intertwined fractal sets with complex structures and impossible
to separate on a point by point basis. The interest of physicists

3 The Hausdorff–Besicovich dimension is one of the numerous mathematical
notions corresponding to the general concept of ‘fractal’ dimension. For
details see [40].
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and empirical researchers in singularity spectra was ignited by
the work of Parisi and Frisch [101] and subsequently of Halsey
et al [58] who, in different contexts , proposed a formalism for
empirically computing the singularity spectrum from sample
paths of the process. This formalism, called the multifractal
formalism [58, 66, 67, 101], enables the singularity spectrum
to be computed from sample moments (‘structure functions’)
of the increments. More precisely, if the sample moments of
the returns verify a scaling property

〈|r(t, T )|q〉 ∼ T ζ(q) (30)

then the singularity spectrum D(α) is given by the Legendre
transform of the scaling exponent ζ(q)

ζ(q) = 1 + inf(qα −D(α)). (31)

ζ(q) may be obtained by regressing log〈|r(t, T )|q〉 against
log T . In the case of multifractal processes for which the
scaling in equation (30) holds exactly, the Legendre transform
(31) may be inverted to obtain D(α) from ζ(q). The
technique was subsequently refined [62,99] using the wavelet
transform [92], who proposed an algorithm for determining
the singularity spectrum from its wavelet transform [66, 67].

7.3. Singularity spectra of asset price series

These methods provide a framework to investigate pathwise
regularity of price trajectories [4,26,45,100]. A first surprising
result is that the shape of the singularity spectrum does not
depend on the asset considered: all series exhibit the same,
‘inverted parabola’ shape also observed by Fisher et al [45] on
the USD/DEM high-frequency exchange rate data using the
structure function method [101]. The spectra have a support
ranging from 0.3 to 0.9 (with some variations depending
on the data set chosen) with a maximum centred around
0.55–0.6. Note that 0.55–0.6 is the range of values of the
‘Hurst exponent’ reported in many studies of financial time
series using the R/S or similar techniques, which is not
surprising since the maximum ofD(α) represents the ‘almost-
everywhere’ Hölder exponent which is the one detected by
‘global’ estimators such as the R/S statistic. It should be
noted that this non-trivial spectrum is very different from what
one would expect from diffusion processes, Lévy processes
or jump-diffusion processes used in continuous-time finance,
for which the singularity spectrum is theoretically known. In
fact, it indicates no discontinuous (‘jump’) component in the
signal since the Hölder exponent does not extend down to
zero. The rare examples of stochastic processes for which the
singularity spectrum resembles the one observed in empirical
data are stochastic cascades [90] or their causal versions, the
multifractal random walks [6, 100].

One drawback of the singularity spectrum is that its finite
sample properties are not well known. Veneziano et al [114]
have investigated, in the context of study of width functions of
river basins, the results obtained when a multifractal formalism
is applied to a non-fractal data set such as the graph of a
simple deterministic function (a parabola in [114]). They
obtain a concave nonlinear shape for ζ(q)which is supposedly

the signature of multifractality and a non-trivial multifractal
spectrum D(α) with an inverse parabolic shape, while the
real spectrum in their case is reduced to two points! This
leads one to believe that one will generically obtain non-
trivial multifractal spectra even if the data set studied is not
multifractal, in which case the results indicated above should
be interpreted with extreme caution. Moreover, even in the
case of a genuine multifractal process the convergence of the
empirical spectrum to its true value can be rather slow. In
any case the subject merits further study in order to obtain
a suitable characterization of finite sample behaviour of the
estimators proposed for the various quantities of interest.

As in [45], one can supplement such studies by applying
the same techniques to Monte Carlo simulations of various
stochastic models used in finance in order to check whether
the peculiar shapes of the spectra obtained are not artefacts due
either to small sample size or discretization. Our preliminary
results [26] seem to rule out such a possibility. In addition, the
three different multifractal formalisms yield similar estimators
for the singularity spectrum.

8. Conclusion
In the preceding sections, we have tried to present, in some
detail, a set of statistical facts which emerge from the empirical
study of asset returns and which are common to a large
set of assets and markets. The properties mentioned here
are model free in the sense that they do not result from a
parametric hypothesis on the return process but from rather
general hypotheses of qualitative nature. As such, they should
be viewed as constraints that a stochastic process has to
verify in order to reproduce the statistical properties of returns
accurately. Unfortunately, most currently existing models fail
to reproduce all these statistical features at once, showing that
they are indeed very constraining.

Finally, we should point out several issues we have not
discussed here. One important question is whether a stylized
empirical fact is relevant from an economic point of view.
In other words can these empirical facts be used to confirm
or rule out certain modelling approaches used in economic
theory? Another question is whether these empirical facts are
useful from a practitioner’s standpoint. For example, does
the presence of volatility clustering imply anything interesting
from a practical standpoint for volatility forecasting? If it
does, can this be put to use to implement a more effective
risk measurement/management approach? Can one exploit
such correlations to implement a volatility trading strategy?
Or, how can one incorporate a measure of irregularity such as
the singularity spectrum or the extremal index of returns in a
measure of portfolio market risk? We leave these questions
for future research.
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Financiers (Aléa-Saclay: Eyrolles)

[12] Bouchaud J-P 2001 Power laws in economics and finance
Quantitative Finance 1 105–12

[13] Bouchaud J-P, Matacz A and Potters M 2001 The leverage
effect in financial markets: retarded volatility and market
panic Preprint
http://xxx.lpthe.jussieu.fr/abs/cond-mat/0101120

[14] Brock W A and de Lima P J F 1995 Nonlinear time series,
complexity theory and finance Handbook of Statistics
Volume 14: Statistical Methods in Finance ed G Maddala
and C Rao (New York: North-Holland)

[15] Campbell J, Grossmann S and Wang J 1993 Trading volume
and serial correlation in stock returns Q. J. Economics 108
905–39

[16] Campbell J, Lo A H and McKinlay C 1997 The Econometrics
of Financial Markets (Princeton, NJ: Princeton University
Press)

[17] Campbell J, Lo A H and McKinlay C 1999 A Non-Random
Walk Down Wall Street (Princeton, NJ: Princeton
University Press)

[18] Cizeau P, Potters M and Bouchaud J-P 2000 Correlations of
extreme stock returns within a non-Gaussian one-factor
model Science & Finance Working Paper

[19] Clark P K 1973 A subordinated stochastic process model
with finite variance for speculative prices Econometrica 41
135–55

[20] Comte F and Renault E 1996 Long memory continuous time
models J. Econometrics 73 101–50

[21] Cont R, Potters M and J-P Bouchaud 1997 Scaling in stock
market data: stable laws and beyond Scale Invariance and
Beyond (Proc. CNRS Workshop on Scale Invariance, Les
Houches, 1997) ed Dubrulle, Graner and Sornette (Berlin:
Springer)

[22] Cont R 1998 Statistical Finance: empirical and theoretical
approaches to the statistical modelling of price variations
in speculative markets Doctoral Thesis, Université de
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Olsen R B and Pictet O V 1997 From the birds eye to the
microscope: a survey of new stylized facts of the intra-day
foreign exchange markets Finance Stochastics 1 95–130

[57] Hall J, Brorsen B and Irwin S 1989 The distribution of future
prices: a test of the stable paretian and mixture of normals
hypothesis J. Financial Quantitative Anal. 24 105–16

[58] Halsey T C, Jensen M H, Kadanoff L P, Procaccia I and
Shraiman B L 1986 Fractal measures and their
singularities: the characterization of strange sets Phys.
Rev. A 33 1141–51

[59] Harvey A C 1998 Long memory in stochastic volatility
Forecasting volatility in financial markets ed Knight and
Satchell (Oxford: Butterworth-Heinemann) pp 307–20

[60] Hsieh D A 1988 The statistical properties of daily exchange
rates J. Int. Economics 13 171–86

[61] Hsieh D A 1989 Testing for nonlinear dependence in foreign
exchange rates J. Business 62 339–668

[62] Hwang W and Mallat S 1994 Characterization of self-similar
multifractals with wavelet maxima Appl. Computational
Harmonic Anal. 1 316–28
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