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Mean Reversion in Equilibrium Asset Prices

By STEPHEN G. CECCHETTI, POK-SANG LAM, AND NELSON C. MARK*

This paper demonstrates that negative serial correlation in long horizon stock
returns is consistent with an equilibrium model of asset pricing. When investors
display only a moderate desire to smooth their consumption, commonly used
measures of mean reversion in stock prices calculated from historical returns data
nearly always lie within a 60 percent confidence interval of the median of the
Monte Carlo distributions implied by our equilibrium model. From this evidence,
we conclude that the degree of serial correlation in the data could plausibly have
been generated by our model. (JEL 313)

Recent research into the behavior of the
stock market reports evidence that returns
are negatively serially correlated. James
Poterba and Lawrence Summers (1988) find
that variance ratio tests reject the hypothesis
that stock prices follow a random walk, and
Eugene Fama and Kenneth French (1988)
show that there is significant negative auto-
correlation in long-horizon returns.! It is well
known (see Stephen Leroy, 1973; Robert
Lucas, 1978; and Ronald Michener, 1982)
that serial correlation of returns does not in
itself imply a violation of market efficiency.?

*Department of Economics, The Ohio State Univer-
sity and NBER, Department of Economics, The Ohio
State University and Stanford University, and Depart-
ment of Economics, The Ohio State University, respec-
tively. This paper is a revised version of NBER Work-
ing Paper, no. 2762, November 1988. We have benefited
from comments received from seminar participants at
Boston University, British Columbia, Claremont, Michi-
gan, Ohio State, the Federal Reserve Board, Stanford,
U.C.S.D., and the NBER. We thank Andy Abel, David
Backus, Ben Bernanke, John Campbell, Steve Cosslett,
Paul Evans, Jim Hamilton, Alan Gregory, Hu McCul-
loch, Robert Shiller, Larry Summers, and two anony-
mous referees for useful comments on earlier drafts.
Cecchetti acknowledges financial support from the Sa-
lomon Bros. Center for the Study of Financial Institu-
tions at NYU and the National Science Foundation.

'Poterba and Summers find negative serial correla-
tion for stock returns over long horizons using monthly
and annual data. Interestingly, Andrew Lo and A. Craig
MacKinlay (1988) find that stock returns are positively
correlated, using weekly observations.

2Sanford Grossman and Robert Shiller (1981) make
this same point in showing that the “excess” volatility
implied by variance bounds tests can be partly ex-
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Nevertheless, there is a tendency to conclude
that evidence of mean reversion in stock
prices constitutes a rejection of equilibrium
models of rational asset pricing. Fama and
French suggest this interpretation as a logi-
cal possibility, while Poterba and Summers
argue that the serial correlation in returns
should be attributed to “price fads.” In this
paper we demonstrate that the serial correla-
tion in returns that is computed from stock
market data is consistent with an equilib-
rium model of asset pricing.

Our approach is to combine the methods
of model calibration and statistical inference
to critically evaluate the conclusions that can
be drawn from the available data. We begin
by specifying both an economic model of
asset pricing and a stochastic model for the
exogenous forcing process driving the eco-
nomic fundamentals. The forcing process is
then calibrated to actual data from the U.S.
economy over a long historical period. From
this structure, we compute the Monte Carlo
distributions of the statistics that previous
investigators have used, under the null hy-
pothesis that our rational equilibrium model
is true. Finally, we can state the likelihood
that those statistics, computed with histori-
cal returns, were actually generated from a
model in the class that we consider.

plained by risk aversion in a consumption beta model.
More recently, Fischer Black (1988) has discussed the
relation between mean reversion and consumption
smoothing.
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Specifically, we begin with a variant of the
Lucas (1978) model of an exchange economy
in which the parametric representations for
preferences and the stochastic process gov-
erning the exogenous forcing variable (i.e.,
the endowment stream) admit a closed form
solution to the asset pricing problem. We
assume that the period utility function be-
longs to the constant relative risk aversion
family. For these preferences, the coefficient
of relative risk aversion is also the inverse of
the elasticity of intertemporal substitution in
consumption so that it is not possible to
separate agents’ tolerance for risk from their
desire to have smooth consumption. Since
our focus is on the serial correlation in asset
returns implied by a model where agents
confront an intertemporal consumption/
investment decision, we believe that it makes
more sense to interpret the concavity of the
utility function in terms of the consumption
smoothing motive.

The theory provides little guidance as to
which time-series (i.e., consumption, output,
or dividends) should serve as the endowment
and from which to calibrate the model. That
is because in the Lucas model, equilibri-
um consumption equals output, which also
equals dividends. Since none of these time-
series seem to be more appropriate than the
others a priori, we examine each of the three
series separately. The stochastic process fol-
lowed by the growth rate of the endowment
is assumed to follow James Hamilton’s (1989)
Markov switching model. This characteriza-
tion of the forcing process has two impor-
tant attributes. First, it allows us to model
both the negative skewness and the excess
kurtosis that is present in the growth rates of
the raw data we employ.> And second, the
Markov switching model admits a closed
form solution to the intertemporal asset pric-
ing problem. Neither of these objectives can
be accomplished with standard linear
ARIMA models.

3The negative skewness of growth rates for many
macroeconomic time-series, and hence their asymmetric
behavior over the cycle, is also discussed in Salih Neftci
(1984).
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The parameters of the Markov switching
model are estimated by maximum likelihood
employing annual observations on each of
the series. Using these estimates, the empiri-
cal soundness of the Markov switching model
is demonstrated by showing that it matches
all three time-series well in the dimension of
the mean, variance, skewness, kurtosis, and
first-order serial correlation. Furthermore,
comparisons of k-step ahead in-sample fore-
cast errors of the Markov switching model
with autoregressions reveal roughly similar
predictive capabilities.

We then study the measures of mean re-
version that have appeared in the literature.
These are the variance ratio statistics used
by Poterba and Summers and the long-hori-
zon regression coefficients calculated by
Fama and French.* First we calculate these
statistics from historical data on returns
drawn from the Standard and Poors’ index.
The asset pricing model is calibrated by set-
ting the parameters of the endowment pro-
cess equal to the maximum likelihood esti-
mates. Using the calibrated equilibrium
model, we construct Monte Carlo distribu-
tions for these statistics. Inferences regard-
ing the model can then be drawn using clas-
sical hypothesis testing procedures and the
Monte Carlo distributions as the null. We
are primarily interested in two hypotheses.
The first is the random walk model of stock
prices, which is an implication of the Lucas
model when agents have linear utility. The
second hypothesis is that observed asset
prices are determined in equilibrium but
agents attempt to smooth their consumption.
In this setting, asset returns can be nega-
tively serially correlated even though they
rationally reflect market fundamentals.

To summarize our results at the outset, we
find that for all return horizons both the
variance ratio statistics and the long-horizon
regression coefficients calculated from the
actual Standard and Poors’ returns lie near

‘we might also have examined variance bounds tests.
But as John Campbell and Shiller (1988) point out,
there is an equivalence between variance ratio tests of
the type in Poterba and Summers and variance bounds
tests pioneered by Shiller (1981).
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the 60 percent confidence band of ‘the me-
dian of the Monte Carlo distribution gener-
ated under the linear utility (random walk)
model. When investors display only a mod-
erate desire to smooth their consumption,
these same statistics calculated from the data
lie at or near the median of the Monte Carlo
distribution. When we test the null hypothe-
sis against a diffuse alternative, we cannot
reject the random walk model at the stan-
dard 5 percent significance level, but the
p-values of the test are much higher when
the null distribution is generated assuming
the utility function is concave. We conclude
that much of the serial correlation in histori-
cal stock returns can be attributed to small
sample bias. However, the serial correlation
of returns found in the data better resembles
that of the model when the utility function is
concave.’

The remainder of the paper consists of
three sections. Section I presents the solution
to the equilibrium asset pricing problem of
the Lucas model when agents have constant
relative risk aversion preferences, and the
endowment process is assumed to follow the
Markov switching model. We include in this
section the maximum likelihood estimates of
the stochastic model, along with an evalua-
tion of the model’s performance. Section II
describes the Monte Carlo experiments and
reports the main results of the paper. The
final section offers some conclusions.

1. The Equilibrium Model
A. A Case of the Lucas Model

Consider the economy studied by Lucas
(1978) in which there are a large number of
infinitely lived and identical agents and a
fixed number of assets that exogenously pro-
duce units of the same nonstoreable con-
sumption good. Let there be K agents and
N productive units. Each asset has a single

5Myung Kim, Charles Nelson, and Richard Startz
(1988) and Matthew Richardson (1988) have recently
examined the issue of small sample bias in these tests of
serial correlation in stock returns.
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perfectly divisible claim outstanding on it,
and these claims are traded in a competitive
equity market. The first-order necessary con-
ditions for a typical agents’ optimization
problem are

(1 pU(G)

=BEU(C.1) [Pj,t+1 +D; 141]>
j=12,...,N
where P;=the real price of asset j in terms
of the consumption good.
U’(C)=marginal utility of consumption,
C, for a typical consumer/
investor.
B=a subjective discount factor, 0 <
B <1.
D; = the payoff or dividend from the
jth productive unit.
E,=the mathematical expectation
conditioned on information
available at time z.

In equilibrium, per capita ownership of
asset j is 1/K. It follows that equilibrium
per capita consumption, C, is the per capita
claim to the total endowment in that period,
(1 /K )E -1D;. Now, make this substitution
in equatlon (1) and sum over j to obtain an
equilibrium condition involving economy-
wide or market prices and quantities on a
per capita basis. That is,

(2) PU'(D,) =BEU(D,1)[Py1+ Dy,

where P,=(1/K)LP;, is the share of the
market’s value owned by a typical agent and

=(1/K)2ZD; ,. Since each productive unit
has only a s1ngie share outstanding and the
number of productive units are fixed, these
are the theoretical value-weighted market in-
dices adjusted for population.

Let preferences be given by constant rela-
tive risk aversion utility:

U(C) = (1+v) e,

where — oo <y <0 is the coefficient of rela-
tive risk aversion. Now (2) simplifies to a
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stochastic difference equation that is linear
in PD". That is,
(3) P.D)=BE,P, D)+ BEIDI(-}--I'-Y)'
Iterating (3) forward, the current market
value, P,, can be expressed as a nonlinear

function of current and expected future pay-
offs,

o
(4) Pr = Dt—y Z kErDr(ll-:ﬂ'
k=1

To obtain a closed form solution, we must
specify the stochastic process governing (D,),
and this is done in Section I, Part C. We will
refer to the exogenous forcing variable as
dividends in the next two subsections. We do
this because it helps to clarify the exposition,
not because we restrict our attention to divi-
dends when assessing the performance of the
model. In fact, we consider alternatives as
well.

B. Characteristics of the Data

The theory provides little guidance regard-
ing the appropriate empirical counterpart
to the exogenous forcing variable D. Be-
cause equilibrium consumption equals out-
put, which also equals dividends, there are
three natural variables to serve this role. We
consider all three candidate time-series in
real, per capita terms:® dividends, consump-
tion, and GNP,

SThe standard procedure in the literature has been to
calibrate the endowment process to consumption (for
example, Rajnish Mehra and Edward Prescott, 1985;
Thomas Reitz, 1988; Shmuel Kandel and Robert
Stambaugh, 1988; and George Constantinides, 1988, to
name a few). It turns out that our results are robust to
the particular time-series to which the endowment pro-
cess is calibrated, whether it be consumption, dividends,
or GNP. Because the variability of consumption, divi-
dends, and GNP are very different from each other, the
choice of the time-series to which the model is cali-
brated will have different implications for other aspects
of the model such as the implied size and volatility of
returns and the risk premium. The aim of this paper is
quite modest, however, in that it seeks only to examine
conclusions that can be drawn from serial correlation in
returns. We make no claims that our model can match
every dimension of the data (see Kandel and Stambaugh,
1988, who undertake a more ambitious project).
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To choose an appropriate time-series
model for the endowment process, it is use-
ful to know some of the details of the data.
Table 1 reports various summary statistics
computed for the growth rates of dividends,
GNP, and consumption. The data sources
are described in the appendix. The following
observations emerge from the table. Relative
to a normal distribution, growth rates of the
raw data are negatively skewed and have
excess kurtosis. The coefficient of skewness
is a measure of asymmetry, while the coef-
ficient of kurtosis in excess of 3 implies that
the distribution of the data is “fat tailed.”
The negative skewness indicates that, rela-
tive to a normal distribution, the data con-
tain too many large negative values or
“crashes.” As Reitz (1988) suggests in his
examination of the equity premium puzzle,
these crashes are potentially important for
studying the dynamics of asset returns.

The negative skewness is statistically sig-
nificant at the 5 percent level for consump-
tion and at the 1 percent level for dividends
and GNP. Consequently, conventional time-
series models, such as linear ARIMA models
with Gaussian innovations, will be inappro-
priate. That is, ARIMA models with normal
error terms can never explain nonzero third
moments in the distribution of the raw data.

Excess kurtosis is also statistically signifi-
cant at the 5 percent level for consumption
and at the 1 percent level for dividends and
GNP. Thus standard linear models will not
capture this important characteristic of the
data either. While conditionally normal but
heteroskedastic models such as Robert
Engle’s (1982) ARCH model can give rise to
fat tails, they cannot model asymmetry.

Our objective is to find a model that cap-
tures these important features of the data
and at the same time admits a solution to
the intertemporal asset pricing problem set
forth in Section 1, Part A. Hamilton’s (1989)
Markov switching model meets both of these
criteria.

C. Hamilton’s Markov Switching Model
Hamilton (1989) has suggested modeling

the trends in nonstationary time-series as
Markov processes, and has applied this ap-



402 THE AMERICAN ECONOMIC REVIEW

JUNE 1990

TABLE 1 —SUMMARY STATISTICS FOR GROWTH RATES IN SAMPLE

Consumption Dividends GNP
Mean 0.0184 —0.0038 0.0183
Std. Dev. 0.0379 0.1359 0.0547
Skewness —0.4097* —0.5979° —0.7574°
Coefficient 0.247) 0.227) 0.225)
Kurtosis 3.8750% 5.8048° 7.6630°
Coefficient (0.495) (0.455) (0.451)
Minimum —0.1044 —0.4673 —0.2667
Maximum 0.0989 0.4056 0.1662
First Autocorrelation —-0.067 0.134 0.390¢
(0.101) (0.093) (0.092)

Source: See data appendix.

Notes: Standard errors for the skewness and kurtosis coefficients are reported in
parentheses and are computed under the null hypothesis that growth rates of the data
are distributed as i.i.d. normal. Significance tests are based on E. S. Pearson and H. O.

Hartley (1976), Tables 34.B and 34.C.

*Significantly different from normal at the 5 percent level.
Significantly different from normal at the 1 percent level.
Greater than two standard errors from zero.

proach to the study of post-World War 11
real GNP. One of the attractive features of
this approach is its ability to model the
asymmetry and the leptokurtosis reported in
Table 1. Let d, denote the logarithm of the
endowment, D,. The Markov switching mod-
el can be written as

(5) d=d,_,+¢+ay+aS,_;,

where {¢,} is a sequence of independent and
identically distributed normal variates with
zero mean and variance o2, and {S,} is a
sequence of Markov random variables that
take on values of 0 or 1 with transition
probabilities,

(6) PI‘[S,=1|S,_1=].]=p,
Pr[S,=0|S,_,=1]=1-p,
PI[S, =0|S,.,=0] =g,
and Pr[S,=1|S,_,=0]=1—gq.
The endowment process thus follows a ran-
dom walk in logarithms (d,=d,_, + ¢,) with
stochastic drift (ay+ a,S,_;). As a normal-

ization we restrict «; to be negative. The
economy is said to be in a high-growth state

or boom when S=0, and in a low-growth
state or depression when S =1. The proba-
bility of a boom next period given that the
economy currently enjoys a boom is ¢, while
the probability of a depression next period
given a current depression state is p. The
probabilities of transition from boom to de-
pression and depression to boom are then
1-¢ and 1-p, respectively. The endowment
grows at the rate a, during a boom, and
a, + @, during a depression. The process { S, }
can be represented as a first-order autore-
gression with an autocorrelation coefficient
of (p+gq—1) that can be interpreted as a
measure of persistence in the forcing pro-
cess.

It is also useful to think of the process
loosely within the following context. The
theory relates dividends to asset prices. In
actual economies, future nominal dividend
payments are announced in advance so a
good deal of next period’s dividend growth
is currently known. This is captured by the
timing of the state in the Markov trend, and
in the next subsection agents in the artificial
economy will be assumed to observe the
current state of the economy. From (5), the
forecastable part of dividend growth during
period ¢ —1 is ay + ;S,_,, which is revealed
at ¢ — 1. The unforecastable part of real divi-
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TABLE 2— MAXIMUM LIKELIHOOD ESTIMATES OF THE MARKOV TREND MODEL
V1= Yt ot as, tgi
Prob[s,,, =1|s,=1]= p,Prob[s,,,; =0|s,=1]=1- p,

Probl[s,,, =0|s, = 0] = q,Prob[s,,, =1|s,=0]=1—g,
eiid. ~ N(0,02).

Parameter Consumption Dividends GNP
4 0.5279 0.1748 0.5096
(1.985) (0.832) (2.039)
q 0.9761 0.9508 0.9817
(46.525) (40.785) (76.705)
[ 0.0320 0.1050 0.0433
(12.297) (13.682) (14.932)
ag 0.0228 0.0171 0.0246
(6.467) (1.579) (5.950)
o -0.0926 -0.3700 -0.1760
(—4.894) (—6.548) (—17.116)
Pr(S, =1) 0.0482 0.0563 0.0360

Note: Asymptotic -ratios in parentheses.

dend growth, ¢,, might be thought of as a
combination of unanticipated inflation and
productivity shocks.

We note at this point that it is the data
and not the discretion of the investigator
that will choose the regime. That is, when we
calculate the Monte Carlo distributions
implied by the model, the parameters (ay, a;,
p,q,0) of the forcing process will be set
equal to maximum likelihood estimates ob-
tained from the data.

D. Maximum Likelihood Estimates of
the Markov Switching Model

This section reports maximum likelihood
estimates of the Markov switching model
described above for annual dividends, GNP,
and consumption. The model is nonlinear in
the sense that the current minimum mean
square error predictor of future values is a
nonlinear function of current and lagged ob-
servations. Even though the state, S, is un-
observable to the econometrician, given the
normality assumption on the &’s, the param-
eters of the process, (p, g, a4, a;,0) can be
estimated by maximum likelihood. The in-
terested reader is directed to Hamilton (1989)
for details on estimation or Pok-sang Lam
(1988), who generalizes the Hamilton model.

The estimation results and some summary
statistics are reported in Table 2. For the
most part, the parameters are accurately esti-
mated. When the economy is in a boom this
year, the estimated probability that it contin-
ues in a boom next year is ¢. This is esti-
mated to be 0.95 for dividends, and 0.98 for
GNP and consumption. The estimates of
growth during a boom, a,, are 0.017, 0.025,
and 0.023 for dividends, GNP, and con-
sumption, respectively. When in a boom, the
estimated probability of a transition to a
negative growth state next period, 1— g, is
0.05 for dividends, and 0.02 for GNP and
consumption. While in a depression state,
expected growth, ay+ a;, is —0.35 for divi-
dends, —0.15 for GNP and —0.07 for con-
sumption.

The table also reports the unconditional
probability of observing a depression state,
Pr(S,=1). These are 0.056 for dividends,
0.036 for GNP, and 0.048 for consumption.
In other words, we expect real dividends, the
most volatile of the three series, to crash by
one-third in roughly 7 of the 116 years of the
sample. While this may seem surprising, it is
consistent with the historical experience. For
example, the dividend model estimates imply
that, if the economy is currently in the bad
state (S;=1), the 95 percent confidence in-
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terval for growth in per capita real dividends
is (—0.14,—0.56). The same confidence in-
terval given that the economy is in the good
state (S, = 0) is (0.23,—0.19). Consequently,
if dividends fall by 20 percent or more, we
can be fairly certain that S,=1. Of the 116
years in the sample, 8 meet this criterion.”

Once the economy finds itself in a depres-
sion, the probability that it will be in a
depression the following year, p, is esti-
mated to be 0.1748 for dividends, 0.5096 for
GNP, and 0.5279 for consumption.?

E. Evaluating the Markov Switching Model

To assess the quality of the Markov
switching model, we now compare it with
some popular alternatives. The upper panel
of Table 3 reports the results of two diagnos-
tic tests. The first is a test of the Markov
switching model against the simple nested
null hypothesis that the data follow a geo-
metric random walk with i.i.d. innovations.
Because the Markov switching model is not
identified under the null of the geometric
random walk, the likelihood ratio statistic
does not have the standard chi-squared dis-
tribution. Therefore, we have tabulated the
distribution of the pseudo-likelihood ratio
statistic in order to perform this test. Our
Monte Carlo experiment involved 1000 rep-
lications where we first drew samples of 116
for growth rates of GNP and dividends, and
96 for growth rates of consumption under
the null of a normal distribution with vari-
ance set to values computed from the data.
Next, we fitted the Markov switching model

"Real per capita dividends fell by more than 30
percent during 4 years, from 20 percent to 30 percent
during four years, and by 10 percent to 20 percent
during nine years of the sample.

8We note that the likelihood function is fairly flat for
variations in p, particularly in the estimation of the
dividend process. This is not surprising given the asym-
metric behavior of dividends over the business cycle.
That is, downturns have generally been short lived,
lasting between four and six quarters. This makes it
difficult to obtain a good estimate of p using annual
observations. Hamilton does not encounter this prob-
lem since he estimates his model using quarterly GNP
data.

JUNE 1990

to this artificial data, and finally, we com-
puted a standard likelihood ratio statistic as
twice the difference in the maximized log
likelihood values of the null and alternative
models. As reported in the table, the weakest
case is for consumption, where we reject the
random walk at the 0.8 percent level. For
both GNP and dividends, we observed fewer
than two cases in 1000 where the LR statistic
in the Monte Carlo experiment exceed the
value obtained in the sample. Given the re-
sults in Table 1, where the data clearly reject
the hypothesis that growth rates were drawn
from a normal distribution, it is perhaps not
surprising that a formal statistical test rejects
the random walk model for the log-levels.

The second test reported in Table 3 is for
symmetry of the Markov transition matrix,
which implies symmetry of the uncondi-
tional distribution of the growth rates. This
test examines the maintained hypothesis that
P = q against the alternative that p < q.° The
table reports statistics that are asymptoti-
cally standard normal under the null. We
can reject the hypothesis of symmetry at the
5 percent level in all three cases.

The lower panel of Table 3 reports the
distributional characteristics for the Markov
switching process implied by the estimates in
Table 2. We report the population values of
the mean, standard deviation, coefficient of
skewness, coefficient of kurtosis, and first-
order autocorrelation computed from the
point estimates of the Markov switching
model. The values implied by the model
generally lie within two standard deviations
of the sample values reported in Table 1.1
The lone exception is the coefficient of kur-
tosis for GNP. We conclude that the Markov
switching model can produce both the de-
gree of negative skewness and the amount of
kurtosis that are found in the data.!!

®This is a one-sided test of symmetry against the
alternative of negative skewness.

It is worth noting that distribution of growth rates
implied by the Markov switching model is always lep-
tokurtic. Consequently, it is a natural candidate for
modeling data that exhibit fat tails.

" The results in Table 3 demonstrate that the two-
state model we employ is capable of matching the first
four central moments of the data and the first-order
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TABLE 3—EVALUATING THE MARKOV SWITCHING MODEL

405

Data Set
Consumption Dividends GNP
L.R. Statistic? 11.39 17.27 27.87
p-value (0.008) (0.001) (0.000)
Symmetry test® 1.72 3N 1.89
p-value (0.04) (0.00) (0.03)
Distributional Characteristics of the Process Implied by the Estimates
Consumption Dividends GNP
Mean 0.0184 —0.0038 0.0183
Std. Dev. 0.038 0.135 0.054
Skewness —-0.617 —0.965 —1.096
Coefficient
Kurtosis 422 5.03 6.030
Coefficient
First Autocorrelation 0.140 0.05 0.179

2Based on a Monte Carlo experiment with 1000 replications.
YThis is the test that p = q. The alternative hypothesis is p < q.

As a final test of the Markov switching
model, we have compared its ability to fore-
cast growth rates in the three series with that
of first- and second-order autoregressions.
Table 4 reports the in-sample root mean
square forecast error at horizons from one to
ten years for an AR(1), and AR(2), and the
Markov switching model.}? The results show
that for dividends, the root mean squared
forecast error of the Markov model is one-
half that of the other models at all horizons.
For consumption and GNP, the predictive
ability of the three models is roughly the
same. The Markov model marginally outper-
forms the autoregressions for consumption
but marginally underperforms an AR(2) for
GNP.

autocorrelation. By contrast, linear ARIMA models can
match higher-order serial correlation, but not the
higher-order moments. A three-state Markov switching
model would have ten parameters and would in princi-
ple be able to match the first through sixth autocorrela-
tion of the data in addition to the first four central
moments. We have explored the three-state model but
have thus far been unable to obtain sensible MLE
parameter estimates with the annual data series studied
here.

12gince these models are not nested, there is no
natural statistical procedure for model selection.

The purpose of this section has been to
demonstrate that the Markov switching
model is a reasonable alternative to obvious
linear models in standard use. In addition to
its ability to capture certain prominent fea-
tures of the data that linear models cannot,
the added attractiveness of the Markov
switching model for our purposes is its ana-
lytical tractability. We conclude that while
there is no obvious and clear winner, a credi-
ble case can be made for the Markov switch-
ing model. While a better model of the data
(especially for GNP) might incorporate both
regime switching and AR components, we
have been unsuccessful in our attempt to
solve the asset pricing problem when the
endowment follows such a process. Our
choice of the simple Markov switching model
thus embodies a tradeoff between a model
that completely matches the data and one
that is tractable.

F. Equilibrium Asset Prices

Assume that the process driving the en-
dowment is given by the Markov switching
model of equations (5) and (6). We now
obtain a solution to the asset pricing prob-
lem stated in Section I, Part A, using the
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TABLE 4—R0OOT MEAN SQUARE FORECAST ERROR COMPARISONS USING LEVELS?

A. Consumption Horizon

Model 1 2 3 4 5 6 7 8 9 10

AR1 0136 0205 0.254 0287  0.313* 0.340* 0.366 0.393* 0.415* 0.428*

AR2 0.136 0205 0.257  0.288 0314  0.341 0.367 0.396 0417 0431

MARKOV 0.131* 0.196* 0.249* 0.286* 0.315 0.342  0.366* 0.396 0419  0.432

B. GNP Horizon

Model 1 2 3 4 5 6 7 8 9 10

AR1 0324 0.594 0.808 0.962 1.055 1.093 1.109 1.126 1.186 1.241

AR2 0.318* 0.578* 0.790* 0.936 1.023 1.059 1.079 1.095* 1.154* 1.202*

MARKOV 0.351 0608 0796  0.936* 1.020* 1.054* 1.074* 1.102 1.167 1.220

C. Dividends Horizon

Model 1 2 3 4 5 6 7 8 9 10

AR1 0.017 0.021 0.025 0.029 0.033 0.038  0.042 0.047 0.052  0.057

AR2 0.031 0.033 0.034 0037 0040 0.044 0.047 0.051 0.055 0.060

MARKOV 0.009* 0.012* 0.014* 0.017* 0.020* 0.023* 0.026* 0.029* 0.032* 0.035*

®A * indicates lowest root mean square forecast error. Some entries appear the same due to rounding.

method of undetermined coefficients.!* Con-
jecture the following solution:

(7)
The problem is to verify that (7) solves (3)

and to find the function p(S,). To do this,
substitute (7) into (3) to obtain

(8) o(S) Dy =BEDX [p(S41) +1].
Next, write (5) in levels,

(9)

Now substitute (9) into (8) and note that ¢ is
i.i.d. normal with variance o2 to obtain

Pt=p(St)Dt'

Dt+l = Dte(a0+“lsr+et+l).

(10) p(S,) = Bele@+n+a+ni’/
X e[u‘(l+7)s’]E:[P(S,+1) +1] )

Because S, can take on only two values, 0 or

13Using formulas derived by Hamilton (1989), one
can also evaluate the series given in equation (4) di-
rectly. The appendix to the working paper version of
this paper shows that both methods yield the same
answer.

1, (10) is a system of two linear equations in
p(0) and p(1). The solution is given by

(11) p(0) =B[1-Ba(p+q-1)]/A,
(12) p(1) =B&[1-B(p+4q-1)] /4,

where f=Bel0@+N+A+1%?/2 5 _pal+y)

and A=1-B(pa+q)+f&(p+q-1).
Thils4 establishes that (7) is the solution to
3).

A number of interesting features of the
equilibrium price function emerge. First, as-
set prices are proportional to the endow-
ment.!® Second, the factor of proportionality
depends on the inverse of the elasticity of
intertemporal substitution and whether the

[ (30 possible to show that as long as both p(0) >0
and p(1) > 0, the transversality condition is met and the
power series (4) converges. In addition, this solution
technique can easily be generalized to the case of n-states
in the mean and the variance.

In the simple model studied here this implies that
the price dividend ratio takes on one of two values, p(0)
or p(1). This is a consequence of assuming that agents
observe S,. In the more realistic case in which S, is
unobserved and must be estimated, the price dividend
ratio would be a continuous variable fluctuating be-
tween the two bounds of p(0) and p(1).
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economy is currently in the high-growth state
or low-growth state according to

p(0) 2p(1) asyZ -1.

The interpretation of this is straightfor-
ward. For a given level of the current en-
dowment, suppose that the economy is
known to be in a high-growth state (S, = 0).
By (6), this implies that the economy is likely
to remain in a high-growth state into the
future, and agents anticipate high future lev-
els of the endowment. This has two effects
on asset prices that work in opposite direc-
tions. First, there is an intertemporal relative
price effect in which the higher expected
future endowment implies a lower relative
price of future goods. This induces agents to
want to increase saving and to increase their
demand for assets. The increased asset de-
mand arising from this intertemporal relative
price effect works to raise current asset prices.
Working in the opposite direction is a substi-
tution effect arising from agents’ attempts to
smooth their consumption. When the ex-
pected future endowment is high, the con-
sumption smoothing motive leads agents to
want to increase current consumption in an-
ticipation of higher future investment in-
come. To finance higher current consump-
tion, they attempt to sell off part of their
asset holdings, which in equilibrium results
in falling asset prices.

Log utility (y = —1) is a borderline case in
which the intertemporal relative price effect
and the consumption smoothing effect ex-
actly cancel out. This can be seen, perhaps,
more clearly from (4), in which the solution
for y=—11is P,=(B8/[1-B])D, In this
case, the factor of proportionality relating
prices to dividends is a constant. When the
utility function is less concave than it is in
the log case, the intertemporal relative price
effect assumes greater importance, so that
p(0) > p(1). In the limiting case of linear
utility (y =0), the intertemporal relative
price effect is all that matters since agents
have no desire to smooth consumption. Con-
versely, when the utility function is more
concave than is implied by log utility, the
intertemporal consumption smoothing effect
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dominates the intertemporal relative price
effect causing p(1) > p(0).

From (5) and (7), equilibrium gross re-
turns are computed as

(13) R,= (Pt+ Dt)/Pt—-l
= {[p(s)+1]/p(S,-1)}

Xexplag+ a;S,_; +¢,].

Notice that because the gross return depends
on g, it is a continuous random variable on
[0, o0) and not a two-point process.

II. The Serial Correlation of Equilibrium and
Historical Returns

In this section, returns obtained from the
equilibrium model of Section I are used to
generate Monte Carlo distributions of the
variance ratio statistics used by Poterba and
Summers and the regression coefficients cal-
culated by Fama and French. These distri-
butions are generated both for the case of
linear utility and for a case in which the
utility function is concave. They are then
used to draw inference about the equilibrium
model and the model driving the exogenous
forcing variable. For a given value of the
elasticity of intertemporal substitution, the
model is calibrated to the estimated divi-
dend, consumption, and GNP processes re-
ported in Table 1. That is, the parameters of
the forcing process, ( p, g, 6, agy, &) are set to
the values in the columns of Table 2, and
each case is considered in turn. The subjec-
tive discount factor 8 is assumed to be 0.97
throughout.

The procedure is as follows: First, given p
and g, we generate a sequence of 116 S,’s
according to (6). Second, given o, 116 inde-
pendent draws from a normal distribution
with zero mean and variance 62 are taken to
form a sequence of ¢,’s. Third, given a,, o,
B, v, {s,}, and {¢,}, we generate a sample of
116 returns according to equation (13). For
each sample of returns, the variance ratio
and regression coefficients are calculated for
horizons 1 through 10. This experiment is
repeated 10,000 times. The tabulation of
these calculations is the Monte Carlo distri-
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bution of the statistic from which we draw
inference. The sample size of 116 is chosen
to correspond to the 116 annual observa-
tions available in the actual Standard and
Poors’ returns. We calculate the median, 60
percent confidence intervals about the me-
dian of the distribution, and the p-value for
the statistic under investigation. We refer to
these as the “small” sample results. A me-
dian is also calculated from 10,000 time-
series samples of 1160 returns each, to get an
idea of the rate of convergence of the vari-
ance ratio or regression coefficient statistic to
its true population value. We refer to this as
the “large” sample median. The results we
obtain when the model is calibrated to con-
sumption is representative of the results for

dividend and GNP models. To facilitate the

exposition, the results for the consumption
model are also displayed in figures. Each
figure displays the small sample medians, the
60 percent confidence intervals about the
median, and the point estimates calculated
from the historical Standard and Poors’ re-
turns.

From the Monte Carlo distributions of the
variance ratio statistic and the autocorrela-
tion coefficient on returns, we can determine
the likelihood that the estimates obtained
from the historical data were drawn from the
Monte Carlo distribution implied by equilib-
rium returns.

A. Variance Ratios

Let R, be the one period real rate of
return, and R¥ be the simple k-period re-
turn. That is, R¥=%XZ3R, . Poterba and
Summers define the variance ratio for re-
turns at the kth horizon as

Var( R¥)

(14) VR(k)=m.

It is easy to show that the variance ratio can
be expressed in terms of the return’s auto-
correlations. That is,

(15) VR(K) =142 T (k- e,

Jj=1

where p; is the jth autocorrelation of annual
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returns. When returns are serially uncorre-
lated, the variance ratio is equal to one for
all k in large samples.!® This is usually taken
as the null hypothesis in tests of “market
efficiency,” corresponds to the case where
stock prices follow a random walk, and is
true in the equilibrium model of Section I
only when investors have linear utility. Stock
prices are said to be “mean reverting” if
returns are negatively serially correlated and
evidence of mean reversion is inferred from
variance ratios that lie below unity. This is
the finding of Poterba and Summers.

We consider the case of linear utility first.
Figure 1 displays the results under linear
utility for the model calibrated to the con-
sumption process. Since these returns are
uncorrelated by construction, all of the devi-
ation of the median of the variance ratio’s
distribution from unity is due to small sam-
ple bias.!” In the large sample (7 =1160),
most of the bias has disappeared. It is also
seen that the variance ratios calculated from
the Standard and Poors’ data fall within the
60 percent confidence interval of the Monte
Carlo distribution.'® The serial correlation of
returns, and hence their predictability, is only
apparent.

This result can be viewed in the same light
as the business cycle in which recessions
occur with random periodicity. Although real
GNP may appear to be mean reverting, this
does not imply that business cycle turning
points are predictable. In the equilibrium
model of asset prices, the exogenous forcing

161h small samples, as Poterba and Summers point
out, the sample autocorrelations of returns are biased so
E[VR(k)] <1 even when returns are independent.

It bears mentioning that even in the case of linear
utility and the geometric random walk, our empirical
distributions differ from those reported in Poterba and
Summers and Fama and French. The reason is that we
assume a probability model for the endowment process
and study the dynamics of the returns implied by an
equilibrium model, whereas these authors assume a
probability model for the returns. Since the return is a
nonlinear function of the endowment in our setup, these
two approaches need not yield the same small sample
results.

B These estimates of the variance ratios are smaller
than those reported by Poterba and Summers because
they make a bias correction assuming a null hypothesis
of a homoscedastic random walk for asset prices. The
bias correction is irrelevant for our purposes.
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FIGURE 2. VARIANCE RATIOS. EQUILIBRIUM RETURNS GENERATED BY
CONCAVE UTILITY USING CONSUMPTION

variable has a business cycle interpretation.
The stochastic process of the forcing variable
implies that a boom will eventually be fol-
lowed by a recession, which will quickly be
followed by a boom. Since equilibrium asset
prices are proportional to the forcing vari-

able, the appearance of mean reversion of
asset prices is produced, but this does not
mean that returns are predictable.

When agents’ utility function is concave,
the results are even more favorable to the
model. Figure 2 reports the results of the



410 THE AMERICAN ECONOMIC REVIEW JUNE 1990
TABLE 5— VARIANCE RATIOS FOR HISTORICAL AND EQUILIBRIUM RETURNS
Linear Utility Concave Utility
T=116 T=1160 T=116 T =1160
k Actual Median p-Value Median Median p-Value Median Population
1) (@] 3 (O] ®) 6 Q)] ® )]
Endowment Calibrated to Consumption:
2 1.0137 0.9865 0.5779 1.0004 0.9462 0.6811 0.9523 0.9524
3 0.8664 0.9669 0.3049 1.0005 0.8941 0.4482 0.9212 0.9206
4 0.8351 0.9385 0.3301 0.9977 0.8511 0.4742 0.9006 0.8987
5 0.7978 09115 0.3227 0.9989 0.8181 0.4671 0.8812 0.8831
6 0.7459 0.8926 0.2903 0.9950 0.7782 0.4515 0.8707 0.8716
7 0.7259 0.8811 0.2877 0.9953 0.7576 0.4534 0.8613 0.8630
8 0.7363 0.8678 0.3307 0.9912 0.7380 0.4965 0.8528 0.8564
9 0.7102 0.8527 0.3238 0.9876 0.7264 0.4796 0.8474 0.8511
10 0.7242 0.8268 0.3737 0.9869 0.7083 0.5216 0.8391 0.8469
Endowment Calibrated to Dividends:
2 1.0137 0.9835 0.6151 0.9959 0.8721 0.8986 0.8786 0.8828
3 0.8664 0.9683 0.2374 0.9934 0.8166 0.6350 0.8266 0.8340
4 0.8351 0.9541 0.2420 0.9912 0.7746 0.6425 0.8021 0.8086
5 0.7978 0.9367 0.2401 0.9906 0.7478 0.6069 0.7848 0.7933
6 0.7459 0.9230 0.2042 0.9891 0.7286 0.5355 0.7742 0.7831
7 0.7259 0.9058 0.2168 0.9876 0.7103 0.5277 0.7654 0.7758
8 0.7363 0.8906 0.2582 0.9875 0.6957 0.5759 0.7595 0.7704
9 0.7102 0.8851 0.2490 0.9838 0.6821 0.5492 0.7547 0.7661
10 0.7242 0.8682 0.3000 0.9840 0.6718 0.5858 0.7496 0.7627
Endowment Calibrated to GNP:
2 1.0137 0.9782 0.5877 0.9966 0.9401 0.6632 0.9463 0.9490
3 0.8664 0.9403 0.3722 0.9936 0.8760 0.4868 0.9102 0.9153
4 0.8351 0.9075 0.3837 0.9911 0.8296 0.5074 0.8839 0.8923
S 0.7978 0.8806 0.3757 0.9859 0.7858 0.5168 0.8658 0.8761
6 0.7459 0.8590 0.3451 0.9850 0.7516 0.4911 0.8492 0.8643
7 0.7259 0.8385 0.3541 0.9778 0.7424 0.4800 0.8390 0.8554
8 0.7363 0.8252 0.3909 0.9773 0.7136 0.5309 0.8285 0.8486
9 0.7102 0.8120 0.3763 0.9770 0.6933 0.5229 0.8204 0.8432
10 0.7242 0.7857 0.4227 0.9730 0.6833 0.5487 0.8172 0.8389

Notes: Under linear utility, y = 0. Under concave utility, y is set to —1.7 for the consumption model, —1.4 for the
dividend model, and —1.6 for the GNP model. 8 =0.97 throughout. Column 1: Horizon, in years. Column 2:
Variance ratios of historical Standard and Poors’ returns. Column 3: Median of Monte Carlo distribution of variance
ratios for 116 equilibrium returns generated with linear utility. Column 4: Percentage of Monte Carlo distribution
having values less than the value in column 3. Column 5: Median of Monte Carlo distribution for variance ratios of
1160 equilibrium returns generated with linear utility. Column 6: Median of Monte Carlo distribution of variance
ratios of 116 equilibrium returns generated with concave utility. Column 7: Percentage of Monte Carlo distribution
with values less than the value in column 6. Column 8: Median of Monte Carlo distribution for variance ratios of
1160 equilibrium returns generated with concave utility. Column 9: Population variance ratio of equilibrium returns.

above calculations assuming concave utility
with y=—17 and the forcing process
matched to consumption. Now the median
of both the small and large sample distribu-
tions of the variance ratio statistics are well
below 1.0 at every horizon. The median of
the small sample (7 =116) distribution
closely matches the variance ratios calcu-

lated from the annual returns on the Stan-
dard and Poors’.'?
Table 5 reports results for the model cali-

brated to consumption, dividends, and GNP,

When y = —2, the model yields much more mean
reversion than is in the data. The entire 60 percent
confidence band lies below the sample values.
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from which we make the following observa-
tions. First, the results for variance ratios are
fairly robust to the choice of the time-series
to which the model is calibrated. P-values
between 0.2 and 0.8 imply that the sample
variance ratios lie within the 60 percent con-
fidence interval of the Monte Carlo distribu-
tion median. Thus, it can be seen that even
under linear utility, the model cannot be
rejected at conventional significance levels.
From column 4, the smallest p-value is ob-
tained at the six-year horizon in the dividend
model ( p-value =0.204). When the sample
size is increased tenfold, (7 =1160), most of
the small sample bias disappears. When the
utility function is concave, the median of the
distribution matches up well with the values
implied by the data as the p-values in col-
umn 7 are generally in the neighborhood of
0.5. A sizable small sample bias remains
present, but as in the linear utility case, most
of this bias vanishes if the sample is made
ten times longer.

B. Regression Coefficients on Returns of
Varying Horizons

Consider estimating the first-order serial
correlation coefficient on 7-year returns by
running the following regression:

(16) Rt,t+‘r= a-r+b‘rRt--r,t+ ut,t+-r’

7=1,2,...,10 years,

where R,,., is the continuously com-
pounded real stock return from ¢ to ¢ + 7. It
is easy to show that the relation between the
autocorrelations of one-period returns and
the autocorrelation of the 7-period return is

_pt2pt o+ +(1-1)p,,
’ T4+2(7—1)p; +2(7—-2)p,

» + o+ 2py, 5+ P
+ - +2p,

Using monthly returns on the CRSP index,
Fama and French find that the slope coeffi-
cient b_ is negative for r greater than one
year. From this they infer that stock prices
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are mean reverting. We examine their result
by computing the empirical distribution of
these regression coefficients implied by the
model in Section I.

We begin with the linear utility (y =0)
case. Figure 3 displays results for the model
calibrated to consumption, the small sample
median, and 60 percent confidence intervals
of the Monte Carlo distribution of the re-
gression coefficient b,, the population values
implied by the model, and the estimates
obtained from the Standard and Poors’ re-
turns. Again, the deviation of the median of
the small sample (7'=116) distribution from
zero is due to small sample bias. This bias
increases as 7 gets larger, because the effec-
tive sample size, as measured by the number
of independent pieces of information (non-
overlapping observations), decreases with 7.
For example, at the ten-year horizon, there
are only ten nonoverlapping observations
available in the Standard and Poors’ data,
and six nonoverlapping observations avail-
able in the CRSP returns! ,

The median of the large sample distribu-
tion (T =1160), on the other hand, is reason-
ably close to the true value of zero. The
regression coefficients calculated from the
Standard and Poors’ data uniformly lie be-
low the median of the small sample Monte
Carlo distribution in the consumption model.

Figure 4 displays the details of the Monte
Carlo distributions of the regression coeffi-
cients obtained from the equilibrium returns
when y= —1.7 in the consumption model.
As in Figure 3, the regression coefficient
uniformly lies within the 60 percent confi-
dence interval of the median. The distance
between the small sample medians and the
actual estimates tend to be smaller here than
when agents have linear utility.

Table 6 reports results for the model cali-
brated to consumption, dividends, and GNP,
from which we make the following observa-
tions. As we found with the variance ratios,
the results on the regression coefficients are
robust to the series to which the model is
calibrated. Under linear utility, the strongest
evidence against the model comes when the
model is calibrated to dividends at the two-
year horizon ( p-value = 0.1099). Most of the
small sample bias vanishes when T =1160.
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TABLE 6— REGRESSION COEFFICIENTS FOR HISTORICAL AND EQUILIBRIUM RETURNS
Linear Utility Concave Utility
T=116 T=1160 T=116 T=1160
k Actual Median p-Value Median Median p-Value Median Population
@ ) 3) ) ®) ©) @ ® )
Endowment Calibrated to Consumption:

1 0.0147 —0.0108 0.5747 0.0002 —0.0541 0.6788 —0.0466 —0.0475
2 —0.1671 —0.0416 0.1761 —0.0006 —0.0905 0.3039 —0.0555 —0.0564
3 —0.1059 —0.0543 0.3654 —0.0024 —0.1052 0.4989 —0.0532 —0.0531
4 —0.0836 —0.0658 0.4565 —0.0039 —0.1109 0.5650 —0.0510 —0.0470
5 —0.1530 —0.0758 0.3273 —0.0067 —0.1092 0.3940 —0.0474 —0.0409
6 —0.1345 —0.0866 0.3952 —0.0076 —0.1175 0.4629 —0.0430 —0.0357
7 —0.1601 —0.1000 0.3816 —0.0096 —0.1283 0.4335 —0.0405 —0.0314
8 —0.2098 —0.1108 0.3148 —0.0099 —0.1400 0.3586 —0.0365 -0.0279
9 —0.2488 —0.1267 0.2883 —0.0127 —0.1482 0.3119 —0.0362 —0.0251

10 —0.3246 —0.1472 0.2158 —0.0125 —0.1643 0.2277 —0.0330 —0.0227

Endowment Calibrated to Dividends:

1 0.0147 -0.0129 0.6047 —0.0035 —0.1259 0.8992 —0.1215 -0.1171
2 —0.1671 —0.0254 0.1099 —0.0039 —0.1058 0.2943 —0.0865 —0.0840
3 —0.1059 —0.0383 0.3095 —0.0031 —0.0948 0.4681 —0.0645 —0.0609
4 —0.0836 —0.0472 0.4055 —0.0045 —0.0985 0.5379 —0.0511 —0.0473
5 —0.1530 —0.0587 0.2914 —0.0051 —0.1030 0.3827 —0.0434 —0.0386
6 —0.1345 —0.0756 0.3813 —0.0064 —0.1050 0.4322 —0.0393 —0.0325
7 —0.1601 —0.0919 0.3617 —0.0069 —0.1141 0.4052 —0.0356 —0.0282
8 —0.2098 —0.1078 0.3150 —0.0078 —0.1269 0.3451 —0.0342 —0.0248
9 —0.2488 —-0.1275 0.2896 —0.0101 —0.1387 0.3124 —0.0311 —0.0222

10 —0.3246 —0.1410 0.2080 —0.0108 —0.1589 0.2321 —0.0289 —0.0200

Endowment Calibrated to GNP:

1 0.0147 —0.0187 0.5862 —0.0022 —0.0602 0.6659 —0.0538 —0.0509
2 —0.1671 —0.0577 0.2209 —0.0070 —0.109%4 0.3584 —0.0656 —0.0597
3 —0.1059 —0.0667 0.3988 —0.0084 —0.1181 0.5299 —0.0631 —0.0557
4 —0.0836 -0.0731 0.4734 —0.0117 —0.1170 0.5814 —0.059%4 —0.0489
5 —0.1530 —0.0822 0.3337 —0.0121 —0.1188 0.4202 —0.0544 —0.0424
6 —0.1345 —0.0951 0.4132 —0.0126 —0.1227 0.4739 —0.0506 —0.0369
7 —0.1601 —0.1041 0.3840 —0.0128 -0.1322 0.4413 —0.0454 —0.0324
8 —0.2098 —0.1160 0.3213 —0.0133 —0.1409 0.3665 —0.0424 —0.0288
9 —0.2488 —0.1269 0.2819 —0.0154 —0.1458 0.3133 —0.0406 —0.0258

10 —0.3246 —0.1433 0.2082 —0.0136 —0.1657 0.2262 —0.0403 —0.0234

Notes: Under linear utility, y = 0. Under concave utility, y is set to —1.7 for the consumption model, —1.4 for the
dividend model, and —1.6 for the GNP model. B =0.97 throughout. Column 1: Horizon, in years. Column 2:
Regression coefficients of historical Standard and Poors’ returns. Column 3: Median of Monte Carlo distribution of
regression coefficients for 116 equilibrium returns generated with linear utility. Column 4: Percentage of Monte Carlo
distribution having values less than the value in column 3. Column 5: Median of Monte Carlo distribution for
regression coefficients of 1160 equilibrium returns generated with linear utility. Column 6: Median of Monte Carlo
distribution of regression coefficients of 116 equilibrium returns generated with concave utility. Column 7: Percentage
of Monte Carlo distribution with values less than the value in column 6. Column 8: Median of Monte Carlo
distribution for regression coefficients of 1160 equilibrium returns generated with concave utility. Column 9:

Population regression coefficients of equilibrium returns

The model matches the data more closely
when the utility function is concave. From
column 7 it can be seen that the regression
coefficient for one-year returns for the divi-
dend model lies near the 95 percent confi-
dence bound. At the remaining horizons in

the dividend model and at all horizons for
the consumption and GNP models, the re-
gression coefficients computed with the data
uniformly lie within a 60 percent confidence
interval of the median of the Monte Carlo
distribution. The distance between the small
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TABLE 7—THE SOURCE OF THE NEGATIVE SERIAL CORRELATION,
MEDIAN OF DISTRIBUTION OF VARIANCE RATIOS OF RETURNS FOR
MODEL CALIBRATED TO CONSUMPTION
GRW MSM GRW MSM GRW MSM GRW MSM
vy=0 y=0 vy=0 vy=0 y=-17 y=-17 y=-17 y=-17
k Actual T=116 T=116 T=1160 T=1160 T=116 T =116 T=1160 T -1160
1) (@) 3 ) 5) ) O] ®) (©) (10)
2 1.0137 0.9913 0.9865 0.9983 1.0004 0.9907 0.9462 0.9991 0.9523
(0.50) (0.58) (0.70) (0.62) (0.60) (0.68) (0.69) (0.90)
3 0.8664 0.9732 0.9669 0.9953 1.0005 0.9758 0.8941 0.9964 0.9212
(0.21) (0.30) (0.00) (0.02) (0.21) (0.45) (0.00) 0.22)
4 0.8351 0.9605 0.9385 0.9944 0.9977 0.9587 0.8511 0.9955 0.9006
(0.22) (0.33) (0.00) (0.02) (0.22) 0.47) (0.00) (0.22)
5 0.7978 0.9458 0.9115 0.9937 0.9989 0.9474 0.8181 0.9927 0.8812
(0.21) (0.32) (0.00) (0.01) (0.22) (0.47) (0.00) (0.18)
6 0.7459 0.9366 0.8926 0.9904 0.9950 0.9302 0.7782 0.9921 0.8707
0.17) (0.29) (0.00) (0.00) (0.18) (0.45) (0.00) (0.10)
7 0.7259 0.9208 0.8811 0.9922 0.9953 0.9227 0.7576 0.9912 0.8613
(0.20) (0.29) (0.00) (0.00) (0.18) (0.45) (0.00) (0.09)
8 0.7363 0.9062 0.8678 0.9892 0.9912 0.9077 0.7380 0.9908 0.8528
(0.25) (0.33) (0.00) (0.01) (0.18) (0.50) (0.00) (0.15)
9 0.7102 0.8887 0.8527 0.9884 0.9876 0.8938 0.7264 0.9874 0.8474
0.29) (0.32) (0.00) (0.01) (0.29) (0.48) (0.00) (0.12)
10 0.7242 0.8817 0.8268 0.9858 0.9869 0.8718 0.7083 0.9874 0.8391
(0.29) 0.37) (0.00) (0.01) (0.29) (0.52) (0.00) (0.17)

Note: GRW is the geometric random walk model. MSM is the Markov switching model.

sample medians and the actual estimates tend
to be smaller when agents have concave util-

ity.

C. Mean Reversion, Small Sample Bias,
and Consumption Smoothing

There are three features of our model that
contribute to apparent mean reverting asset
prices. They are (1) the nonlinearity of the
endowment process (i.e., the presence of S,),
(2) pure small sample bias (T =116), and (3)
consumption smoothing (y < 0). The role of
consumption smoothing can be deduced
from a comparison of columns 4 and 7 in
Tables 5 and 6. For the values of y that we
work with, introducing concavity to the util-
ity function shifts roughly an additional 15
percent to 20 percent of the variance ratio
distribution and 1 percent to 10 percent of
the regression coefficient distribution below
the data. Table 7 reports additional results
that allow us to separate these three influ-
ences and quantify the contribution of each

in generating negatively serially correlated
returns. While the table only includes evi-
dence for the variance ratio statistic when
the model is calibrated to consumption, these
results are representative of the other cases
that we do not report to economize on space.

We compare our results to those obtained
when the endowment is assumed to follow a
geometric random walk with drift and i.i.d.
innovations with variance set equal to the
sample values obtained from the consump-
tion data. The table reports the median value
of a Monte Carlo experiment with 10,000
replications, along with the percentage of the
empirical distribution that lies below the
value computed from the data.

To isolate the effects of the nonlinear en-
dowment process, we first examine the impli-
cations for linear utility. A comparison of
columns (3) and (4) reveals that the Markov
switching model makes the small sample bias
larger than it is in the case of the geometric
random walk. While the variance ratio statis-
tics are very near their population values of
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TABLE 8 — SERIAL CORRELATION IN EXCESS RETURNS, EQUILIBRIUM RETURNS
IMPLIED BY THE MODEL CALIBRATED TO CONSUMPTION

Linear Utility Concave Utility
T=116 T=116
k Actual Median  p-Value  Median  p-Value Population
1) ©) €) ) ©) ©) Q)
Variance Ratios:
2 1.0492 0.9866 0.7048 0.9878 0.7423 0.9993
3 0.9300 0.9602 0.4712 0.9729 0.4366 0.9988
4 0.9121 0.9325 0.5080 0.9514 0.4678 0.9985
5 0.8639 0.9124 0.4721 0.9424 0.4184 0.9982
6 0.7848 0.8998 0.3937 0.9231 0.3308 0.9981
7 0.7246 0.8793 0.3543 0.9044 0.2846 0.9980
8 0.7123 0.8577 0.3736 0.8968 0.3021 0.9979
9 0.7038 0.8421 0.3924 0.8854 0.3245 0.9978
10 0.7148 0.8345 0.4363 0.8665 0.3842 0.9977
Regression Coefficients:
1 0.0511 —0.0133 0.6809 —-0.0114 0.7209 —0.692e—03
2 —0.1193 —0.0407 0.2871 —0.0281 0.2229 —0.783e—03
3 -0.1021 —0.0558 0.3834 —0.0387 0.3330 —0.714e—-03
4 —-0.1230 —0.0663 0.3609 —0.0499 0.3224 —0.616e —03
5 —0.0973 —-0.0778 0.4504 —0.0654 0.4268 —0.527¢—-03
6 0.0557 —0.0894 0.7838 —0.0816 0.7569 —0.454e—03
7 0.1094  —0.0952 0.8470 —0.0956 0.8401 —0.396e - 03
8 0.0904  —0.1090 0.8298 —0.1033 0.8226 —0.349¢ - 03
9 0.1202 —0.1248 0.8618 -0.1225 0.8527 —0.312¢—-03
10 0.0863 —0.1436 0.8331 —0.1342 0.8133 —0.281e—03

Notes: Column 1: Horizon, in years. Column 2: Statistics computed using historical
excess returns. Column 3: Median of Monte Carlo distribution of statistics for 116
equilibrium excess returns generated with linear utility. Column 4: Percentage of Monte
Carlo distribution having values less than the value in column 3. Column 5: Median of
Monte Carlo distribution of statistics of 116 equilibrium excess returns generated with
concave utility. Column 6: Percentage of Monte Carlo distribution with values less than
the value in column 5. Column 7: Population statistics for equilibrium excess returns.

1.0 for T=1160, the distribution shifts far-
ther down in a sample of T=116 when the
endowment follows the Markov switching
process. The results in column (5) show that
for the Markov switching model, roughly 10
percent more of the empirical distribution
lies below the data than for the geometric
random walk model reported in column (1).

The effect of consumption smoothing
alone can also be deduced from the table.
Columns (7) and (9) of Table 7 replicate the
well known result that if the endowment
process follows a geometric random walk,
concave utility cannot produce mean rever-
sion. This can also be seen from our solution
for returns in equation (13). When there is
no switching of states, the function p is
constant. Because the ¢,’s are independent,

returns are serially uncorrelated regardless of
the elasticity of intertemporal substitution.
Columns (7) and (8) report on the impor-
tance of the interaction between consump-
tion smoothing and the Markov switching
model. Comparing column (8) to column (3)
shows the importance of the combined im-
pact of these two effects in small samples. By
comparison with the model calibrated to the
geometric random walk with linear utility,
the nonlinear model with concave utility
yields roughly an additional 25 percent of
the empirical distribution below the data
when T =116. Furthermore, the results in
column (10) show that even in large samples,
consumption smoothing implies negative se-
rial correlation in returns when the endow-
ment follows the Markov switching process.
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D. Excess Returns .

Table 8 reports results on mean reversion
in excess returns when the model is cal-
ibrated to consumption.”’ Poterba and
Summers also find evidence of mean rever-
sion in excess returns. The top panel of the
table shows the results for the variance ratio
statistics. Column (2) of table reports the
values computed from historical excess re-
turns. These are only slightly larger than the
values for real equity returns reported in
Table 5. Although the model generates
time-varying excess returns for the parame-
ter values that we consider (i.e., the implied
variance of excess returns are not zero), they
do not exhibit very much serial correlation.
However, the estimates in column (2) still lie
well within the standard 95 percent confi-
dence intervals of the median of the Monte
Carlo distributions.

The bottom panel of the table reports the
results for the regression coefficients al-
though Fama and French do not report re-
sults for excess returns. From column (2), it
can be seen that the coefficients computed
from historical excess returns are substan-
tially different from those computed with
real equity returns, and are strikingly differ-
ent from any of the results reported by Fama
and French. Rather than becoming more
and more negative as the horizon lengthens,
they become positive at six years, and grow
larger and larger. Nevertheless, because of
small sample bias in the calculation of the
regression coefficients at long horizons, the
data still lie within a 90 percent confidence
interval of the median of our Monte Carlo
distributions.

III. Conclusion

This paper demonstrates that the findings
of Poterba and Summers (1988) and Fama
and French (1988), that stock prices are mean
reverting, are consistent with an equilibrium
model of asset price determination. The
question we addressed was whether the em-
pirically observed serial correlation proper-
ties of stock returns can be generated by an

2The results with the model calibrated to dividends
and GNP are similar and are not reported to save space.
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equilibrium model of asset pricing. Monte
Carlo distributions of Poterba and Summers’
variance ratio statistics and Fama and
French’s long-horizon return regression co-
efficients are generated using equilibrium re-
turns derived from the Lucas (1978) model
and Hamilton’s (1989) Markov switching
process governing consumption, dividends,
and GNP. When economic agents care about
smoothing their consumption, the equilib-
rium model implies that stock prices are
mean reverting. It is possible that this is
what was detected by Poterba and Summers
and Fama and French. However, even with a
linear utility function, the variance ratios
and regression coefficients calculated with
the historical Standard and Poors’ returns
data are not significantly different from the
median of our Monte Carlo distribution. This
latter result underscores the problem that
116 annual observations do not contain very
much information when computing statistics
based on returns at five- or ten-year hori-
zons. Both the bias and the size of confi-
dence intervals generated by sampling varia-
tion grow as the effective sample size gets
smaller. The implication for testing the null
against local alternatives is complementary
to Summers’ (1986) point that most tests of
market efficiency have virtually no power
against what he calls fad alternatives. Since
we have shown that a properly constructed
equilibrium model can generate rational as-
sets prices that exhibit a good deal of nega-
tive serial correlation, it follows that, given
the available data, the test of any fad model
will have very little power against the rather
wide class of equilibrium alternatives. More
precise estimates and more powerful tests
can only come through the passage of time
and not by sampling the data more fre-
quently.?! If there had been a well-function-
ing asset market since the time of the
Norman invasion (A.D. 1066) and we had all
the necessary price and dividend data, then
we might begin to distinguish among some
of the competing theories. We conclude that

ZThat is, in computing the autocorrelation of ten-
year returns, what is needed is more ten-year time
periods and not weekly or daily observations. All we
can do is wait.
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the evidence drawn from variance ratios and
return regression coefficients are not suffi-
cient to rule out equilibrium models. It is
important to emphasize, however, that these
results do not prove that the equilibrium
model is true, since it is impossible to prove
rationality or irrationality.

DATA APPENDIX

The dividend data are annual observations from the
Standard and Poors’ index from 1871 to 1985 deflated
by the CPI. This is the Standard and Poors’ historical
data used by Poterba and Summers. Observations on
returns and the CPI from 1871 to 1926 are from Jack
Wilson and Charles Jones (1987) and Wilson and Jones
(1988), respectively. From 1926 to 1985, the data are
from Roger Ibbotson and Rex Sinquefeld (1988). Ob-
servations on nominal dividends are those used by
Campbell and Shiller (1987). We use these data as a
benchmark because they represent the longest available
time-series, and we believe that the characteristics of
these data are representative of equity returns and divi-
dend disbursements in general. Also, the Standard and
Poors’ index is one of the data sets used by Poterba and
Summers, so a direct comparison can be made with
some of their results. We follow both Poterba and
Summers and Fama and French in deflating by the CPI.

The risk-free rate series is the ex post real return to
holding a one-year U.S. Treasury security, or the equiv-
alent, computed by subtracting realized inflation from
the nominal interest rate. The nominal interest rate
series was computed using data from four separate
sources. The constructed series is intended to come as
close as possible to a measure of the yield to maturity
on a one-year U.S. security. For the period from 1920 to
1929, the basic data are drawn from the column giving
the compound annual return from rolling “3- to 6-month
Treasury notes and certificates,” Table No. 122, page
460, of the Banking and Monetary Statistics of the United
States. For a given year, the one-year yield was com-
puted by assuming that the security was rolled over in
July. For the period from 1930 to 1950, the data are the
one-year yield for December of the previous year re-
ported in the appendix to Stephen Cecchetti (1988).
From 1951 to 1985, the data are the one-year zero
coupon yield reported in J. Huston McCulloch (1988).
For the period from 1871 to 1919, there is no direct
information on government yields. To obtain a consis-
tent series, we began by regressing the one-year yields
from 1920 to 1987 (as described above) on the commer-
cial paper rate constructed by Campbell and Shiller
(1987). Since the commercial paper rate series extends
back to 1871, we were able to estimate the implied
government yield as the fitted values from this regres-
sion.

The real GNP data are constructed by combining
data from 1869 to 1928 from Christina Romer (1989)
with data from 1909 to 1928 from Romer (1985), and
observations from 1929 to 1985 from the National
Income and Product Accounts.

The consumption data are constructed by splicing
the Kendrick consumption series reported in Nathan
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Balke and Robert Gordon (1986), from 1889 to 1928,
with the National Income and Product Accounts data
from 1928 to 1985. This series is the longest available
series on aggregate personal consumption expenditure
we are aware of.

In order to express quantities in per capita terms, we
divided each time-series by annual population esti-
mates. The estimates used are as follows. From 1869 to
1938 the data are from the Historical Statistics of the
United States, Series A7 from 1869 to 1928 (with the
data in footnote 1 for 1917 to 1919), and Series A6 from
1929 to 1938. From 1938 to 1985 the data are from the
Economic Report of the President, 1989, Table B-31.
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