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A Tale of Three Schools:
Insights on Autocorrelations
of Short-Horizon Stock
Returns
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This article reexamines the autocorrelation pat-
terns of short-borizon stock returns. We document
empirical results which imply that these autocor-
relations bave been overstated in the existing lit-
erature. Based on several new insights, we provide
support for a market efficiency-based explanation
of the evidence. Our analysis suggests that insti-
tutional factors are the most likely source of the
autocorrelation patterns.

There is strong support for the view that short-horizon
stock returns are predictable.! This view has grown
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in stature with two seemingly important pieces of evidence: (&) short-
horizon portfolio returns are significantly autocorrelated [e.g., .36 for
small stocks (see Table 1)], and (&) short-horizon returns are highly
cross-serially correlated [e.g., .28 between small and lagged large-
firm portfolios (see Table 1)]. That these autocorrelations and cross-
serial correlations are large and statistically significant is irrefutable.
However, the economic meaning of these short-horizon correlations
is less clear and has been debated in the recent finance literature.

We can broadly divide the prevailing views on the meaning of these
correlations into three schools of thought. The first school, the /loy-
alists, believes that markets rationally process information. Their view
is that large autocorrelations at short horizons are not due to fun-
damentals; instead, they argue that the correlations arise from market
frictions. Specifically, both the pattern and the magnitude of the cor-
relations are consistent with measurement error in the data (e.g.,
nonsynchronous trading, price discreteness, or bid-ask spreads), insti-
tutional structures (e.g., trading mechanisms such as different market
structures or trading/nontrading periods), or microstructure effects
(e.g., systematic changes in either inventory holdings or the flow of
information) .2

Similar to the loyalists, the second school of thought, the revision-

ists, believes that markets are efficient. However, they believe that,

w

even in frictionless markets, short-horizon stock returns can be auto-
correlated. Specifically, their view is that the correlation patterns are
consistent with time-varying economic risk premiums. Changing risk
premiums, they argue, can be explained by intertemporal asset pric-
ing models, such as conditional versions of the arbitrage pricing
theory or the consumption-based asset pricing model. That is, vari-
ation in risk factors, such as past market returns, past size returns, or
interest rate spreads, can induce variation in short-horizon risk pre-
mijums.?

The third school of thought, the beretics, takes a different approach.
They believe that markets are not rational, that profitable trading
strategies do exist (even on a risk-adjusted basis), and that psycho-

As examples of this literature: see Cohen et al. (1986) and Lo and MacKinlay (1990b) for a direct
analysis of nonsynchronous trading; see Conrad, Gultekin, and Kaul (1992) for the potential effect
of bid-ask spreads; see Keim (1989) for an investigation (albeit in a different setting) of the relation
between transaction costs and market seasonals; for a look at returns around trading and nontrading
periods, see Bessembinder and Hertzel (1993); for information-related microstructure effects, see
Hasbrouck (1991), or, in a related way, for the potential effect of strategic trading, see Admati and
Pfleiderer (1989); and for an analysis of transactions costs and portfolio autocorrelations, see Mech
(1993).

As examples of this literature: see Keim and Stambaugh (1986) and Lo and MacKinlay (1992) for
monthly returns using linear factor models; see Conrad and Kaul (1989) for weekly returns in
univariate settings; and for an analysis of weekly returns in a multivariate framework, see Connolly
and Conrad (1991); Conrad, Gultekin, and Kaul (1991); Conrad, Kaul, and Nimalendran (1991);
and Hameed (1992).
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logical factors are important for pricing securities. For example, her-
etics argue that time series patterns in returns occur because investors
either overreact or only partially adjust to information arriving to the
market. Thus, for “astute” investors, excess profits can exist even if
financial markets are well functioning.*

To understand the importance of the short-horizon autocorrelation
evidence and its implications for expected returns, consider the
expected return on the small-firm portfolio, conditional on the pre-
vious week’s returns on the small- and large-firm portfolios both being
positive versus both being negative. The annualized conditional
expected returns on this portfolio are 60 percent and —44 percent,
respectively, in these two states, a 104 percent difference in ex ante
premiums! Although transaction costs may explain why this premium
cannot be arbitraged away, they do not explain its existence. The
aforementioned schools of thought all have opinions on the source
of this premium, and this article’s purpose is to provide some insights
on these sources.

With respect to the debate between the loyalists, revisionists, and
heretics, it is important to distinguish between correlation and eco-
nomic causality. Therefore, we first provide an interesting perspective
on the existing literature for short-horizon return autocorrelations.
Specifically, Conrad, Gultekin, and Kaul (1991) reported rather strik-
ing evidence that seems to be at odds with existing interpretations
of cross-serial correlation patterns documented by Hawawini (1980),
Lo and MacKinlay (1990a), and Mech (1990). We argue that these
cross-serial correlations can be explained by the portfolios’ own auto-
correlation patterns coupled with high contemporaneous correlations
across portfolios [see also Hameed (1992)]. Given this point and the
fact that small firms exhibit by far the most autocorrelation, under-
standing the dynamics of short-horizon returns is very much related
to explaining the magnitude of small-firm portfolio return autocor-
relations.

We provide an analysis of one potential explanation for the mag-
nitude of this autocorrelation based on the nontrading and risk char-
acteristics of small firms. As an alternative to Lo and MacKinlay’s
(1990b) homogeneous model of nonsynchronous trading, we develop
different specifications of nontrading, which can produce potentially
important effects. Using stylized facts on nontrading documented by

At short horizons, several papers document excess profits from various trading rules based on
positions in either individual securities or portfolios. As examples of this literature, see Jegadeesh
(1990) and Lehmann (1990) for an analysis of contrarian strategies; see Jegadeesh and Titman
(1992) and Lo and MacKinlay (1990a) for an analysis of profits due to cross-serial correlation across
stocks; and see Brock, Lakonishok, and LeBaron (1992) for a detailed examination of technical
trading strategies based on past movements in the Dow Jones 30. Some of these authors admit the
possibility that these profits are compensation for risk.
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Foerster and Keim (1993), we show that the effect of nonsynchronous
trading has most probably been understated in the literature. For
example, we consider portfolios with autocorrelations as low as 7
percent under standard assumptions. We show that these can be as
high as 20 percent when the researcher takes account of the degree
of heterogeneity within the portfolio in both the nontrading and the
betas of individual stocks. This suggests that researchers should be
especially cautious in ruling out nonsynchronous trading as an impor-
tant determinant of the magnitude of autocorrelations in portfolio
returns.

With the goal of providing an ex ante test of the three schools’
implications, we study the relation between the autocorrelations of
futures returns and the returns on the underlying spot index of two
small-firms-weighted portfolios. We find that, although returns on
small-firms-based indices display significant autocorrelation, returns
on the corresponding futures contracts display almost none. Coupled
with some diagnostic tests, this result points toward a loyalist expla-
nation of the autocorrelation evidence.

The article is organized as follows. Section 1 explains, in the context
of the existing evidence, why the cross-serial correlation pattern in
portfolio returns is simply a restatement of existing autocorrelation
patterns, coupled with high correlations across asset returns. In Sec-
tion 2, we provide a closer look at the autocorrelation evidence. In
Section 3, we focus on the issue of nonsynchronous trading and show
that it can be more important than previously thought. Section 4
focuses on differentiating the three schools’ implications for the time-
series data by studying the relation between the spot index and cor-
responding futures markets. Section 5 makes some concluding
remarks. Throughout the article, various data sources and correspond-
ing specific procedures for forming portfolios are used. These are
described in detail in the Appendix.

. Another Look at the Cross-Serial Correlation Evidence:
Why Only Autocorrelations Matter

Consider weekly returns on five size-sorted portfolios over the sample
period 1962-1990. In a widely cited article, Lo and MacKinlay (1990a)
found that the returns on large stocks led those on smaller stocks,
but not vice versa. For example, over the 1962-1990 period, Table
1B provides the own- and cross-serial correlations between the returns
on the five size portfolios.> As evident from this table, there is an

5 Our autocorrelation calculations differ from those of Lo and MacKinlay (1990a) and other research
in this area in two significant ways. First, we estimate the weekly autocorrelation day by day using
overlapping observations, whereas they estimate the weekly autocorrelation on a particular day
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asymmetric lead-lag relation in the cross-serial correlations across
firms. Although not explicitly related to their analysis, Conrad, Gul-
tekin, and Kaul (1991) and Conrad, Kaul, and Nimalendran (1991)
reported an interesting stylized fact that bears on this evidence. They
found that, in multiple regressions of small-firm portfolio returns on
lagged returns, lagged large-firm returns have no predictive power
beyond lagged small-firm portfolio returns [Conrad, Gultekin, and
Kaul (1991, p. 609)].6 This is in stark contrast to the popular lead-lag
explanation of the cross-serial correlation evidence of Lo and
MacKinlay (1990a) [i.e., that there is a delayed (possibly irrational)
stock price reaction of smaller firms to information arriving to the
market]. Absent the existing literature on lead-lag relations, what type
of cross-serial correlation pattern should we expect in portfolio returns?

In the context of this evidence, Hameed (1992) showed that a time-
varying factor model can explain the asymmetric cross-serial corre-
lations in portfolio returns. His argument is that the asymmetry arises
from differences in the level of time variation in expected returns
across portfolios. So, for example, in comparing large firms to small
firms, the key feature is how autocorrelated the expected return com-
ponent is for small firms versus large firms. A more general way of
looking at Hameed’s (1992) point is to recognize that lagged returns
on large firms are simply proxying for the small-firm portfolio’s own
lagged return, given the high degree of contemporaneous correlation
across portfolios.

To see how asymmetric cross-serial correlation across assets can
easily arise, consider a simple AR(1) model of the return-generating
process for each size portfolio. For example, from the loyalist per-
spective, this process is implied by Lo and MacKinlay’s (1990b) model
of nonsynchronous trading. That is,

Ry=a;,+ p;R, , T ¢, Vi, (1

7
where R, is the return on size portfolio 7 from ¢ — 1 to ¢and ¢, is the
unexpected shock to portfolio 7 over this period. Note that these
shocks are contemporaneously correlated across the size portfolios.
For example, Table 1A shows that the correlation between weekly

using nonoverlapping data. A priori, our procedure is more efficient [see Hansen and Hodrick
(1980) and Richardson and Smith (1991)]. For example, heteroskedasticity aside, results in Rich-
ardson and Smith (1991) imply that the variances of the autocorrelation estimators using nonover-
lapping data will be (asymptotically) 47 percent higher, which can be interpreted as the percentage
number of additional observations needed to achieve the same power as the overlapping method.
Second, although most researchers use a fixed portfolio throughout the sample, we resample
quarterly [as in Lo and MacKinlay (1988)]. We refer to the differences between these approaches
at various times in the article (also see the Appendix).

¢ We have performed some additional empirical tests of this result in nonlinear frameworks. The
result seems quite robust to more general specifications.
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Table 1
Lead-lag theoretical and implied correlations

A: Empirical contemporaneous correlations

Rs/ Rz: Rat R4: Rl: Rewl
R, 1.000 0.939 0.886 0.830 0.720 0.920
R, 0.939 1.000 0.972 0.937 0.849 0.983
R, 0.886 0.972 1.000 0.977 0.913 0.990 -
R, 0.830 0.937 0977 1.000 0.960 0.978
R, 0.720 0.849 0913 0.960 1.000 0.920
R.. 0.920 0.983 0.990 0.978 0.920 1.000
B: Empirical cross-serial correlations
R\I— 1 R.!I* 1 R}l—l Rol— 1 Rll—l wa—l
R, 0.362 0.357 0.346 0.328 0.284 0.352
R, 0.253 0.271 0.278 0.273 0.248 0.276
R, 0.189 0.209 0.219 0.223 0.210 0.219
R, 0.134 0.155 0.170 0.176 0.171 0.167
R, 0.033 0.049 0.063 0.069 0.070 0.058
Rt 0.210 0.225 0.231 0.230 0.210 0.231
C: Implied cross-serial correlations
R\l—l R.’I—I le—l Rol—l Rllfl R«n-l—l
R, 0.362 0.340 0.321 0.300 0.260 0.333
R, 0.254 0.271 0.263 0.253 0.230 0.266
R, 0.194 0.213 0.219 0.214 0.200 0.217
R, 0.146 0.165 0.172 0.176 0.169 0.173
R, 0.050 0.059 0.064 0.067 0.070 0.064
Reour 0.212 0.227 0.229 0.226 0.212 0.231

Tables 1A-1C provide estimated and implied autocorrelations of weekly stock returns of five size-
sorted portfolios and the equal-weighted index over the 1962-1990 sample period. The estimates
are calculated using overlapping weekly return data. Table 1A documents the contemporaneous
cross-correlation across portfolio returns, Table 1B documents the cross-serial correlation across
portfolio returns, and Table 1C documents the implied cross-serial correlations, using the contem-
poraneous cross-correlations and each portfolio’s own autocorrelation of returns. Note that stocks
are sorted from smallest to largest with corresponding returns Ry, R, R, R, and R,. R,,, is the
return on the equal-weighted index.

returns on the size portfolios varies from .72 to .98 over the 1962-
1990 subperiod.

This model therefore allows for contemporaneously correlated
shocks to returns. However, consistent with Conrad, Gultekin, and
Kaul (1991), this model implies that own lagged returns on a portfolio
completely describe conditional expected returns on that portfolio.
From Equation (1), each portfolio return has an infinite order moving
average representation in terms of the disturbance terms:

(4 - .
R, = ——+ 2 Pien_k Vi, (2)
1—=p o

Using Equation (2), it is possible to calculate the first-order cross-
serial correlation between return R, and lagged return R,_, in terms
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of R,’s first-order autocorrelation and the contemporaneous correla-
tion between R, and R,. Specifically,’

cort(R,, R,_,) = corr(R,, R,) X corr(Ry, R, ). (3)

Table 1C provides Equation (3)’s implied values of the cross-serial
correlations among the five size portfolios. Note that all that is required
for this calculation are the relevant estimates of the autocorrelations
and contemporaneous correlations across assets. Tables 1B and 1C
show that the implied autocorrelations and the actual estimates appear
quite close in value. For example, consider a representative portfolio,
size quintile 3. Its implied cross-serial correlation values with respect
to quintiles 1 through 5 and the market are .194, .213, .219, .214, and
.200, as compared to the estimated correlations of .189, .209, .219,
.223, and .210, respectively. This illustrates not only that the values
are of equal magnitude, but also that the ordering in magnitudes
across portfolios is similar.®

Thus, even in a world in which large-firm returns have no infor-
mation beyond that contained in small firms, there can be large
amounts of lagged cross-predictability. One way to interpret these
results is that the lead-lag relation is a “red herring” with respect to
the dynamics of short-horizon returns. That is, the lead-lag relation
is simply another (and less efficient) way of describing the individual
autocorrelation patterns of short-horizon portfolio returns. Since Table
1 implies that the small-firms portfolio’s autocorrelation is especially
important, it seems worthwhile trying to better understand the sources
of this autocorrelation. With this in mind, we examine the autocor-
relation more closely in the next section.

. The Autocorrelation of Weekly Returns: Another Look

Our procedure for calculating the autocorrelation of weekly returns
is based on the asymptotic arguments of Hansen and Hodrick (1980)
and the analytical calculations of Richardson and Smith (1991), who
showed that using all available data (i.e., in the presence of overlap-
ping observations) is in general more efficient than its nonoverlapping
counterpart. Previous researchers have chosen a particular day, say
Wednesday, to estimate the weekly autocorrelations. What type of
effects might this have in small samples?

A growing literature in finance documents patterns in daily auto-

7 Hameed (1992) derived a related, but different, result in the context of a factor model for time-
varying expected returns.

* Across all five portfolios, there is a slight tendency for our model’s values to be lower than the
actual estimates. However, the difference in magnitudes is economically quite small and is con-
sistent with sampling error in the estimates.
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Table 2
Weekly autocorrelations and the effect of outliers and subperiods
Wald Test
for Sea-
Over- Wednes- sonality,

lapping Monday Tuesday  day  Thursday Friday X

Overall period .362 313 .306 373 408 429 21.2
(quarterly resampling) (.041) (.045)  (.054)  (.044) (.037) (.032) (.000)
w/o outliers 311 .362 .409 .400 429
Number of outliers 77 68 76 80 83
Overall period 272 .209 221 .306 319 324 19.2
(no resampling) (.041)  (.050)  (.055)  (.039) (.035) (.034) (.001)
1962-1969 346 273 271 .359 437 411 10.5
(.066)  (.070)  (.089)  (.084)  (.052) (.059)  (.033)
1970-1977 .386 .320 304 .397 470 476 17.2
(.069) (.083) (.101) (.071) (.058) (.057) (.002)
1977-1984 .365 .308 .362 423 .360 395 11.2
(.068)  (.064) (.074) (.061)  (.072)  (.045)  (.024)
1984-1990 295 325 273 .268 .281 352 2.8

(.106)  (.085)  (.055)  (.104)  (.086)  (.065)  (.586)

Table 2 provides autocorrelations of returns on the small-firm portfolio over the period 1962-1990
and over four subperiods of equal length. The autocorrelations are estimated for weekly returns
for weeks ending on different days of the week. Wald tests for equality between the weekly auto-
correlations across the different days of the week are also given. Standard errors (of the autocor-
relations) and p-values (of the statistics) are given in parentheses. Note that all of the estimates
and test statistics have been adjusted for possible heteroskedasticity and serial correlation using
the method of Newey and West (1987). Also provided is the autocorrelation of weekly returns over
the whole period without outliers included. In particular, all observations outside 2 standard
deviations were dropped for this case.

correlations across days of the week [e.g., Keim and Stambaugh (1984),
and Bessembinder and Hertzel (1993)]. Here, we reexamine the influ-
ence of these and other patterns on the autocorrelation of weekly
returns. Because the small-firm portfolio provides the most extreme
example of time varijation in short-horizon expected returns, in Table
2 we calculate weekly return autocorrelations for this portfolio ending
on different days of the week. Because of the overlap these autocor-
relations are highly correlated and should be very similar given the
1486 observations. The results in Table 2 suggest that this is not the
case.

Specifically, irrespective of the sampling procedure of the portfolios
[i.e., quarterly resampling as in Lo and MacKinlay (1988) versus no
resampling as in Lo and MacKinlay (1990a)], the autocorrelations
using weeks ending on Monday and Tuesday are substantially differ-
ent from those using the other days of the week. For example, for
the full sample period, the weekly autocorrelation pattern for the
returns on the small-firm portfolio Monday through Friday are .313,
300, .373, .408, and .429 resampled quarterly and .209, .221, .306,
.319,and .324 sampled just once. This can have important implications
for interpreting the results. For example, consider the Lo and
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MacKinlay (1990a) sampling procedure for portfolios described in
the Appendix. The autocorrelation of weekly returns is .272 in the
presence of overlapping observations, whereas it is .306 for days of
the week ending on Wednesday. Since Wednesday has been the pre-
ferred choice of days among researchers, they have inadvertently
overstated the autocorrelation magnitude in existing work.

Table 2 also provides a Wald test of the equality of the autocorre-
lations across the days of the week. The test statistic is adjusted for
heteroskedasticity and cross-serial correlation (because of the over-
lapping errors across days of the week) using the method of Newey
and West (1987). From a statistical point of view, the magnitude of
the difference in the autocorrelations is large. For quarterly resam-
pling, the Wald statistic is 21.2. Since the underlying distribution of
this statistic is a x 2, the p-value is .000.

We explore several possible explanations for the seasonal pattern
in the estimated autocorrelations. First, holidays or other market clo-
sures are more likely to occur on some days than others, which may
lead to a bias in the estimate. This is because our method for esti-
mating the weekly autocorrelation follows Lo and MacKinlay (1988,
1990a), who treat holidays (and other “missing observations”) as a
zero return. During this period, Monday and Friday have the most
missing observations (approximately 6.9 percent and 3.7 percent of
the observations, respectively). In contrast, Tuesday has the least
number of observations missing, approximately 1.8 percent. Given
that weekly returns for weeks ending on Monday and Tuesday lead
to similar autocorrelations, it seems unlikely that the pattern in auto-
correlations can be explained via holidays or other market closures.

Second, there are several extreme observations over the 1962-1990
period (such as the market crash in October 1987). This could poten-
tially lead to poor large-sample approximations even with a sample
size of 1486 observations. We therefore check to see whether outliers
can explain the seasonal pattern.® These results are given in Table 2.
With or without extreme observations, both the seasonal pattern and
the magnitude of the autocorrelations persist. For example, excluding
outliers, the autocorrelations of weekly returns for weeks ending on
Tuesday and Wednesday are .362 and .409, respectively, which are
similar in magnitude to those reported earlier.

Third, nonstationarities may be present in the data, such that the
usual standard errors, whether homoskedasticity- or heteroskedastic-
ity-consistent, are not appropriate. Although it is not clear to us what

 We choose a standard objective criterion for omitting outliers. Specifically, we ignored observations
that are 2.0 standard errors from the mean of small-firm returns. Depending on the day over which
weekly returns are calculated, approximately 4.5 to 5.6 percent of the observations lie outside 2
standard errors.
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Correlation

Figure 1

Daily autocorrelations

The figure plots the daily autocorrelation of returns on a portfolio of small firms over the period
1962-1990. First- through fifth-order autocorrelations are provided for each day of the week. Thus,
the point (Thursday, 2), for example, represents the autocorrelation between Thursday’s return
and the prior Tuesday’s return (i.e., a two-day lag).

type of nonstationarity in the data can produce these seasonal differ-
ences at such short horizons, evidence of nonstationarity might show
up in a subperiod analysis. Table 2 provides autocorrelations of weekly
returns (for weeks ending on each day) over four equal subperiods:
1962-1969, 1970-1977, 1977-1984, and 1984-1990. As an example,
consider the autocorrelation of weekly returns for weeks ending on
Tuesday versus Wednesday. The Tuesday-week weekly autocorrela-
tions are .271, .304, .362, and .273, respectively, over the four sub-
periods. In contrast, the Wednesday-week weekly autocorrelations
are higher in the first three of four subperiods—.359, .397, .423—and
slightly lower in the last—.268.

Therefore, there is some evidence that the seasonal may not be
stationary. In particular, the difference in the weekly autocorrelations
for weeks ending on Wednesdays versus Tuesdays drops from .088,
.093, and .061 in the first three subperiods to —.005 in the last sub-
period. Table 2 provides a joint Wald test of the no-seasonal hypoth-
esis across the five days of the week for the four subperiods. The first
three subperiods imply a seasonal at the 5 percent level. The Wald
statistic for this final period is only 2.8, which represents a .586 p-value.
Though this suggests that the seasonal in weekly returns may be less
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important than implied by the overall 1962-1990 period, it should
be pointed out that, in every subperiod, there is some seasonal (albeit
small) and that this seasonal tends to be a particular direction.

Another way to look at the stationarity issue is to consider the
magnitude of the autocorrelations across the subperiods. In a joint
test of the null hypothesis that the autocorrelations are equal across
subperiods for each day of the week, we obtain a statistic of 24.1.
With 15 restrictions (3 for each of the five days of the week), the
statistic is distributed asymptotically as a x2(15). The corresponding
p-value is .064—a borderline rejection. This result, in conjunction
with the large variability of the autocorrelations (e.g., .423 versus .268
for the latter two subperiods on Wednesdays), suggests caution in
interpreting the standard errors of these estimates.

Given the overlap and the obvious high contemporaneous corre-
lation across weekly returns on different days, what accounts for the
seasonal patterns in weekly autocorrelations? Note that the weekly
autocorrelations (if continuously compounded) are just different
weighted combinations of correlations between different days. For
example, the weekly autocorrelation for weeks ending on Wednesday
is made up of daily autocorrelations from first to ninth order, including
the first-order autocorrelation between Thursday’s return and
Wednesday’s return, the ninth-order autocorrelation between
Wednesday’s return and the prior week’s Thursday’s return, and so
on. Therefore, differences across days must account for the seasonal
patterns.

Figure 1 provides estimates of the correlation between a particular
day’s return and each daily return during the previous five-day period.
Figure 1 shows that extreme differences persist across both days and
lags.’® Given 1486 observations for each day, these daily autocorre-
lations impose sharp restrictions on viable explanations for short-
horizon dynamics in stock returns. For example, as evident from the
figure, there is a major difference in the first-order autocorrelations
between Monday’s return and the prior Friday’s return (i.e., .52) com-
pared to the correlation between Wednesday’s return and the prior
Tuesday’s return (i.e., .18).1* One possible explanation of this differ-
ence may be the importance of weekend returns versus nonweekend
returns as documented by Keim and Stambaugh (1984) and Bessem-

' Note that Keim and Stambaugh (1984) explored, among other things, daily correlations in Dow
Jones 30 firms over different days and also found a seasonal pattern (especially around weekends).
Bessembinder and Hertzel (1993) extended the analysis to a longer time series, to additional
periods of regular nontrading (such as holidays), and to a wide array of assets.

' Note that Monday’s return is defined as the return from the previous Friday close to the Monday
close. Thus, it is the return over both the weekend and Monday day.

12 As a check to see if this pattern is unique to a particular market, such as the NYSE/AMEX, we
repeated the tests using NASDAQ data over the 1972-1990 period. Essentially, the same pattern
also occurs in this market.
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binder and Hertzel (1993).'2 This view is supported by the fact that
the test statistic for seasonals drops dramatically when we ignore the
restriction that autocorrelations of weekly returns on Friday should
equal those of Monday.!? The only day not in common for these weekly
returns is the weekend return (Friday close to Monday close), and,
not surprisingly, this contributes to the rejection of the no-seasonality
null in Table 2.

3. Nonsynchronous Trading: New Results

Since Fisher (1966) and Scholes and Williams (1977) first pointed
out that nonsynchronous trading can induce positive autocorrelation
in stock returns, researchers have investigated nontrading as the
potential source of portfolio serial correlation. The effect of nonsyn-
chronous trading on the autocorrelation of portfolio returns relies on
two facts. First, daily closing stock prices on the Center for Research
in Security Prices (CRSP) tapes reflect either the last trade of the day,
which may have occurred hours before the official close of the
exchange, or the average of bid and ask quotes, which may not have
been updated for hours or days. Second, the vast majority of stock
prices respond in the same direction to aggregate economic news.
As an illustration, consider two stocks, one that trades at the close
and one that only trades at the open but at no other time during the
day. If significant economic news comes out during a particular trad-
ing day, the price reported on the CRSP tapes for the first stock on
that day will reflect the news because the stock trades at the end of
the day. In contrast, the reported price for the second stock on that
day will not reflect the news because the last trade in this stock
occurred before the news was released. The price of the second stock,
however, will respond to the news when it trades the following day
at the open of trade. As a result, the return on the first stock will seem
to lead or predict the return on the second stock, even though this
phenomenon is purely an artifact of the trading frequency of the two
stocks. Spurious predictability across stocks leads to positive serial
correlation in portfolio returns if these stocks are grouped into port-
folios.

From an empirical standpoint, Atchison, Butler, and Simonds (1987),

* In particular, the statistic drops from 21.2 for the test
Pu=Pr=Py= P = Pn
to 2.5 for the test
Pu=P, =Py  Pu=Pn
where, for example, p,, is the Monday week return autocorrelation.
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Cohen et al. (1986), and Perry (1985) all found that the autocorre-
lation is more prevalent for portfolios with more thinly traded stocks
(such as small firms) . Nevertheless, their analysis suggested that non-
synchronous trading is not the only cause of autocorrelation in returns.
More recently, Berglund and Liljeblom (1988), Conrad and Kaul
(1988), Lo and MacKinlay (1988, 1990b), McInish and Wood (1991),
Mech (1993), and Muthuswamy (1988) have investigated the auto-
correlations of portfolio returns more closely. The overall conclusion,
although not unanimous, is even stronger than in previous work. In
particular, only a small part of the autocorrelation patterns in portfolio
returns can be explained by nontrading effects. Our analysis, however,
suggests that these nontrading effects may play a more important role
than previously thought.

With respect to the prevailing wisdom, one of the most widely cited
studies is Lo and MacKinlay (1990b). They developed a model of
nontrading that yields closed-form solutions for both autocorrelation
and cross-serial correlation patterns in portfolio returns. Using this
model, they concluded that the existing evidence is consistent with
nonsynchronous trading only under unreasonable assumptions about
the probability of nontrading. The majority of the empirical results
in Lo and MacKinlay (1990b) are derived in a setting in which the
probability of nontrading in any fixed time interval is constant and
in which stocks within a portfolio are homogeneous in terms of non-
trading probabilities and covariation with the aggregate stock mar-
ket.’ For example, in their framework, if the probability of nontrading
in any given hour is 20 percent, then there is an 80 percent probability
that the last trade of the day for a particular stock will occur in the
last hour. The probability of the last trade of the day occurring in the
second-to-last hour is .2 X .8, or 16 percent. Similarly, the probability
of the last trade occurring in the third-to-last hour is .2 x .2 X .8, or
3.2 percent. A priori there is no reason to believe that the assumption
of time independence in nontrading is reasonable. This is especially
the case given that most researchers believe that information flow
(and thus trading) is clustered both within and across days. In addi-
tion, it is likely that there will be heterogeneity in both nontrading
probabilities and covariations with the market within portfolios,
especially within portfolios of small stocks. In this section, we con-
sider the effect of time dependence in nontrading and heterogeneity
on portfolio return autocorrelations in the context of numerical exam-
ples using data from the empirical literature.

" The theoretical model in Lo and MacKinlay (1990b) accommodates heterogeneous stocks, and
they discussed extensions of their model to serial dependence in the nontrading process in a
concluding paragraph. However, they argued that the induced autocorrelations are still too small
to explain the existing evidence.
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3.1 Time dependence in nontrading

The Markov structure in Lo and MacKinlay (1990b) places severe
restrictions on the intradaily and intraweekly patterns of nontrading.
Of particular importance, the geometrically declining probabilities
of the last trade occurring in a fixed time interval as we move backward
from the close of trade generate less severe nontrading than is appatr-
ent from the available data. The exact nature of the time dependence
that creates these non-Markovian nontrading patterns is unclear, but
the resultant increase in nontrading relative to the time-independent
model will induce additional spurious autocorrelation in portfolio
returns. Unfortunately, reliable intraday data does not exist over an
extensive sample period. However, some studies do provide evidence
on nontrading patterns. For example, Foerster and Keim (1993) and
Keim (1989) provided estimates of daily nontrading for firms during
the week. Examining small firms at the turn of the year over the period
1972-1987, Keim (1989) estimated that 73 percent of stocks last trade
on the final day of the week, 12 percent last trade on the second-to-
last day, 6 percent on the third-to-last day, 3 percent on the fourth-
to-last day, and the remaining 6 percent do not trade during the final
four days of the week, but no further breakdown is given.> This
distribution of nontrading can be contrasted with the distribution
given by Lo and MacKinlay’s Markov model of nontrading. Specifi-
cally, if we match the 27 percent nontrading probability for the final
day of the week, then the corresponding probabilities of the last trade
occurring on a given day as we move backward from the end of the
week are 73, 19.7, 5.3, 1.4, and 0.4 percent.

What are the implications of these two different nontrading distri-
butions for portfolio autocorrelations? The model of Scholes and
Williams (1977) provides a convenient framework in which to answer
this question. This model has the advantage of being able to accom-
modate any distribution of nontrading with the restriction that all
stocks must trade within a fixed time interval. In our case, this means
that all stocks must trade once during the week. We impose this
restriction on the time-independent distribution by adding the small
remaining fraction to the first day of the week, yielding the nontrading
distribution (73, 19.7, 5.3, 1.4, 0.5 percent). The Keim (1989) num-
bers are adjusted by distributing the 6 percent that did not trade in
the final four days of the week to the first and second days of the
week, yielding the nontrading distribution (73,12, 6,4.5,4.5 percent).

In the Scholes and Williams (1977) setting, it is straightforward to

* The probability of trade on the last day of the week is consistent with data for other times of the

year provided in Foerster and Keim (1993). Moreover, evidence in that article suggests that trading
activity is high during the turn of the year, so the estimates are most probably conservative [for
corroborating evidence, also see McInish and Wood (1991)).
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analyze portfolio autocorrelations. Specifically, let s, be the fraction
of the trading period before the close during which security 7 does
not trade, that is, s, is the time between the close of trade and the
last observed trade of security i. For example, using weekly data (or
approximately 30 hours of trading), s, might equal ¢ (or five hours).
Following Scholes and Williams (1977), assume that s, is independent
through time.! In addition, it is well known that the autocorrelation
of a well-diversified portfolio is approximately equal to the average
cross-serial covariance between the stocks in the portfolio divided
by the average contemporaneous covariance between these stocks
[see, for example, Atchison, Butler, and Simonds (1987)]:

2 E cov(R,, le—l)
#*

cort (R, R,,_,) = =122t . 4)

> 2 cov(R, R

=1 j=1,%1{

The intuition behind Equation (4) is analogous to the intuition under-
lying the concept of portfolio diversification. In particular, the cross-
serial covariance and cross-covariance terms simply “outnumber” the
autocorrelation and variance terms in the numerator and denominator
of Equation (4), respectively.

Using results in Scholes and Williams (1977, p. 313) and making
assumptions about either (a) the correlation of s, and s, or (b) the
coefficient of variation in returns, it is possible to show that, for an
equally weighted portfolio of » securities,”

E E E[max(s,, = S 0)]
=1 j=1,%i
> D 1 — E[max(s,, s s)] + E[min(s,, s;)]
=1 j=1,%1i
(5)

The expression in Equation (5) depends solely on how the distri-
bution of nontrading across securities is allocated within a given

corr (R, Rymy) =

' Even in a weekly time interval, it is possible that s, is correlated through time. However, extending
the model to allow this assumption complicates the derivations. It suffices to say that independent
s, tend to lower the induced autocorrelations; thus, our analysis understates the effect of nonsyn-
chronous trading with respect to this assumption.

"~ If s, and s, are positively correlated, this will reduce the amount of autocorrelation present in
portfolio returns that is induced by nonsynchronous trading. However, two features of weekly
returns diminish the effect from positive correlation of nontrading across securities. The first is that
this correlation is most likely less for weekly data, since idiosyncratic reasons for nontrading most
probably dominate in the longer run. Second, and most important, the coefficient of variation is
generally high for smaller firms (which dominate the portfolio looked at here), thus weakening
the influence of cross-correlation of the s, and s,.
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portfolio. Of particular interest, note that the distribution of the s,
itself matters, since we are concerned with the distribution of its
maximum and minimum values. Thus, assuming equal probability of
trading in any period [as in much of the empirical work in Lo and
MacKinlay (1990b)] may lead to quite different effects than some
alternative specification.

If we had access to reliable intraday data on small-firm returns over
this sample period, then it would have been possible to estimate the
implied autocorrelation in Equation (5) explicitly via estimation of
the distribution of each firm’s nontrading period, namely s,. Instead,
we use the formulation in Equation (5) and the nontrading estimates
discussed above. For the moment, assume that the s, are homoge-
neous, so that each firm’s fraction of nontrading has the same distri-
bution. Since each s, has the same distribution, the average expec-
tations in Equation (5) can be represented by the expectation for any
pair of stocks:

E[max(s;, — s, 0)]
1= E[max(sin sjz)] + E[min(s,.,, Sﬁ)]

corr (R, R,—y) = %)
Finally, we need to make an assumption about the distribution of
nontrading within the day. The Lo and MacKinlay (1990b) model
with daily nontrading probabilities implicitly assumes that, if a stock
trades during a specific day, then it trades at the close. In other words,
stocks that trade on the final day of the week implicitly exhibit no
nontrading at all. This assumption corresponds to setting s, equal to
0 for stocks that last trade on the last day, s, equal to .2 (one-fifth of
a week) for stocks that last trade on the second-to-last day, and so
forth. Initially, we will maintain this assumption, although it poten-
tially understates the severity of nontrading.

Because closed-form solutions are nontrivial, we simulate the two
distributions described above using a random number generator. We
conduct 10,000 replications of each simulation and then numerically
calculate the implied autocorrelation in Equation (6) using the dis-
tribution of the s, Using the slightly modified time-independent
distribution (73, 19.7, 5.3, 1.4, 0.5 percent), nonsynchronous trading
induces 6.3 percent autocorrelation. For comparison purposes, the
closed form in Lo and MacKinlay (1990b) gives an autocorrelation of
6.6 percent for a daily nontrading probability of 27 percent. The
discrepancy between these numbers can be attributed to the slight
differences in nontrading distributions and the random fluctuations
across simulations. To make all succeeding simulations as directly
comparable as possible, the same set of random numbers is used in
every case. Using the time-dependent nontrading distribution (73,
12,6, 4.5, 4.5 percent), nonsynchronous trading induces 10.5 percent
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autocorrelation. By relaxing the Markov assumption, we obtain auto-
correlations that are approximately two-thirds higher than those
implied by the time-independent probability structure. What is crucial
is the amount of extreme nontrading (even if for only a few stocks)
that takes place. Recall that the time-independent Lo and MacKinlay
(1990b) model cannot precisely match the Keim (1989) estimates—
it puts more weight on the last trade occurring on the second-to-last
day of the week and very little weight on the first and second days of
the week. The results here show that it is nontrading over these days,
however slight, that induces higher autocorrelations.

We now proceed to relax the assumption that all daily trading occurs
at the close of trade. No reliable data are available on the precise
distribution of nontrading within the day, so we take a relatively
conservative stance. Specifically, we assume that, of all the stocks that
last trade on a given day, a fraction S Jast trade at the end of the final
hour (i.e., at the close), a fraction 2 last trade at the end of the second-
to-last hour, a fraction 5 last trade an hour before that, and so on,
until the final 3; trade at the end of the first hour of trade (assuming
a six-hour trading day). Using this nontrading distribution within each
day and the daily nontrading distribution based on the Keim (1989)
numbers, nonsynchronous trading generates 12.8 percent autocor-
relation. This level of autocorrelation is approximately 20 percent
higher than that generated with all trading occurring at the close of
trade and more than twice as high as the autocorrelation generated
under the original time-independent distribution.®

The results above have an important implication for interpreting
the potential effect of nontrading. In particular, the distribution of
nontrading within the day and across days has a large influence on
weekly return autocorrelations. The problem with the Lo and
MacKinlay (1990b) Markov model is that it places little weight on
the tails of s,. Thus, given the Foerster and Keim (1993) and Keim
(1989) estimates of nontrading, it is the small probability of trading
very infrequently that spuriously increases the autocorrelation. In
addition, neglecting the within-day distribution of nontrading can
also lead to an underestimation of the autocorrelation induced by
nonsynchronous trading.

3.2 Heterogeneity in nontrading and betas
Another issue that has received little attention in the literature is the
effect of the heterogeneity of stocks within portfolios. For example,

" Note that the within-day nontrading distribution corresponds closely to the nontrading distribution
generated by applying the Markov model to hourly nontrading. In other words, setting the hourly
nontrading probability to 80.4 percent, which generates daily nontrading of 27 percent, induces
increases in autocorrelations similar in magnitude to those of switching from all trade at the end
of the day to the distribution described above.
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stocks within a portfolio may have both different nontrading proba-
bilities and different covariations with the stock market as a whole.
Thus, the nontrading distribution reported by Keim (1989) is most
likely not representative of each firm, but more likely illustrates the
fact that some stocks (for whatever reason) are always thinly traded
relative to other stocks. Heterogeneity in nontrading across securities
is important because the expression in Equation (5) concerns the
joint distribution of the maximum and minimum values. So, for exam-
ple, if some securities within the portfolio trade frequently and others
trade infrequently, then the autocorrelation magnitude will be accen-
tuated. As mentioned above, our analysis thus far assumes each stock
in the portfolio has the same distribution of nontrading throughout
the week. These estimates, however, are averages of nontrading across
small firms. Keim (1989) also provided evidence of nontrading sep-
arately for NYSE versus AMEX firms. Within the small decile, there
is clear heterogeneity, with AMEX firms having much larger nontrad-
ing periods than NYSE firms [see Keim (1989), Table 1].

Foerster and Keim (1993) provided some detailed evidence regard-
ing the prevalence of heterogeneity of nontrading over the period
1973-1990. They calculated not only the average frequency of daily
nontrading, but also various distribution percentiles for the size dec-
iles. We use their numbers for the two smallest deciles to calibrate
the degree of heterogeneity in nontrading. Note that our sample of
stocks corresponds closely to that of Foerster and Keim (1993); there-
fore, nontrading in their two smallest deciles will correspond closely
to nontrading in our smallest quintile.

For the examples that follow we use the Markov model in Lo and
MacKinlay (1990b) to calculate portfolio autocorrelations. Specifi-
cally, consider a group of securities with unobservable returns R%
generated by the processes

R;l: =u,+ BA + €, @)

where A, is a common factor with variance ¢? and ¢, are cross-sec-
tionally and temporally independent idiosyncratic errors. In each
period, each security trades with a constant probability p,, which is
time independent. If a security does not trade, its observed return is
0. If a security does trade, its observed return is the sum of the
unobserved returns for that period and all past consecutive periods
for which it did not trade. In other words, economic news (i.e.,
movements in the common factor) are reflected in stock prices only
when a security trades. Under these assumptions, consider observed
security returns aggregated over g periods, where the aggregated
periods are indexed by 7, that is,
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qr

R.(q) = 2 R,. €)

t=(r—1)g+1
The covariance between the observed returns on two securities is
given by

COV[R,.(@), Ryrsn(q)]

[q = pH = p)* + p (L — pH(A - p,-)z]ﬁﬁaz
1 —=p)A = p)A = pp) I
_ forn=0
a-—-p)a—p) (1 - qu>2 (n—1)g+1 2 ©)
1 — DD, 1 — Pj bj ﬂiﬁja)\
for n > 0.

Equation (9) can easily be used to calculate portfolio autocorrelations
using the result in Equation (4).%°

Although stocks will be described in terms of their daily nontrading
probabilities, the actual implementation uses the corresponding hourly
nontrading probabilities (for a trading day of six hours) to avoid the
understatement in autocorrelations associated with assuming that all
stocks trade at the close. It is important to note, however, that no
adjustment is made for potential time dependence in nontrading, and
consequently the autocorrelations may be understated. In each case
we use six classes of stocks, which comprise the fractions 5, 20, 25,
25, 20, and 5 percent of the stocks in the portfolio. Throughout, the
average daily nontrading probability in the portfolio is kept at 27
percent to make for easier comparisons with the earlier results.

We consider four different distributions of nontrading, which are
motivated by the results in Foerster and Keim (1993, Table 3). The
first distribution is homogeneous, with nontrading probabilities (27,
27, 27, 27, 27, 27 percent), and the other three are heterogeneous
with nontrading probabilities—(0, 11, 21, 32, 44, 55 percent), (0, 0,
11, 32, 60, 85 percent), and (0, 0, 0, 43, 60, 85 percent). The distri-
butions are ordered in terms of increasing heterogeneity and reflect
various degrees of conservatism with respect to heterogeneous prob-
abilities provided by Foerster and Keim (1993).2° We also consider
three different distributions of market betas across the six classes of

1 Note that Equation (9) here differs somewhat from Equations (3.6) and (3.12) in Lo and MacKinlay
(1990b), which contain some errors.

% For completeness we provide the relevant numbers. For the smallest decile, the nontrading prob-
abilities for the 99th, 95th, 90th, 75th, 50th, 25th, and 10th percentiles are 75.9, 60.2, 51.0, 36.7,
20.0, 7.4, and 0.8 percent, with a mean nontrading probability of 31 percent. For the second smallest
decile, the nontrading probabilities are 62.7, 47.1, 37.1, 22.5, 9.1, 2.0, and 0.0 percent, with a
corresponding mean of 19 percent.
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Table 3
The effects of heterogeneity on portfolio autocorrelations
Betas
Nontrading (0.8,09,1, (0.8,1.2, 1.6,
probabilities, % (1,1,1,1,1,1) 1,1.1,1.2) 2,2.4,2.8)

1 (27,27,27,27,27,27) 8.90 8.90 8.90

2 (0, 11, 21, 32, 44, 55) 10.33 10.72 11.60

3 (0,0, 11, 32, 60, 85) 13.18 14.20 16.43

4 (0,0, 0, 43, 60, 85) 13.97 15.08 17.82

Table 3 provides autocorrelations of weekly returns for portfolios of stocks with heterogeneous
nontrading probabilities and betas. Each portfolio consists of six classes of stocks in proportions
(5, 20, 25, 25, 20, 5 percent). Nontrading probabilities are expressed on a daily basis, although the
actual computations use the corresponding hourly nontrading probability (six hours per day).
Autocorrelations are calculated using the closed form solutions to the Markov model in Lo and
MacKinlay (1990b).

stocks. Again, the first distribution is homogeneous with betas (1, 1,
1, 1, 1, 1), and the other two are heterogeneous with betas (0.8, 0.9,
1,1, 1.1, 1.2) and (0.8, 1.2, 1.6, 2.0, 2.4, 2.8).

What are the implications of the heterogeneity described above for
portfolio autocorrelations? Table 3 reports the autocorrelations for
the 12 combinations of nontrading probabilities and betas described
above. The clear implication of the results is that heterogeneity across
stocks within a portfolio can cause dramatic increases in the induced
spurious autocorrelation. In particular, the autocorrelation for the
portfolio with the most heterogeneity in both nontrading and betas
is 17.82 percent. This autocorrelation is more than twice the mag-
nitude of the autocorrelation for the homogeneous portfolio (8.90
percent). Table 3 illustrates that large spurious autocorrelations are
driven principally by severe nontrading in some stocks coupled with
frequent trading in others (i.e., by the tails of the nontrading distri-
bution). Although the last two distributions differ substantially in the
“center,” they have identical tail distributions, and their autocorre-
lations are within approximately 1 percent of each other. Table 3 also
illustrates the interaction effect of heterogeneity in betas and non-
trading. In particular, for homogeneous nontrading, the distribution
of betas has no effect on portfolio autocorrelations, but variation in
betas can amplify the effects of heterogeneity in nontrading. These
results are in stark contrast to conclusions reached by Lo and MacKinlay
(1990b).

To understand better the relation among nontrading, betas, and
autocorrelations, consider a simple portfolio that consists of two types
of stocks. Three-quarters of the stocks trade all the time and have a
beta of 1. The daily nontrading probability of the remaining quarter
is varied from 20 to 95 percent, and their betas take on the values 1,
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Figure 2

The effects of heterogeneity in nontrading and betas on portfolio autocorrelations

This figure shows the spurious weekly autocorrelation induced by nonsynchronous trading for a
portfolio composed of two types of stocks. Of the stocks 75 percent trade all the time and have a
beta of 1. We vary the daily nontrading probability of the other 25 percent of the stocks from 20
to 90 percent (x-axis) and plot autocorrelations for betas of 1, 1.5, 2, and 2.5.

1.5, 2, and 2.5. Figure 2 plots the resulting portfolio autocorrelations,
where the x-axis measures the daily nontrading probability and the
four lines represent the four different betas. It is immediately clear
that variation in betas is relatively unimportant for small degrees of
relatively homogeneous nontrading. However, as the probability of
nontrading in some of the stocks increases, the effect of variation in
betas increases. In particular, for a nontrading probability of 80 per-
cent, an increase in beta from 1 to 2.5 increases the portfolio auto-
correlation from 12 to 25 percent. Seen from a slightly different per-
spective, an increase in nontrading from 30 to 80 percent increases
portfolio autocorrelations from 6 to 25 percent for beta equal to 2.5,
but only from 3 to 12 percent for beta equal to 1. Finally, increasing
nontrading beyond a certain point decreases rather than increases
portfolio autocorrelations. It is important to note that, for the purposes
of this analysis, it is the ratio of the betas of the two classes of stocks
rather than their absolute levels that is important. For example, the
graph would look identical if 75 percent of the stocks had a beta of
0.5 and the other 25 percent had betas of 0.5, 0.75, 1, and 1.25.
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Note that the caution with which researchers should interpret port-
folio autocorrelations is not restricted to the equity market. Return
autocorrelations for portfolios of corporate bonds, for example, may
also be subject to the same nonsynchronous-trading-induced biases
discussed above. The problem will be exacerbated by combining
infrequently traded, low-grade securities with their less risky coun-
terparts. To see this, first recall that heterogeneity in betas increases
the spurious autocorrelation and that it is the ratio of the betas that
determines the magnitude of this effect. As an illustration, consider
the case in which the 5 percent of securities with highest nontrading
probabilities also have a return beta of 1 while all other securities
have a beta of 0.01. For nontrading distributions 3 and 4 described
above, this beta distribution induces an autocorrelation of approxi-
mately 55 percent. The intuition is simple. Recall that the autocor-
relation of returns on a portfolio is just the average cross-serial covari-
ance of these securities divided by the average cross-covariance, as
in Equation (4). Thus, in the setting of Equation (7), high beta secu-
rities will almost completely determine the autocorrelation of the
portfolio. Although we are not claiming that this is a relevant set of
assumptions in our particular context, the magnitude of the spurious
autocorrelation caused by nonsynchronous trading suggests caution
in interpreting all autocorrelations at short horizons.

Although heterogeneity in betas and nontrading across stocks have
dramatic effects on spurious portfolio autocorrelations, the analysis
above is still limited to the case in which distributions for individual
stocks are independent and identically distributed over time. Tem-
poral heterogeneity may induce additional biases that are impossible
to quantify without a detailed model. For example, it is conceivable
that seasonals in nonsynchronous trading during the week could lead
to seasonal patterns in the autocorrelations. In this particular instance,
however, two characteristics of the data suggest that this is not the
case. First, in a detailed study, Foerster and Keim (1993) did not find
seasonals in nontrading. Although their results refer to the amount
of average nontrading across portfolios and not the distribution of
nontrading for each stock, we have no a priori reason to believe that
heterogeneity in nontrading across stocks is more severe on one day
than any other. Second, as we shall see in the next section, the sea-
sonal, albeit with smaller magnitudes, appears also in the futures
market. Clearly, seasonals in nontrading for individual stocks should
have no effect in the futures market.

The main conclusion from our analysis is that the amount of auto-
correlation due to nonsynchronous trading in stocks has been under-
stated in the literature. Accounting for heterogeneity within a port-
folio can lead to spurious autocorrelations 2 to 3 times higher than

560



A Tale of Three Schools

previously believed. Nonetheless, nonsynchronous trading falls short
of explaining all of the autocorrelation in portfolios of small stocks.
The remaining autocorrelation may also be consistent with the loyalist
viewpoint, and we explore this issue from a different angle in the
next section.

4. A Horse Race between the Three Schools

We introduced this article by describing three schools of thought
currently at work in finance. The loyalist view is that the magnitude
of short-horizon autocorrelations is due to market frictions. One
explanation, which is discussed in detail above, is that nontrading
has a far more important role than previously thought. In this section,
we proceed one step further by providing an ex ante test of hypotheses
implied by the three schools—loyalists, heretics, and revisionists.
Here, we claim that comparisons between autocorrelation patterns of
returns on the futures on an index and the underlying index itself
are a useful way to differentiate theories of short-horizon dynamics
in returns. First, consider the revisionist view of the short-horizon
autocorrelations of stock returns. They believe the magnitude can be
explained via time-varying factor risk premiums. If autocorrelations
‘'on index returns are due to changing risk premiums, then (institu-
tional features aside) this evidence should also show up in returns
on the futures on that same index. Since the futures are priced off
the “true” spot index, futures should display the same magnitude of
autocorrelation patterns as spot returns.

To see this, note that there is strong support in the literature for
the cost of carry model as applied to futures pricing.?! Via an arbitrage
argument, this model implies that the futures price is simply the
current spot price times the compounded rate of interest (adjusted
for paid dividends):

Ft = S,e(“ d)(T—1)

where F,,is the futures price of the index, maturing in T'— ¢periods;
S, is the current level of the index; 7is the continuously compounded
rate of interest; d is the continuously compounded rate of dividends
paid, and T is the maturity date of the futures contract. Thus, under
the cost of carry model and appropriately adjusting for time to matu-
rity, we can write the return on the futures as

re=1rs+ A(i — d), (10)

' MacKinlay and Ramaswamy (1988) provided a discussion of this model. As they pointed out, under
stochastic interest rates, the model is strictly valid only for forward contracts. Nevertheless, they
argued that differences between forwards and futures prices are negligible from a practical point
of view.
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where 7, and r, are the continuously compounded returns on the
futures and the underlying spot index, respectively, and A(i — d) is
the change in the continuously compounded interest rate (adjusted
for the dividend rate).? Thus, if autocorrelations of spot index returns
are due to fundamental movements in factors and not the institutional
structure of the spot market, futures returns should have approxi-
mately the same autocorrelation pattern as spot returns.?

Second, consider the heretic view of the autocorrelation patterns.
They argue that market participants only partially adjust to informa-
tion arriving to financial markets. Thus, positive autocorrelation is
induced as information slowly gets incorporated into stock prices.
Since these spot prices are real (albeit irrational) transaction prices,
one implication of this type of market inefficiency is that partial adjust-
ment should show up in both the spot and futures markets. This is
because the “true” spot index and futures are linked via the no-
arbitrage condition. Although this requires some degree of rationality
in the marketplace, it is well known that index arbitrage continually
takes place between these two markets.

The other school of thought, the loyalists, describes autocorrelation
of the index returns via market frictions. The idea is that market
microstructure biases (such as measurement error) induce non-risk-
based or nonexploitable autocorrelation in portfolio returns. For
example, consider the aforementioned measurement problem in
observed prices due to nonsynchronous trading. It is well known that
nonsynchronous trading in individual securities can induce positive
autocorrelation at the portfolio (i.e., the spot index) level. Moreover,
this autocorrelation can be severe if the portfolio contains securities
that trade relatively infrequently (such as small firms). In contrast,
the futures return will not pick up this autocorrelation, since it is
priced off the true fundamentals. Of course, the futures contract may
suffer from nonsynchronous trading itself, which can generate neg-
ative autocorrelation in its return series. However, at the weekly level,
and given that futures contracts are frequently traded, nonsynchro-
nous trading should not be a problem. Therefore, in contrast to the
other schools, for this particular microstructure bias, the loyalists’
main implication is that returns on the spot index should display
some amount of spurious autocorrelation, whereas the futures index
should display none.

** Note that under the cost of carry model, A(7 — d) equals zero. Assuming the cost of carry model
still approximately holds under stochastic interest rates, this term can in theory time-vary. We
address this issue in more detail below.

+ Of course, this assumes that the futures market has no unique institutional structure, which can
induce large differences in autocorrelations. In addition, variations in A(7 — d) are assumed to be
small.
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Table 4
The autocorrelation of futures versus spot returns
Wald for
Season-
Over- Wednes- Thurs- ality,
Index lapping Monday Tuesday day day Friday X
Small-firms 319 .330 .296 299 309 .365 2.3
(.088)  (.071)  (.049)  (.089) (.073)  (.055) (.685)
Value-Line spot 174 151 .120 .180 .204 220 8.4
(.086) (.078) (.062) (.083) (.068) (.071) (.078)
Value-Line futures .046 —.015 —.003 .087 111 .076 13.5
(.065) (.069) (.050) (.073) (.066) (.085) (.009)
Wald Test for equality of 18.8 44.7 30.1 11.8 153 8.6
futures and spot, x; (.000) (.000) (.000) (.001) (.000)  (.003)
NYSE spot .003 —.026 —.055 044 .057 .025 8.1
(.063) (.061) (.057) (.077) (.068)  (.081) (.088)
NYSE futures —.063 —.111 —.104 026 014 —.054 6.00
(.048) (.047) (.037) (.072) (.069)  (.077) (.202)
S&P spot —.024 —.054 —.080 .022 .033 —.008 83
(060)  (.059)  (.056)  (.075) (.066)  (.080) (.081)
S&P futures —.067 -.109 —-.106 .034 .000 —.074 7.1
(.049) (.049) (.038) (.072) (.064) (071) (.131)
(4NYSE — 3S&P) spot .059 .039 .020 .092 .102 .049 4.0
(.073) (.072) (.056) (.081) (.075) (.087) (.403)
(4NYSE — 3S&P) futures —.076 -.119 -.119 —-.038 020 —.033 4.9
. (.044) (.045) (.040) (073) (077)  (.093) (.299)
Wald Test for equality of 7.3 8.3 11.1 5.8 4.2 1.4
futures and spot, x} (.007)  (004)  (.001)  (.016) (.042)  (.238)

Table 4 provides a comparison of the autocorrelation of weekly returns on both spot indices and
corresponding futures on these indices. The autocorrelations are estimated for weekly returns for
weeks ending on different days of the week, covering the sample period 1982-1991. In particular,
we consider three different portfolios that place weight on small firms: (@) the small-firm portfolio
(described in Table 1) for the 1982-1991 period, (&) the Value-Line index (which is an equally
weighted index of a broad cross-section of stocks), (¢) the NYSE composite spot and futures and
the S&P index spot and futures, and (4) 4 times the NYSE composite minus 3 times the S&P 500
index (which leaves, by construction, a portfolio of smaller firms). Wald tests for equality between
the futures and spot return autocorrelations are provided, as well as a Wald test that the weekly
autocorrelations are equal across the different days of the week. Standard errors (of the autocor-
relations)) and p-values (of the statistics) are given in parentheses. Note that all of the estimates
and test statistics have been adjusted for possible heteroskedasticity and serial correlation using
the method of Newey and West (1987).

There is a growing literature in finance that relates prices of futures
to the pricing of the underlying assets. For example, MacKinlay and
Ramaswamy (1988), among others, looked at intraday arbitrage trad-
ing between the futures and spot for the Standard & Poor’s (S&P)
500 index. They reported some differences in autocorrelations between
returns on the futures and spot at short intervals but find that most
of this goes away at the daily level. Harris (1989), in a different context,
reached similar conclusions. Furthermore, in a recent article, Bes-
sembinder and Hertzel (1993) documented interesting patterns in
autocorrelations of futures and spot returns around trading and non-
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trading periods. Their conclusion, however, is that both the futures
and spot returns have similar patterns. These researchers have focused
on especially short intervals and, with respect to stock indices, on
market value-weighted portfolios like the S&P 500.

In terms of our analysis of weekly returns, note that the S&P 500
displays little autocorrelation. Thus, there is apparently little differ-
ence in the behavior of the futures and spot returns. As we have
argued, however, much of the action in the autocorrelation patterns
of weekly returns comes from the small-firms stock portfolio. In study-
ing this question, therefore, it is of paramount importance to use
indices dominated by smaller firms. That is, the larger the proportion
of small firms in the index, the larger the potential difference between
the autocorrelations of spot and futures returns (i.e., under the loyalist
viewpoint). Table 4 reports the autocorrelations of the spot and futures
returns of the NYSE composite and the S&P 500. As predicted, the
difference between the NYSE spot and futures return autocorrelation
is .06 versus a smaller difference in the S&P spot and futures’ return
autocorrelation of .04.

However, since both of these portfolios are value-weighted, there
is clearly little autocorrelation in either market. To coincide with our
previous analysis, it is important to use indices with much more
weight on small firms (e.g., an equal-weighted market index). One
such index traded in futures markets is the Value-Line index on the
Kansas City Board of Trade. Using data on this contract from 1982 to
1991, we calculate the weekly autocorrelation of returns on both the
spot and futures of the Value-Line index.

We focus our analysis on the overlapping weekly returns; however,
to coincide with existing studies, we report autocorrelation patterns
for nonoverlapping weekly returns.The results are presented in Table
4. The spot index returns exhibit an autocorrelation of .173 versus
only .046 for the autocorrelation of the corresponding futures returns.?
Moreover, the difference in autocorrelations is statistically significant.
In particular, the Wald statistic for equality between the autocorre-
lations on the spot index and futures equals 18.8, which represents
a p-value equal to .000. While the autocorrelation of the return on
the Value-Line index is significantly different from zero (at the 5
percent level), the autocorrelation of the corresponding futures return

The index was geometric until 1988, when it changed to arithmetic. Some recent evidence in
Thomas (1992) suggests some mispricing in the futures market during the early years of the contract.
However, this mispricing seems to be based on differences between geometric and arithmetic
means and thus should not affect the autocorrelations [see Thomas (1992)]. We also performed our
analysis on the two unspliced series separately (i.e., the geometric from 1982 to 1988 and the
arithmetic from 1988 to 1991). The results are qualitatively similar to the ones reported here. In
particular, the spot’s autocorrelation was .166 and .167 for the respective subperiods, while that of
the futures was .027 and .065.
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is not significant at the 5 percent level. This is consistent with the
loyalist view described above.

There are two reasons why the autocorrelation is somewhat lower
than the 36 percent for small-firm portfolio returns given in Table 1.
First, the Value-Line index, although equally weighted, includes a
substantial number of large firms (which do not seem to be serially
correlated). For example, Table 1B shows that the equal-weighted
index of NYSE and AMEX stocks over the 1962-1990 sample period
also has a lower autocorrelation (i.e., 23 percent). Second, the auto-
correlation for the small-firm portfolio returns is somewhat lower in
the 1980s than the earlier periods. To see this, Table 4 provides the
autocorrelation for the small-firm portfolio returns during the 1982—
1990 sample period. The overlapping autocorrelation estimate equals
32 percent, which is lower than that of the overall period. Thus, the
17 percent autocorrelation of the Value-Line index partly reflects the
general sample period.

An alternative way to obtain information about small-firm portfolio
returns in spot and futures markets is to construct a proxy using a
judiciously chosen combination of indices that contain both small
and large stocks. Unfortunately, this is necessary because futures
contracts on small-firms portfolios are not traded over this period. In
particular, assume that the stocks in the S&P 500 index are a subset
of those in the NYSE composite index. This is not exactly the case,
but the majority of S&P 500 firms are in fact contained in the NYSE
composite. Thus, the NYSE composite return can be approximately
represented as a weighted sum of the S&P 500 index return and the
return on the remaining stocks in the NYSE (which are, for the most
part, smaller stocks).

To see this mathematically, note that the level of the NYSE com-
posite can be broken up into two components:

PI;TYSE = P?&P + P?M,

where PNYSE. Ps&? and P3$M are the market values of the NYSE com-

posite, the S&P 500, and the remaining smaller firms portfolio, respec-

tively. Therefore, the corresponding return on the NYSE index is
RNYSE =

S&P SM
P+ P

L+l S&P SM
P$&® + p3

(e NP\ (P \Pw
P?&P + P?M P?&P P?&P + P?M P?M

= Wi R + WMR, (11)

where R,,,, is the return from #to ¢ + 1 and w3$*®* and w3 are the
weights of the S&P 500 index and the remaining portfolio in the NYSE
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composite index. During the period 1982-1991, the S&P 500 index
accounts for approximately 75 percent of the value of the NYSE com-
posite index.? Given that the weights over the 1982-1991 period are
ws$s® = 75 and wM = .25, we can use Equation (11) to construct the
return on the smaller firms portfolio. Specifically,

R, = 4R§,Yff - 3R§.§I1- (12)

We therefore construct two return series using Equation (12): (a)
spot returns on the smaller firm portfolio and (&) its corresponding
futures returns. Table 4 provides autocorrelation estimates and cor-
responding test statistics for these constructed series. For overlapping
data, the spot return autocorrelation of this series is .059, while that
of the futures is —.076 percent. The difference in autocorrelations
between the futures and spot index return is significant at the 5
percent level (the Wald statistic for equality equals 7.3, with a cor-
responding p-value of 0.7 percent). The evidence is consistent with
the earlier findings that the spot autocorrelations tend to be higher
than those of the futures. Note, however, that the magnitude of the
spot return autocorrelation is much lower than that of the equal-
weighted small-firm return series and the Value-Line series given in
Tables 1 and 4, respectively. This is not surprising, since the con-
structed series is based on a value-weighted portfolio return series
of smaller stocks from the NYSE. The evidence is, however, consistent
with the loyalist view, as the futures return series exhibits an auto-
correlation indistinguishable from zero.

There are, however, some alternative explanations of the difference
in autocorrelation patterns between futures and spot markets. First,
note that we have focused our argument on the institutional structure
of equity markets. Perhaps it is the futures markets that suffer from
microstructure effects. For example, consider the revisionist view of
the 17 percent autocorrelation of the Value-Line spot return. They
might argue that this is the true autocorrelation due to time-varying
factors and that the 4 percent autocorrelation of futures returns is in
fact understated because of institutional reasons. There is some cred-
ibility to this argument. For example, note that the futures contract
is subject to a bid-ask bias, which will lead to negative autocorrelation
and thus a downward bias in the autocorrelation estimate. This reason
is unlikely to be the complete explanation, however, because the bid-
ask bias is fairly small on the various futures contracts and our return
horizon is relatively long (i.e., a week).

To see this, consider the bid-ask model of Blume and Stambaugh
(1983), as applied to the futures price:

5 The value of the S&P 500 index, as a fraction of that of the NYSE index, is quite stable over the
period. Its highest value is 78 percent, and its lowest value is 73 percent.
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Fpr=F(1+34),

where F7 is the observed futures price at time ¢ and 8, equals the
adjustment due to the trade taking place at the bid or ask price. For
illustrative purposes, suppose there is an equal probability of being
at a bid versus an ask, such that §, = s if trade takes place at an ask
and ¢, = —sif trade takes place at a bid. Over the 1982-1991 sample
period, the futures price on the index ranged from 123 to 316. To be
conservative, consider the lowest range for the index (i.e., 123) and
various values for the level of the spread (i.e., 2s X F,)) equal to 10
cents, 20 cents, ..., 50 cents. For the extreme case of a 50 cents
spread, it is possible to show that the autocorrelation of the futures
weekly return adjusted for bid-ask bias increases from .043 to only
.050. Furthermore, note that in active futures markets, such as those
discussed here, the bid-ask spread is approximately 2 ticks. Since the
minimum price movement is 5 cents for the Value-Line futures, a
more reasonable estimate of the spread is 10 cents. Thus, empirically,
bid-ask bias in the futures price cannot explain the differences in
autocorrelations of futures and spot returns on the Value-Line index.

A second potential explanation deals with violations of assumptions
implicit in the cost of carry model. In particular, since interest rates
are stochastic, it is possible that a positively autocorrelated factor in
the index returns could be offset by negative correlation in an “inter-
est rate” factor, leading to a small autocorrelation of returns on the
futures. To see this, consider the equation for the futures return in
Equation (4). Assuming that the dividend rate is constant, it is pos-
sible to express the autocorrelation of the futures return as

B cov(rs, 75, ) + cov(Ai, Ai,_,) + cov(Ai, r,_ ) + cov(rs,A,_,)
var (rg,+ Ai,)

pr,,-
(13)

As an illustration, suppose that interest rate changes and the spot
index returns are uncorrelated. Then the autocorrelation of the futures
return is just

_cov(rs, rs_ ) + cov(Ai, Ai,_,)
Pr var () + var(Az,)

Thus, the futures return can exhibit a small autocorrelation only if
(@) changes in interest rates are negatively autocorrelated and ()
these changes display substantial variation relative to equity returns.

We collected weekly data on three-month interest rates for every
Wednesday over the sample period 1982-1991. In terms of the cost
of carry model, the interest rates should match the rates that mature
on the date of expiration of the futures contract. Although these data
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Table 5
Correlations and covariations between returns on the Value-Line spot and futures index
and changes in interest rates

Rﬁ—l Rﬁ Rsl—l Rst Aix—l Aif
Ry, 375.6 .0459 .9417 1814 .0775 .0286
R, 17.18 373.5 .0672 9414 —.0242 .0863
Ry, 302.7 21.54 275.0 1727 1041 .0188
R, 58.11 300.7 47.34 273.2 .0083 1136
Ad,_, 0478 —.0149 0549 .0044 .0010 .0101
Ai, 0176 0527 .0099 .0594 .0000 .0010

Table 5 provides estimates of the comovements between the lagged and current weekly return on
the Value-Line index, the lagged and current weekly return on futures on the Value-Line index,
and lagged and current weekly changes in three-month interest rates. Specifically, overlapping
covariances, autocovariances, and correlations are provided for weekly data over the period 1982-
1991. The top triangle of Table 5 provides the correlations, while the bottom triangle and diagonal
provide covariances and variances. The covariances and variances are given in annualized per-
centage terms. R, denotes the return on the spot index, R, the return on the futures on the spot
index, and A, the change in interest rates.

are not available, variation in short-term rates is so similar that the
use of three-month rates is practically equivalent to the correct pro-
cedure [see Thomas (1992)]. Using Equation (13), we estimated the
implied futures autocorrelation from the data on the Value-Line spot
index returns and changes in interest rates. Table 5 provides estimates
of each element of Equation (13), as well as the corresponding cor-
relation matrix of the variables. Substituting these values into Equa-
tion (13), the implied autocorrelation of the futures return is not
close to the estimated autocorrelation of .046. In fact, the implied
autocorrelation is .183, which slightly exceeds that of the underlying
spot index, namely .173. Thus, movements in interest rate changes
do not seem to provide a plausible explanation for the different auto-
correlations of futures and spot returns on small-firm-based indices.

There is some evidence that the seasonal pattern documented in
the equity markets may in fact carry through to the futures market.
Even though the futures weekly return autocorrelation is economi-
cally small and, in fact, statistically insignificant for each day (see
Table 4), a Wald statistic of equality across the five days equals 13.5,
which is significant at the 1 percent level. This is because even slight
deviations can be statistically important (although perhaps of little
economic consequence) when the correlation between the weekly
autocorrelation estimators is so high. While the futures seasonal is
not predicted a priori by any of the schools of thought, some may
interpret it as either () consistent with a microstructure explanation
based on information flow [e.g., Admati and Pfleiderer (1988, 1989)]
or (b) consistent with systematic seasonals in risk factors, with micro-
structure biases that drive a wedge between futures and spot return
autocorrelations.
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5. Concluding Remarks

The evidence presented in this article should not be looked at in
isolation. Instead, we must also consider the volumes of evidence
suggesting that markets react quickly to information, such as
announcements of earnings, dividends, and takeovers. These studies
cast further doubt on the heretic view that lead-lag relations, such as
those discussed in this article, are due to the delayed reaction of small
stocks to news.

With respect to the revisionist explanation, which alludes to eco-
nomic risk premiums as the source of autocorrelations and cross-
serial correlations in size portfolio returns, we conclude that these
are an unlikely source. For example, the effect of nonsynchronous
trading, in a case where returns are not autocorrelated, can conceiv-
ably be 18 percent or higher, for the portfolios of interest. It remains
an open question whether the remaining amount of autocorrelation
can be attributed to time-varying economic risk premiums or, more
likely, some other microsctructure effects.

In an attempt to perform an ex ante test of the three schools’ views,
we examine the autocorrelation properties of small-firm indices and
futures contracts written on them. Supportive of the loyalist view, we
-find that the spot index’s autocorrelation is significantly higher than
that of the futures. In addition, we find that the futures’ index auto-
correlation is indistinguishable from zero.

Apparently, reports of the death of market efficiency have been
premature and greatly exaggerated.

Appendix: The Data

In this appendix we describe the various data sources used through-
out the article.

The size portfolios

The stock data come from the daily 1990 CRSP NYSE/AMEX tapes,
and stocks are sorted into portfolios every 13 weeks based on the
market value of their equity. Specifically, starting with price and shares
outstanding data for Monday, July 2, 1962, all of the firms that have
price data for that day and existed for the 13-week period beginning
on the subsequent Thursday are sorted into five portfolios of approx-
imately equal size. Daily return data for these firms are compiled for
the 13-week period, with missing observations replaced by zero
returns. Daily, equal-weighted, simple returns are then calculated for
each portfolio. Weekly portfolio returns are calculated by aggregating
the daily data over five business-day periods. Daily returns for the
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following 13 weeks are calculated for portfolios formed based on data
for the Monday preceding the beginning of the 13-week period. The
first daily return observation is on Thursday, July 5, 1962, and the last
observation is on Monday, December 31, 1990 (7433 observations).
Consequently, for weekly returns there are 1486 observations.
Rebalancing the portfolios less frequently generates qualitatively
similar results, but the magnitudes of the autocorrelations decrease
because the requirement that a firm exist over the whole period
between rebalancing tends to exclude smaller firms. For example, we
also formed portfolios using a method similar to the procedure used
by Lo and MacKinlay (1990a) (i.e., sorting firms into portfolios only
once over the whole sample period). Specifically, the sample of firms
is restricted to those firms that traded throughout the period from
July 2, 1962 to December 31, 1990. In addition, all firms with more
than 50 missing daily observations are excluded. Firms are sorted into
size quintiles based on the market value of their equity at the midpoint
of the sample period (October 1, 1976). Using this sorting technique,
weekly portfolio autocorrelations (Wednesday close to Wednesday
close) for the five quintiles are .306, .250, .173, .129, and .043.

Spot and futures data on indices

The spot and futures data on the Value-Line Composite Average, the
S&P 500 index, and the NYSE composite index cover the sample
period 1982-1991. The Value-Line futures contracts trade on the Kan-
sas City Board of Trade, and the underlying index is a geometric mean
of stock prices before 1988 and an arithmetic mean thereafter. The
data are constructed according to usual conventions. In particular, a
single time series of futures prices are spliced together from individ-
ual futures contracts. For liquidity, the nearest contract’s prices are
used until 10 days to maturity and then the next nearest is used, and
so on [see Thomas (1992) for more details].

The S&P 500 and NYSE composite futures contracts trade on the
Chicago Mercantile Exchange (CME) and the New York Futures
Exchange (NYFE), respectively. Note that both are value-weighted
indices. In calculating the implied small-firms portfolio from both
the futures contracts and the spot markets, it is necessary to calculate
the relative weight of the S&P 500 in the NYSE composite index. To
do this, we collected data on the total market value of the stocks in
the NYSE composite index from the NYSE Fact Book and the total
market value of the stocks in the S&P 500 from the Standard & Poor’s
Corporation “S&P Information Bulletin” (some recent numbers were
obtained over the phone directly from Standard & Poor’s). All market
values are end-of-year values.
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Interest rates

The interest rates used in this article are three-month rates, reported
daily over the sample period 1982-1991. The source for the data is
the Board of Governors of the Federal Reserve System. Ideally, the
maturity of the rates should equal the maturity of the futures contract.
Although these data are not available, Thomas (1992) concluded that
this approximation works well over the same sample period. Note
that the interest rates are converted to continuously compounded
rates.
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