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Abstract

We study the serial correlation of high-frequency intraday returns on

the Italian stock index futures (FIB30) in the period 2000-2002. We find

that intraday autocorrelation is mostly negative for time scales lower

than 20 minutes, mainly due to the bid-ask bounce effect. While this

supports the efficiency of the Italian futures market, we also provide ev-

idence that intraday serial correlation becomes positive in high volatility

regimes. Moreover we find that it is mainly unexpected volatility to make

serial correlation rise, and not its predictable part. Our results are sup-

portive of the Chan (1993) model.
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1 Introduction and motivation

The aim of this paper is to study the serial correlation of the Italian stock

index futures. The study of serial correlation of asset returns is particularly

important in financial economics, since it can reveal basic features of the

trading process. The Efficient Market Hypothesis in its weakest form implies

that asset returns should be serially uncorrelated, but there is pervasive ev-

idence of serial autocorrelation in stock index returns (Lo and MacKinlay,

1988; Poterba and Summers, 1988) and stock portfolios (Conrad and Kaul,

1988; Mech, 1993), mixed evidence on stocks (Lo and MacKinlay, 1990b;

Conrad and Kaul, 1989; Kim et al., 1991) and international assets (Pa-

tro and Wu, 2004), mainly depending on volumes and size (Llorente et al.,

2002), while stock index futures display no autocorrelation, see Ahn et al.

(2002) and Pan et al. (1997) for currency futures. There are many theoreti-

cal models and explanations, on one side to reconcile the presence of serial

correlation with a rational framework, e.g. non-synchronous trading (Lo

and MacKinlay, 1990a) or institutional factors (Boudoukh et al., 1994), and

on the other side to advocate for bounded rationality in financial markets,

e.g. Cutler et al. (1991); Jegadeesh and Titman (1993); Badrinath et al.

(1995).

In our study, starting from the observation that stock index futures are

not serially correlated at the daily level, we go in the high-frequency regime

to study correlation and its link with some of the most important quantities

of the financial market, that is volatility and trading volume. We test for the

presence of serial correlation using the Variance Ratio test, after controlling

for the peculiarities which are typical of high-frequency transaction data.

While high-frequency transactions are nowadays a common tool in fi-

nancial econometrics (Goodhart and O’Hara, 1997), the study of serial cor-

relation with high frequency data is, to our knowledge, very limited. Ex-

amples are Low and Muthuswamy (1996) on exchange rates and Thomas

and Patnaik (2003) on the Indian market; in this last paper serial correla-

tion is linked with liquidity. Typically, high-frequency data are difficult to

deal with because of their irregular structure and microstructure effects.

Moreover, they are characterized by strong intraday seasonalities and pro-

nounced heteroskedasticity, see e.g. Bollerslev and Domowitz (1993); Da-

corogna et al. (1993); Andersen and Bollerslev (1997) among others. For this

reason, Andersen et al. (2001) strongly criticize the adoption of Variance Ra-

tio with high frequency data, as in Ito et al. (1998), for testing for changes
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in intraday volatility patterns. Then, we first check via Monte Carlo simu-

lations whether the small sample distribution of the VR statistics matches

the asymptotic distribution.

We then compute daily VR statistics on intraday transactions of the

FIB30. Our findings show that, as expected, intraday serial correlation is

mostly negative for time scales lower than 20 minutes, mostly due to the

bid-ask spread. We then use daily measure of VRs as a dynamic quantity

that can be related to other market variables. We exploit the availability

of high-frequency data to compute daily measures of integrated volatility,

and as a consequence we can directly link the intraday serial correlation

(as measured by the variance ratio) to daily volatility. Using this technique,

we find that intraday serial correlation becomes significantly positive when

volatility is high. Moreover, intraday serial correlation turns out to be posi-

tively linked to trading volume. We also show that serial correlation is more

linked to the unexpected part of volatility than to volatility itself, which is

highly predictable.

This paper is structured as follows. Section 2 describes the variance

ratio statistics, and discusses the implementation on high-frequency data.

Preliminary data analysis is worked out in Section 3. We then study the

dynamics of serial correlations in Section 4. Section 5 concludes.

2 The Variance Ratio test and its implementa-

tion on intraday data

We decide to adopt a popular test in this kind of analysis, the Variance Ratio

test (V R). This test has been extensively used for daily asset prices, see e.g.

Lo and MacKinlay (1988, 1989). The Variance Ratio test has not been used

too much for high frequency data. One example close to our study is the

work of Thomas and Patnaik (2003). In this Section we analyze briefly the

basic properties of this test.

In our description, we follow closely Lo and MacKinlay (1988). Suppose

we have a time series Pk, k = 1, . . . , N of asset prices or logarithmic asset

prices. Define the first differences time series rk = Pk − Pk−1, then define:

V R(q) =
V ar[r(q)]

V ar[rk]
= 1 +

q∑

k=1

(
1 − k

q

)
ρk, (1)
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where

r(q) =

q+1∑

k=1

rk (2)

represents the q−period return and ρk is the standard autocorrelation func-

tion at lag k. Equation (1) highlights the link between variance ratio and the

autocorrelation function. Under the weak form efficient market hypothesis

the dynamics of returns has to be a random walk and then, immediately,

ρk = 0, ∀k. That implies E [V R(q)] = 1.

We implement the variance ratio test according to the heteroskedastic-

consistent estimator (Lo and MacKinlay, 1988) with overlapping observa-

tions (Richardson and Smith, 1993). Suppose to have a set of nq + 1 obser-

vations, where q is an integer greater than 1. We then define:

µ̂ ≡ 1

nq

nq∑

k=1

(Pk − Pk−1) =
1

nq
(Pnq − P0) (3)

σ̃2

a ≡ 1

nq − 1

nq∑

k=1

(Pk − Pk−1 − µ̂)2 (4)

σ̃2

c ≡ 1

m

nq∑

k=q

(Pk − Pk−q − qµ̂)2 (5)

where

m = q(nq − q + 1)

(
1 − q

nq

)
. (6)

We define the variance ratio as follows:

V̂ R(q) =
σ̂2

c

σ̂2
a

. (7)

Using overlapping observations leads to an improvement in the power of the

test, estimated around 22% (Richardson and Smith, 1993).

Under the null hypothesis of random walk, the asymptotic distribution

of the statistics (7) is the following. Define:

δ̂k =

nq

nq∑

j=k+1

(Pj − Pj−1 − µ̂)2(Pj−k − Pj−k−1 − µ̂)2

[ nq∑

j=1

(Pj − Pj−1 − µ̂)2

]2

(8)

θ̂(q) = 4

q−1∑

k=1

(
1 − k

q

)2

δ̂k. (9)
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Then we have: √
nq(V̂ R(q) − 1) ∼ N(0, θ̂), (10)

The variance ratio test implemented here allows for heteroskedasticity, does

not require the assumption of normality and in small samples it is more

powerful than other tests, like the Ljung-Box statistics or the Dickey-Fuller

unit root test, see Lo and MacKinlay (1989); Faust (1992); Cecchetti and

Sang Lam (1994).

Dealing with high frequency data can present some potential difficul-

ties. For example, Andersen et al. (2001) show that, given the high persis-

tence of intraday financial prices, the small-sample test is distorted, thus

asymptotic inference can be misleading. However, their test regards the

equality of variances in two subsequent time windows, while we want to test

the reliability of VRs in a given time window, in order to quantify serial cor-

relation. To show that the small-sample performance of the VR test for our

purposes is reliable, we proceed as follows. We first estimate a GARCH(1,1)

model on daily returns:1

rt =
√

ht · εt,

ht = ω + α · r2
t−1 + β · ht−1.

(11)

with εt ∼ N (0, 1). GARCH modeling provides a very good approximation

of the heteroskedasticity in financial data, see e.g. Bollerslev et al. (1994).

Maximum-likelihood estimates of the model are ω̂ = 0.7281·10−5, α̂ = 0.1339, β̂ =

0.8474. For comparison with the analysis in the subsequent Sections, we

then convert the parameters to a 1-minute GARCH model, according to the

Drost and Nijman (1993) temporal aggregation formulas2, that is we obtain

the value of the parameters under which the GARCH model (11) still holds

if the time unit is one minute instead of one day. Denoting the new param-

eters with primes, we obtain ω̂′ = 1.594 · 10−8, α̂′ = 0.00733, β̂′ = 0.9926. We

then simulate the 1-minute GARCH model; daily time series correspond to

495 1-minute observations. On these simulated high-frequency time series,

1We actually use daily returns on the stock index, namely the MIB30, for the same time

span which will be studied in the next Section, namely January 2000-December 2002 (751

observations).
2It has been shown that temporal aggregation of GARCH models does not hold empiri-

cally on high frequency data (Andersen et al., 1999; Barucci and Renò, 2002a). However, as

noted by Andersen et al. (2001), using the Drost and Nijman (1993) aggregation formulas

provides a conservative estimate of the distortions typically encountered in high-frequency

data.
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we compute the variance ratios and standard errors according to the above

expressions. If the small-sample distribution is reliable, then the quantity
√

nq(V̂ R(q)− 1)/

√
θ̂(q) should be distributed as a N (0, 1). Figure 1 shows the

result for different values of q. For simulated time series akin to the real

ones, with heteroskedasticity modeled according to a GARCH specification,

the small sample estimator performs fairly well for q = 1 and quite well till

q ' 20. For larger q, the small sample distribution is distorted with respect

to the asymptotic one.

Our results are in line with those of Deo and Richardson (2003), who

study the small sample properties of Variance Ratios. They show that reli-

ability of the asymptotic approximation is worse when q increases, but the

approximation works fine with small q. More precisely, they show that the

VR test loses its power at the 95% of c.l. for values of q/n ∼ 1/6. We re-

mind that in our case n = 495, so that q should be less than 80. We find a

lower value q ' 20 because the heteroskedasticity of intraday data is more

pronounced than that of daily data. Then we conclude that for q ≤ 20 the

small sample distribution of the V R statistics is approximatively Normal.

The statistics would get distorted for larger q. We then study q = 1, 10, 20,

ranging from one minute to twenty minutes. For these values of q, we can

then safely use the VR test with high-frequency data in our context.

3 Preliminary analysis

Our goal is to study the presence of serial correlation patterns in time series

of returns of the Italian stock index futures, named FIB30. While being by

far the most liquid traded asset in the Italian stock exchange, the FIB30

is still not very liquid when compared to other marketplaces3. The market

for FIB304 started from 28 November 1994. It is a price-driven electronic

market, in which market makers are supposed to guarantee the liquidity of

the market. An advantage of using the futures is that it is a traded asset.

Thus we avoid the problem of non-synchronous trading, which is itself a

source of serial correlation. Moreover the stock index futures is always

more liquid than the portfolio which constitutes the index, and indeed it is

3The Italian stock market accounts for nearly 2% of worldwide stock market capitaliza-

tion.
4From 22 March 2004 this contract has been replaced by the S&P MIB Futures, since

the MIB30 index has been replaced by the S&P MIB
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Figure 1: Shows the small sample and asymptotic distributions of VR statistics for different

values of q. The histograms are the distributions of
√

nq(V̂ R(q) − 1)/

√
θ̂(q) on 10,000 simu-

lations of a GARCH(1,1) process of one day of one-minute returns. The solid curves are the

asymptotic N (0, 1) distributions. The small sample distribution is very close to the asymptotic

one for q ≤ 20, then it becomes distorted.
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found to lead the stock market (Chan, 1992).

Our data set consists of three years of data, ranging from January

2000 to December 2002, for a total of 751 trading days. We have all the

transactions, but we use only those of the next-to-expiration contract, with

the FIB30 expiring quarterly. This choice is motivated by the fact that next-

to-expiration contract id the most liquid, while the market for the other

expirations contract is very thin. We consider only transactions from 9.15

to 17.30, Italian time. In total, we have 8, 657, 949 transactions (on average,

11, 528 per day and an average duration between adjacent trades of 2.61

seconds).

Our aim is to compute the variance ratio statistics on logarithmic fu-

tures prices every day, then to use it as a dynamical variable. The data

set is made up of tick-by-tick transactions. This fact implies that our data

are not evenly spaced. In order to implement the VR test according to the

expressions in the previous Section, we need an interpolation procedure on

a fixed time grid, made of intervals of duration ∆t.

Denoting by [0, T ] the time window under study, with T = 1 trading

day, that is 495 minutes, we construct a grid of T/∆t + 1 points, and at

every point in time, the price is defined as the price of last transaction

before that point5. Selecting the length ∆t of the intervals is conditioned

by the following trade-off. If the interval is too narrow, we do not get rid of

microstructure effect, such as the bid-ask bouncing, which would induce a

spurious negative serial correlation. On the other hand, if the interval is too

large, we lose statistics.

In order to assess the proper length of the interval ∆t for our study, we

look at the daily variance6 computed as the sum of squared returns, defined

as:

σ2

d(∆t) =

T

∆t∑

k=0

[p(k∆t + 1) − p(k∆t)]2 , (12)

where p(t) is the logarithmic futures price at time t, as a function of the in-

terval width ∆t. If the price driving process is a stochastic differential equa-

tion with no drift, then the expected value of σ2
d(∆t) equals the integrated

variance over the time window [0, T ], for every value of ∆t, see Barndorff-

Nielsen and Shephard (2002). If there are microstructure effects, and the

5Different choices, like linear interpolation, would induce spurious autocorrelation in

the data, see Barucci and Renò (2002b); Corsi et al. (2001); Kanatani (2004).
6By defining the variance in this way, we are implicitly assuming that the mean of

returns is zero, which is common when dealing with intraday data.
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Figure 2: Average daily variance σ2
d

of the data set as a function of the interval ∆t, see

equation (12). Dashed lines indicate 95% confidence bands.

continuous diffusion is no longer a good approximation, this scaling prop-

erty does not hold any more. Preliminarely, we then analyze the variance

of the data versus the aggregation period ∆t, that is, in other word, the

length of the sampling interval. Figure 2 shows the variance σ2
d(∆t) aver-

aged over the whole sample. As we can see, the variance increases when

∆t is small. This effect is well known, see Andersen et al. (2000); Barucci

and Renò (2002a), and it can be imputed to the presence of negative serial

correlation due to microstructure noise (i.e. bid-ask spread). This problem

is the same encountered when choosing the time interval when computing

realized volatility, see e.g. Andersen et al. (2003). When ∆t increases, the

value for the variance converges to a constant. After looking at Figure 2,

we conclude that a reasonable choice to eliminate microstructure effects

is ∆t = 60 seconds7. Moreover, at ∆t = 60 seconds we also eliminate the

problem of non-trading, that is the absence of observations in the intervals,

which would induce spurious autocorrelation. Indeed, the percentage of

empty one-minute intervals in our sample is just 0.9%.

Following the above considerations, each day in our data sample we

construct a time series of 495 1-minute returns. On these time series, every

7We also repeated the analysis with ∆t = 30 seconds, with qualitatively similar results,

which are available upon request.

9



q 90%+ 90%− 95%+ 95%− 99%+ 99%−

1 0.096 0.222 0.061 0.122 0.021 0.027

10 0.071 0.195 0.043 0.093 0.013 0.012

20 0.055 0.172 0.031 0.063 0.004 0.003

Table 1: Percentages of V Rs significantly greater than 1 (in the columns labeled with +) and

smaller than 1 (in the columns labeled with −), for different significance levels (90, 95, 99%).

day, we compute the variance ratio using the overlapping statistics (7) and

the standard errors using the heteroskedastic consistent estimator (10), for

different values q. Then, for every value of q, we get a time series of daily

variance ratios with 751 observations.

If the market is efficient in its weak form (Fama, 1970), then we should

get variance ratios compatible with the null hypothesis for every value of q.

The choice of the maximal value of q that can be considered is limited by

the consideration made in the above Section.

Table 1 reports the percentage of VRs statistically significant, both pos-

itive and negative. The Table shows that, for small q, we find systematic vio-

lations of the null, pointing toward negative serial correlation. For example,

for q = 1, we expect around 10% of violations of the 90% confidence limit, on

the negative tail, but we find 22.2% of violations. This trend is confirmed till

q ' 20, corresponding to 20 minutes. The positive violations are consistent

with the null.

Can we ascribe the significant negative correlation to the bid-ask bounce

effect? One way to answer this question is to quantify the implicit bid-ask

spread using the negative auto-covariance of the data, as proposed in Roll

(1984)8. The daily auto-covariance of one-minute high-frequency data is, in

average, slightly positive, being equal to 0.105 · 10−8, with a standard devia-

tion of 7.56 · 10−8. Thus, since the index ranges around 30, 000 points, this

would imply a spread of 15 index points9, which is a very reasonable bid-ask

spread for the Italian futures market (the minimum tick is 5 index points).

To be more precise, we compute the exact implied spread for those days in

which the auto-covariance of one-minute returns is negative, and we plot

the distribution of these spreads in Figure 3. As we can see from the figure,

8The exact formula is that the relative spread is equal to 2
√
−Cov, where the Cov is the

first-order auto-covariance of one-minute returns.
9We used Roll’s formula plugging in the negative standard deviation.
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Figure 3: Distribution of implicit bid-ask spreads in the Italian stock index futures according

to Roll (1984) measure, which uses the auto-covariance of the data.

when the auto-covariance is negative, the implicit bid-ask spread is always

around 5 − 30 index points, which is a very reasonable value. Then, the

observed negative auto-correlation is completely explained by the bid-ask

bounce effect, and we can rule out alternative explanations, like positive

feedback trading (Sentana and Wadhwani, 1992). This result supports the

efficiency of the Italian futures market.

In order to quantify the daily serial correlation, we use the standardized

variance ratio, defined as:

Ṽ R(q) =
√

nq
V̂ R(q) − 1√

θ̂(q)
(13)

i.e. the V R(q) normalized with its standard deviation, in the hypothesis

of heteroskedasticity and considering overlapping observations. By stan-

dardizing, we reduce the impact of large observations estimated with low

precision. Figure 4 shows the time series of Ṽ R(1). As we can see, the trend

is consistent with Table 1. There is evidence of serial correlation patterns,

mainly negative. By defining a precise quantitative object related to serial

correlation, we are able to study its dynamic properties.

The results in this Section can be summarized as follows:

11



Figure 4: Time series of Ṽ R(1) as defined in equation (13).

• there is evidence of serial correlation in high-frequency prices of the

Italian stock index futures;

• the serial correlation is mainly negative and it is non-negligible for

periods smaller than 20 minutes;

• this observed negative serial correlation is due to the bid-ask bounce

effect;

Up to now, then, nothing is very surprising. Similar conclusions have been

drawn on other markets. Our results show that we cannot rule out the weak

informational efficiency of the Italian market, even if we raise the frequency

of observations.

In the next Section, we turn to the analysis of daily serial correlation

with respect to other market variables.
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q α t-test Ṽ Rt−1 t-test Ṽ Rt−2 t-test Q(5)

1 -0.250 -5.513 0.112 3.091∗∗ 12.56∗

-0.228 -4.933 0.103 2.826∗∗ 0.087 2.371∗∗ 5.25

10 -0.349 -8.653 0.111 3.061∗∗ 4.08

-0.350 -8.268 0.109 2.970∗∗ 0.005 0.124 3.46

20 -0.391 -10.548 0.026 0.712 4.97

-0.401 -10.070 0.025 0.693 -0.021 -0.578 4.83

Table 2: Estimates of the model (14) for different values of q. ∗∗ denotes 99% significance, ∗

denotes 95% significance.

4 Time series properties of intraday serial cor-

relation

In the previous Section we assessed the presence of serial correlation in the

high frequency return time series. Here, we investigate the link between au-

tocorrelations and some of the most important market variables. This can

provide additional insight in the mechanism of price formation and in the

trading process. First we analyze the presence of autoregressive patterns in

the standardized variance ratio Ṽ R (for simplicity, we will omit the depen-

dence from q in what follows) time series, as suggested from the time series

shown in Figure 4. We estimate the model:

Ṽ Rt = α + δ1 · Ṽ Rt−1 + δ2 · Ṽ Rt−2 + εt. (14)

where εt is IID white noise, using OLS. We also estimate the restricted model

with δ2 = 0. We test the specification of the model by the lag-5 Ljung-Box

statistics on residuals. We report the results in Table 2.

As we can see from the Table, there is evidence of first order autore-

gression of the V R for at least q = 10. If we consider Ṽ R(q = 1) as a mea-

sure of serial correlations of returns time series, then it results that there

are second order autoregressive patterns in serial correlations since, if the

second-order autoregressive term is not included, the residuals are serially

correlated and the model is misspecified. The R2 of the proposed regressions

are very low, ranging around 1%.

These results could be an artifact of the pronounced heteroskedastic-

ity of futures prices. Indeed, the VR measures are (standardized) ratios of
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realized volatilities, so they could be not serially independent. To check

this, we estimate the regression (14) on a simulated time series, according

to the GARCH model as in Section 2. We find that the significant autore-

gressive component is observed also in the simulated time series, thus it is

a by-product of heteroskedasticity. In what follows, we then include the au-

toregressive component of standardized Variance Ratios in our regressions,

and we check via the Ljung-Box test if we manage to remove the autocorre-

lation from the residuals.

4.1 Serial correlation and volatility

The impact of volatility on serial correlation patterns has already been dis-

cussed in the empirical literature. In particular, LeBaron (1992) found that,

regarding daily and weekly data, there is evidence of a negative correlation

between volatility and returns serial correlation, that is positive serial cor-

relation is observed in low volatility regimes, and no serial correlation is

observed in high volatility regimes. Similar results are found by Sentana

and Wadhwani (1992). These results regard individual stocks and stock

portfolios. This effect is sometimes regarded as LeBaron effect, see e.g. Da-

corogna et al. (2001).

Now we focus our attention on intraday data, using realized measures

of intraday serial correlation and intraday volatility. As before, we adopt as a

measure of serial correlation of returns the quantity Ṽ R(q). Daily volatility is

routinely evaluated using high-frequency data. To this purpose, we adopt a

technique similar to realized volatility based on a trigonometric expansion,

namely the Fourier method of Malliavin and Mancino (2002). The details

on volatility computation on the same data set can be found in Renò and

Rizza (2003). The time series of realized daily volatility is shown in Figure

5. We then estimate via OLS the following model, for different values of the

aggregation period q:

Ṽ Rt = α + β · log(σ2

t ) + δ1 · Ṽ Rt−1 + δ2 · Ṽ Rt−2 + εt. (15)

As before, we also estimate the restricted models δ2 = 0 and δ1 = δ2 = 0.

Results of the estimates are displayed in Table 3.

We find that there is strong correlation between serial correlations of

intraday returns and daily volatility, for every considered value of the ag-

gregation period q, and that the coefficient is positive. The relation is also

apparent in the scatter plot of daily logarithmic volatility and standardized

14



Figure 5: Time series of daily volatility. The largest peak corresponds to September 11,

2001

q α t-test log(σ2) t-test Ṽ Rt−1 t-test Ṽ Rt−2 t-test Q(5)

1 2.786 5.151 0.349 5.696∗∗ 33.31∗∗

2.648 4.860 0.330 5.336∗∗ 0.081 2.231∗ 19.35∗∗

2.557 4.679 0.318 5.113∗∗ 0.075 2.051∗ 0.067 1.865 10.56

10 2.434 5.291 0.321 6.161∗∗ 18.28∗∗

2.264 4.853 0.299 5.621∗∗ 0.070 1.932 8.01

2.287 4.873 0.303 5.640∗∗ 0.070 1.930 -0.024 -0.650 8.93

20 1.798 4.323 0.250 5.302∗∗ 6.45

1.798 4.266 0.250 5.214∗∗ -0.010 -0.270 6.52

1.858 4.382 0.260 5.350∗∗ -0.011 -0.299 -0.050 -1.365 8.10

Table 3: Results of the regression (15), for different values of q. Significance at 95% is

denoted by a ∗, at 99% by a ∗∗.

VR, shown in Figure 6. This means that when volatility is high, the intraday

serial correlation tends to be positive. When volatility is low, the intraday

serial correlation tends to be negative. For q less than 10, the regression

(15) turns out to be misspecified, according to the Ljung-Box statistics, un-

less the auto-regressive component of the standardized variance ratios is

included. We remark that the positive link between standardized Variance
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Figure 6: Scatter plot of daily logarithmic volatility versus standardized variance ratios

Ratios and volatility is not observed on simulated data.

Given the relevance of this result, we test it again with a different ap-

proach. We evaluate, as above, the percentage of violations of the null hy-

pothesis of no serial correlation according to the V̂ R(q) statistics, consider-

ing several values of the aggregation period q, but now we consider only on

those days of our data set in which volatility is larger than a given threshold.

Table 4 reports these percentages. As we can see, when we select low volatil-

ity thresholds, serial correlations remain mainly negative. Instead, when we

select high volatility days, positive serial correlations become more relevant

and this behavior is confirmed for all the chosen values of the aggregation

period q.

We remark that this finding is, in some sense, at odds with the find-

ings of LeBaron (1992) and Sentana and Wadhwani (1992), who show that

on daily and weekly data serial correlation of stocks and stock indexes de-

clines with rising volatilities. At the intraday level, for the considered stock

index future, the opposite holds. Our results are instead in agreement with

the theoretical predictions of Chan (1993). According to his model, the ad-

justment of prices is conditioned by noisy signals about information and it

is then reinforced by movements in other markets. The model is based on

the idea of reinforcement of opinions. Since market makers cannot adapt
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σ2 > 10−4, 68.7 % of the sample

q 90%+ 90%− 95%+ 95%− 99%+ 99%−

1 0.124 0.203 0.081 0.101 0.029 0.023

10 0.083 0.155 0.052 0.074 0.017 0.006

20 0.060 0.147 0.039 0.048 0.006 0.002

σ2 > 2 · 10−4, 34.2 % of the sample

q 90%+ 90%− 95%+ 95%− 99%+ 99%−

1 0.148 0.167 0.093 0.097 0.031 0.023

10 0.097 0.121 0.054 0.074 0.016 0.008

20 0.062 0.140 0.039 0.039 0.004 0.004

σ2 > 3 · 10−4, 16.4 % of the sample

q 90%+ 90%− 95%+ 95%− 99%+ 99%−

1 0.195 0.146 0.122 0.098 0.049 0.041

10 0.122 0.098 0.073 0.057 0.024 0.016

20 0.073 0.114 0.041 0.049 0.000 0.008

σ2 > 4 · 10−4, 8.3 % of the sample

q 90%+ 90%− 95%+ 95%− 99%+ 99%−

1 0.226 0.129 0.161 0.113 0.081 0.032

10 0.161 0.097 0.097 0.048 0.032 0.016

20 0.081 0.113 0.048 0.032 0.000 0.000

σ2 > 5 · 10−4, 5.6 % of the sample

q 90%+ 90%− 95%+ 95%− 99%+ 99%−

1 0.310 0.119 0.214 0.095 0.119 0.048

10 0.214 0.095 0.143 0.048 0.048 0.024

20 0.119 0.095 0.071 0.024 0.000 0.000

Table 4: Reports the number of significant positive and negative VR, for different signifi-

cance level, on subsamples of growing daily volatility. When volatility is high, the number

of significant negative VRs is closer to the null, while the number of significant positive VRs

increases.

their opinions instantaneously when they receive signals from similar as-

sets, they react subsequently, and this mechanism induces correlation in

pricing errors. One important consequence of this model is that serial cor-

relation should be higher in days of high volatility. For the Italian stock

index futures, there are plenty of more liquid substitutes, for example the

EUROSTOXX futures, which can generate this effect.

Therefore, we can conclude that at intraday level there is no evidence
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of LeBaron effect, but the correlation between returns serial correlation and

volatility has opposite sign with respect to what is observed at daily and

weekly level.

The relation between intraday serial correlation and volatility is inter-

esting, but it is well known that volatility is highly predictable in financial

markets, than it could be more interesting to link serial correlation to the

unexpected part of daily volatility. Daily realized volatility is known to be

well described by an auto-regressive model (Andersen et al., 2003). We then

estimate the following model:

log(σ2

t ) = α + β1 log(σ2

t−1) + β2 log(σ2

t−2) + εt. (16)

Estimates are β̂1 = 0.589, β̂2 = 0.126, with an R2 of 0.748, which confirms the

high predictability of daily volatility.

We then define the unexpected volatility as the residuals of the above

regression, σu,t ≡ ε̂t. By construction, volatility and unexpected volatility are

orthogonal, and we investigate whether there is a link between V R(q) and

unexpected volatility by estimating the following model:

Ṽ Rt = α + δ1 · Ṽ Rt−1 + δ2 · Ṽ Rt−2 + β · σu,t + εt. (17)

The results of this regression is shown in Table 5. As we can see, also

the unexpected volatility influence is strong on variance ratios for all the

considered q values, Particularly, for q = 1 and considering the second or-

der autoregressive term in V R(q) time series, we obtain a value for Q(5) in

agreement with the null hypothesis.

It is now interesting to study the influence of both volatility and un-

expected volatility in the same regression. We do this by estimating the

model:

Ṽ Rt = α + δ1 · Ṽ Rt−1 + δ2 · Ṽ Rt−2 + β · log(σ2

t ) + γ · σu,t + εt. (18)

Results are shown in Table 6. Our results indicate that, when regressing

on both volatility and unexpected volatility, the latter is influential, while

the first does not account for the observed serial correlation. Again, the

autoregressive component of variance ratios is necessary for correct model

specification. This result holds for every value of q, and more effectively for

q = 1.

It is important to stress that, as noted by Sentana and Wadhwani

(1992), the increase in intraday serial correlation with larger volatility is
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q α t-test σu t-test Ṽ Rt−1 t-test Ṽ Rt−2 t-test Q(5)

1 -0.285 -6.821 1.165 9.937∗∗ 26.89∗∗

-0.259 -6.058 1.145 9.788∗∗ 0.091 2.657∗∗ 15.44 ∗∗

-0.234 -5.383 1.154 9.909∗∗ 0.080 2.329∗∗ 0.099 2.883∗∗ 7.61

10 -0.395 -11.258 1.122 11.410∗∗ 11.85∗

-0.371 -9.893 1.099 11.095∗∗ 0.059 1.742 9.74

-0.368 -9.355 1.099 11.089∗∗ 0.058 1.704 0.008 0.240 9.49

20 -0.402 -12.618 0.941 10.525∗∗ 11.68∗

-0.414 -11.899 0.952 10.532∗∗ -0.030 -0.855 11.04

-0.425 -11.390 0.954 10.543∗∗ -0.029 -0.836 -0.028 -0.812 11.82∗

Table 5: Results of the regression (17), for different values of q. Significance at 95% is

denoted by a ∗, at 99% by a ∗∗.

still compatible with equilibrium, since exploiting the anomaly is riskier

with higher volatility.

4.2 Serial correlation and trading volume

Trading volume plays a key role in rational models describing the infor-

mation flow, see e.g. Admati and Pfleiderer (1988). Campbell et al. (1993)

develop a model in which serial correlation is due to changing risk-aversion.

They argue that in days of high trading volume, serial correlation should be

larger. Safvenvblad (2000) confirms empirically this prediction on Swedish

stocks, but does not for the Swedish stock index. Since he finds that in

his sample period high volume days are more often high return days, his

explanation is profit taking. Conrad et al. (1994) find that high volume is as-

sociated with negative autocorrelation, while low volume is associated with

positive autocorrelation. See also Chordia and Swaminathan (2000), who

link the trading volume to the speed of adjustment of information, showing

that high volume portfolios lead low volume portfolios.

We then investigate the relation among our intraday serial correlation

measures Ṽ R(q) and daily volume, via the regression:

Ṽ Rt = α + δ1 · Ṽ Rt−1 + δ2 · Ṽ Rt−2 + β · Vt + εt, (19)

where Vt is the total volume transacted at day t. Table 7 shows the results.

We find that trading volume is significant in explaining the variability

of variance ratios, and the relation is positive: in high trading volume days
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the intraday serial correlation is higher. However, it is important to stress

that it is very difficult to disentangle the volume effect from the volatility

effect, since these two quantities are strongly positively correlated.
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q α t-test σ2
t t-test σu t-test Ṽ Rt−1 t-test Ṽ Rt−2 t-test Q(5)

1 0.390 0.651 0.077 1.129 1.088 8.032 ∗∗ 27.14∗∗

0.181 0.301 0.050 0.732 1.096 8.115∗∗ 0.087 2.511∗∗ 15.73∗∗

-0.027 -0.045 0.024 0.342 1.131 8.376∗∗ 0.078 2.257∗ 0.097 2.807∗∗ 7.71

10 0.023 0.046 0.047 0.831 1.075 9.452∗∗ 11.81∗

-0.083 -0.163 0.033 0.570 1.067 9.392∗∗ 0.056 1.632 9.67

-0.093 -0.182 0.031 0.538 1.069 9.363∗∗ 0.056 1.612 0.005 0.149 9.50

20 -0.271 -0.591 0.015 0.288 0.926 8.955∗∗ 11.55∗

-0.229 -0.498 0.021 0.402 0.932 8.994∗∗ -0.031 -0.899 10.84

-0.177 -0.382 0.028 0.535 0.927 8.925∗∗ -0.031 -0.898 -0.031 -0.885 11.65

Table 6: Results of regression (18), for different values of q. Significance at 95% is denoted by a ∗, at 99% by a ∗∗.

q α t-test Vt t-test Ṽ Rt−1 t-test Ṽ Rt−2 t-test Q(5)

1 -1.524 -10.150 0.726E-04 8.604∗∗ 29.29∗∗

-1.485 -9.695 0.716E-04 8.407∗∗ 0.068 1.940 19.98∗∗

-1.450 -9.395 0.706E-04 8.265∗∗ 0.061 1.725 0.067 1.902 11.00

10 -1.716 -13.785 0.777E-04 11.097∗∗ 16.59∗∗

-1.668 -12.844 0.758E-04 10.613∗∗ 0.044 1.280 10.53

-1.686 -12.762 0.761E-04 10.598∗∗ 0.046 1.324 -0.031 -0.895 13.13∗

20 -1.487 -13.122 0.637E-04 10.000∗∗ 7.49

-1.511 -12.799 0.643E-04 9.929∗∗ -0.030 -0.851 9.25

-1.547 -12.843 0.652E-04 10.011∗∗ -0.029 -0.847 -0.054 -1.551 13.39∗

Table 7: Results of the regression (19), for different values of q. Significance at 95% is denoted by a ∗, at 99% by a ∗∗.
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5 Conclusions

In this paper, we study the serial correlation of intraday returns of the Ital-

ian stock index futures, the FIB30. Our first aim is to assess the efficiency

of the Italian market. To this purpose, we adopt the Variance Ratio test,

which needs to be carefully implemented on high-frequency prices. Our

preliminary analysis show that interpolating the data to obtain one-minute

returns allows to prevent microstructure effects from distorting the vari-

ance estimates. We also show, via Monte Carlo simulations, that with one-

minute returns following a GARCH(1,1) model, the small sample distribu-

tion of Variance Ratio is very close to the asymptotic distribution, under the

null hypothesis, when the aggregation period is less than twenty minutes.

Our results show that the serial correlation is mostly negative, but this

effect can be completely explained by the bid-ask bounce effects. Thus, by

looking at variance ratio only, we support the efficiency of the Italian futures

market.

However, our estimating technique provides us with a time series of

variance ratio (more precisely, of standardized variance ratios), of which we

can study the dynamic properties. Motivated by earlier literature, we study

the connection of serial correlation, as quantified by the standardized VR,

with daily volatility. We can easily assess this task, since we have both re-

alized measures of serial correlations (the standardized variance ratios) and

realized measures of daily volatilities, obtained with high-frequency data.

We find that at the intraday level we have a different behavior from what is

observed at daily and weekly level: when volatility is high, intraday serial

correlation becomes positive. This effect can be explained in the framework

of the Chan (1993) model, according to which traders react only partially to

information, and then reinforce their opinions when they observe the move-

ments of liquid substitutes. We also show that it is mainly the unexpected

part of volatility to account for the evolution of serial correlation: the pre-

dictable part looks like not affecting the traders’ behavior. We finally find

that the serial correlation is positively linked to trading volume.

While this study is, to our knowledge, the first one to provide dynamical

insights in the intraday serial correlation dynamics, we think that additional

work is needed. In particular, it would be interesting to check whether our

results are valid in a more liquid futures market, like the SPX500, or for

individual stocks. It is clear that going below the daily level can help in

understanding the trading mechanism. In this paper, we show that these

22



analysis can be carried out with the classical VR statistics, with some ad-

justments. We think this can be an interesting topic for future research.
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