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SUMMARY

In two recent papers, Granger and Ding (1995a,b) considered long return series that are first differences of
logarithmed price series or price indices. They established a set of temporal and distributional properties for
such series and suggested that the returns are well characterized by the double exponential distribution. The
present paper shows that a mixture of normal variables with zero mean can generate series with most of
the properties Granger and Ding singled out. In that case, the temporal higher-order dependence observed
in return series may be described by a hidden Markov model. Such a model is estimated for ten subseries
of the well-known S&P 500 return series of about 17,000 daily observations. It reproduces the stylized
facts of Granger and Ding quite well, but the parameter estimates of the model sometimes vary con-
siderably from one subseries to the next. The implications of these results are discussed. © 1998 John Wiley
& Sons, Ltd.

1. INTRODUCTION

In two recent papers, Granger and Ding (1995a,b) considered long return series which are first
differences of logarithmed price series. They established a few properties or stylized facts which
seemed to hold for a large number of such series. The series were either daily observations or
single transactions data. They also suggested a stochastic model that would generate series with
such properties. Some of the properties were temporal, some other distributional. The temporal
properties are as follows:

TP1: Returns r, are not autocorrelated (except possibly at lag one).

TP2: The autocorrelation functions of |r,| and r,2 decay slowly starting from the first auto-
correlation, and corr(|r,|, |r,_,|) > corr(rf, rf_k). The decay is much slower than the
exponential rate of a stationary AR(1) or ARMAC(1, ¢q) model. The autocorrelations
remain positive for very long lags.

TP3: corr(|r,|, |r,_,1) > corr(|r,|% |r,_, 1%, 6 # 1. Autocorrelations of powers of absolute
return are highest at power one. This effect is called the Taylor effect.

TP4: The observed autocorrelations of sign(r,) are insignificant.
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218 T. RYDEN, T. TERASVIRTA AND S. ASBRINK

The distributional properties are as follows:

DPI: |r,| and sign(r ) are independent.
DP2: |r,| has the same mean and standard deviation.
DP3: The marginal distribution for |r,| is exponential (after outlier reduction).

An exponentially distributed stochastic variable x, has the following properties:

PEDI: E(x,) = ,/Var(x,); see DP2.
PED2: E[x, — Ex,]}/(Var(x,))*?=2.
PED3: Elx, — E(x)]*/(Var(x))* =9.

Although TP1 holds, the return series contain higher-order dependence. Granger and Ding
(1995b) (henceforth abbreviated GD) considered the following model for the returns: r, =eh,
where {e,} is a sequence of i.i.d. double exponential variables with mean zero and unit variance.
Furthermore, #, is an ARCH-type term in that it is a function of |e,_,|, k=1,..., g; see also
Ding, Granger, and Engle (1993), Granger and Ding (1995a), and Ding and Granger (1996).
According to GD, a part of the idea was to model the distinctive shape of the return distribution
near its centre and not just concentrate on the tails. A somewhat related paper discussing
unconditional distributions for asset returns is Mittnik and Rachev (1993). These authors studied
the usefulness of various stable distributions in modelling returns which they assumed indepen-
dent. Of the alternative distributions they fitted to five years of S&P 500 daily returns in 1982—-6
the Weibull distribution gave the best fit.

In this paper we present an alternative to the distribution theory of GD and discuss its
properties in the light of an empirical example. Our starting point is the assumption that the
marginal distribution of returns is a mixture of normal distributions. Other distributions could be
considered, but normality is a convenient assumption to start with. We show that such a mixture
allows data-generating processes capable of closely reproducing most of the distributional
properties GD observed in the absolute returns. There also exists a computationally feasible
solution to introducing higher-order temporal dependence in the process if the marginal
distribution is a mixture of normal distributions. It consists of postulating the dependence in
terms of the hidden Markov model (HMM) or Markov Switching Regime model of Lindgren
(1978). For applications of this model to financial time series; see, for example, Tyssedal and
Tjostheim (1988), Hamilton (1988), Pagan and Schwert (1990), and Sola and Timmermann
(1994). To find out how this idea works we apply the HMM to ten equally long subsets of the
daily S&P 500 US stock price series. This series consists of 17,055 observations dating from
3 January 1928 to 30 April 1991. It is one of the series considered by GD and one which they
found to have most of the properties listed above. Our paper thus has a different focus from GD,
who concentrated on establishing the existence of the temporal and distributional properties
listed above for a large number of series. We shall consider a small number of series which are in
fact subsets of a very long single series and model them with the HMM. A major part of the
interest lies in the properties of the estimated models. It turns out that at least in our case, the
HMM is a very promising idea as far as reproducing the stylized facts of GD is concerned.

The plan of the paper is as follows. Section 2 contains preliminary considerations and Section 3
highlights properties of the hidden Markov model. Section 4 discusses parameter estimation,
testing linearity against the HMM, selecting the number of regimes and the evaluation of
estimated models. Evaluation also includes checking how well the models reproduce stylized facts
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STYLIZED FACTS OF DAILY RETURN SERIES 219

observed in the data. Section 5 is devoted to an application to the S&P 500 US stock index.
Finally, Section 6 presents conclusions.

2. PRELIMINARY CONSIDERATIONS

As GD remarked, it is not difficult to find a model possessing at least some of the above-
mentioned properties. Elaborating their example, suppose r, = e, where {e } is a sequence of
i.i.d. variables with zero mean independent of #, so that TP1 holds. If the distribution of e, is
symmetric about zero then TP4 is also true. Assume #,=a >0 for t=1,2,..., T/2, and
h,=k2a, for t=T/2 + 1,..., T (T observations). In that case, TP2 holds approximately as well
for sufficiently large 7. This artificial but simple example provides a starting-point for our
investigation.

Let r,= e, where e, =sign(r) and h,= |r,|. Assume furthermore that r,, t=1,..., T, are
drawn independently from one of two normal distributions N, = N(0, 1) and N, = N(0, 62). The
probability of drawing from N, equals p. By construction, TP1 holds and because the normals are
assumed to have zero means, TP4 is not violated in practice. We postpone a discussion of TP2
and TP3 until later and consider instead the properties of 4, and compare them with PED1-3. To
do that we need the expectation and the second, third, and fourth central moments of #,. If we let
X, ~ N, and X, ~ N, we have

E =pE|X, |+ (1 -pE|X,|° 0=1234 1)

from which Eh, and the central moments y(, = E(h, — Eh,)" 0 =2, 3, 4, can be computed using
normality of X, i=1, 2. Skewness (;43/;42 ) and kurtosis (;44/,u2) are functions of these central
moments.

Using the first two moments, the skewness, and the kurtosis, we can see how well PED1-3 can
be satisfied with our mixture of normals. Figure 1 depicts the combinations of p and ¢ which yield
PEDI. The figure also contains two dashed lines; one for which the ratio of the mean to the
standard deviation is 0-8 and another corresponding to the combinations of p and ¢ for which the
ratio equals 1-25. Consider the case ¢ > 1. It is seen that for large values of p (0-5 < p <09), 0
remains practically unchanged when p is changed, whereas for large values of ¢ (6 = 5), p
changes rather little when o is changed. If the ratio of the mean to the standard deviation is
allowed to vary between 0-8 and 1-25, say, the set of combinations of p and ¢ satisfying this
interval requirement is large. The other curves for ¢ < 1 form an inverted mirror image of the
ones just discussed.

Figure 2 shows the corresponding values for the combinations of p and ¢ for which the
skewness requirement PED2 holds. The shape of the curve resembles that for ¢ > 1 in Figure 1.
The main difference is that the standard deviation starts increasing from about p=0-6
downwards, whereas the corresponding value of p was about 0-4 in Figure 1. The dashed lines
again show (log) symmetric deviations from PED2: one corresponding to u3/u2 = 1-6 and the
other to u3/u2 = 2-4. For the range of p for which ¢ ~ 2.5, small deviations from this value
(holding p constant) cause relatively large changes in the skewness. On the other hand, for the
range of ¢ for which p = 0-6 even fairly large deviations from this value (holding o constant) have
only a minor effect on the skewness. Because of the symmetry, the curves for ¢ < 1 are not shown
separately. Finally, the combinations of p and ¢ satisfying PED3 can be found in Figure 3. The
dashed lines depict isoquants which satisfy p,/p? = 7-2 and y4/u§ = 10-8, respectively. The general

© 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 217-244 (1998)
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Figure 1. Combinations of p and ¢ which yield PEDI: ‘the standard deviation of the absolute returns equals
the mean of the absolute returns’ (solid line). Dashed lines indicate the combinations for which the mean/
standard deviation ratio equals 0-8 and 1-25, respectively. The scale of the g-axis is logarithmic
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Figure 2. Combinations of p and ¢ which yield PED2: ‘the skewness of the absolute returns = 2’ (solid line)
when ¢ > 1. Dashed lines indicate the combinations for which the skewness equals 1-6 and 2-5, respectively.
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Figure 3. Combinations of p and ¢ which yield PED3: ‘kurtosis of the absolute returns =9’ (solid line)
when o > 1. Dashed lines indicate the combinations for which the kurtosis equals 7-2 and 11-25,
respectively. The scale of the o-axis is logarithmic

shape of the curves is rather similar to those in Figure 2. A remarkable fact is that the steep
descent in the isoquant in terms of p occurs again for ¢ = 2-5 as in Figure 2. On the other hand,
for the kurtosis to equal nine at large values of o, a larger value of p (0-65 < p < 0-7) is now
required.

In all, Figures 1-3 indicate that properties PED1-3 are not contradictory for a mixture of two
normals. For ¢ > 1, with ¢ near 2-5 and p between 0-7 and 0-9 one comes close to satisfying these
three stylized facts. It seems that PED1 has to be relaxed somewhat (the mean has to be allowed
to be slightly larger than the standard deviation) if we at the same time want PED2 and PED?3 to
be satisfied. On the other hand, combinations with large ¢ and small p and vice versa are clearly
unacceptable.

3. INTRODUCING DEPENDENCE

The above considerations rely on the normality of the components of the mixtures. If the idea of
mixtures is to be applied to modelling returns then we have to introduce stochastic dependence
between the observations. Of course, TP1 has to hold for {r,} and automatically does when {e } is
a sequence of i.i.d. variables with zero mean, but higher-order dependence has to be postulated.
Thus we assume that there is dependence in {#,}. Such dependence can be introduced by making
the probability p time-varying and conditional on its previous values. Following the suggestion of
Lindgren (1978), define a random variable S, such that {S,} is a d-state first-order Markov chain.
(We do not consider higher-order Markov chains here.) Thus pi= P(S,=j|S,_, =10, i
Jj=1,..., d, are the transition probabilities for the process to move from state or regime i at time
t — 1to state j at ¢. The discussion in the previous section would imply d = 2, but in the following

© 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 217-244 (1998)
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the number of states may exceed two. In the general case of d states, the model for r, can be
written as

d
=Y IS, =X, ()
i=1

where /(z) is the indicator function obtaining value unity if z is true and zero otherwise.
Furthermore, X,,, i=1,..., d, are d independent normal variables with mean zero and variance

af. Model (2) in which {S,} obeys the transition probabilities p;, i, j=1,...,d, i, p;=1,
i=1,...,d, is a special case of the hidden Markov model (HMM) or the Markov Switching
Regime model of Lindgren (1978). Hamilton (1994, chapter 22) discussed many of the statistical
properties of the HMM. We shall only remind the reader of those features of the model we shall
require later on. Let P = {p,.j} be the (d x d) matrix of transition probabilities. Thus we have
P1=1 where 1=(1, 1,..., 1)’. This implies that unity is an eigenvalue of P and that 1 is the
corresponding right eigenvector. The corresponding left eigenvector is a: aP = a, normalized
such that al =1. Let p, i=PS,=jlS,_, =10 be the n-step transition probability, » > 1, and
P =P" = {p” } the corresponding transmon matrix. If P is ergodic then a=(q,,..., a)) is
unique and con51sts of the d unconditional probabilities a;, i=1, ..., d, of the process {S,} being
in regime i at any given time ¢. These probabilities are called stationary probabilities. Moreover,

lim P” = 1a 3)

n—->oo

For example, for a two-state Markov chain

r_tar | _ (I_Pzz)/(z_l’n_l’zz)]
*= [az] B [(1 — 1)/ 2 = pyy —pyn) @

Note that model (1) and thus the previous moment results hold for the two-state HMM when p is
replaced by a, . To obtain expressions for covariances, let g be a function of the random variable
r, and assume that we want to calculate the covariance structure of {g(r)}. Furthermore, let
G E{g(r)|S,=1}, i.e. the expected value of g(r,) given regime i. For instance, if g(r) = r2 then
G equals the conditional second moment. Generally, the unconditional mean is

d
Eg(X) =Y _aG, ()
i=1

where d, as before, is the number of states. Defining G = diag(G,, ..., G,), expression (5) can be
written more compactly as

Eg(r,) = aG1 6)

Furthermore,

N

d
E(g(r)g(r, )} = YD Elgr)elr, )1S, =i,S,,, =)\P(S, =i, S, =)

i=1 j=1

© 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 217-244 (1998)
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where n>1 and Pr(S,=i, S,,,=))=Pr(S,,,=j|S,=)Pr(S,=i). But Pr(S,=i)=a; and
Pr(S,,,=JlS, =)= p,j Also

Efg(r)g(r,,)|S, = 1,8, =Jj} = E{g(r)|S, = BE{g(r, . )|S,,, =J} = GG; (M

so that
d d
E{g(r)g(r,, )} = ;; G,Gap; = aGP"G1
Finally the covariance of g(r,) and g(r,, ) is
covig(r,), g(r,,.,)} = aGP”'G1 — (aG1)’ ®)
for n=1, 2,.... The autocovariance (8) will be needed for estimating the autocorrelation

function of |r,| for an HMM. For that purpose g(r,) = |r,| in (8).

4. ESTIMATION, SPECIFICATION, AND EVALUATION

In this section we shall discuss a modelling cycle for HMMs consisting of specification,
estimation, and evaluation of such models. Although this would be the natural ordering of stages
in this cycle we consider estimation first. This is because parameter estimation is a necessary
prerequisite for the specification technique we consider in this paper.

4.1. Estimation of Parameters

The most common approach to estimation of the parameters of an HMM is maximum likelihood
which we too shall adopt. In this section we assume that the number of states, d, of the hidden
Markov chain {S,} is fixed and known. In practice this is not the case, but we defer the problem of
choosing 4, i.e. the specification or the model selection problem, until the next section. Thus, the
parameter vector 6 to be estlmated comprlses the transition probabilities Py hj=1,...,d, and
the (conditional) variances ol, .. ad Letting f(-; 6%) denote the density of a normal varlable
with zero mean and variance o2, the likelihood of the model (i.e. the joint density of r,, ..., r,)
can be written

d

L®;ry,...,r,) = Z Y a, ]'[psl “]_[f(r,,a ) )

s =1 s,=1 1=2

where a;, j=1,..., d, are the stationary probabilities for P as above and » is the sample size.
Evaluating the likelihood as it is expressed in equation (9), the total number of numerical opera-
tions increases exponentially as n grows. To improve on this, introduce the diagonal matrix
F(r; 0) = diag(f(r; a?),..., f(r; 63)) and note that L may be written as

L®;r,,...,r,) = aF(r; OPF(ry; OP...F(r,_,; OPF(r,; )1 (10)

Here, the Markov property of {S,} is crucial. For any switching regime model which is not
Markov, the computational complexity of evaluating L grows exponentially with n. Evaluating L

© 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 217-244 (1998)
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this way, the computational complexity is only linear in n. Leroux (1992) showed that the
maximum-likelihood estimate (MLE) of 6 is consistent. Finding the MLE is not straightforward,
though, since L, as a function of 6, may have several local maxima in addition to the global
maximum. Also note that one may always permute the numbering of the states without affecting
the likelihood. We used the downhill-simplex algorithm (see, for example, Press et al., 1989) to
maximize L. In order to avoid reporting local maxima, the search routine was started at 200
randomly chosen points for d =2 and at 500 randomly chosen points for d = 3.

In mixture models and HMMs, the likelihood may under some circumstances be unbounded as
a function of the parameters. Consider, for example, the case of an HMM whose conditional
‘output distributions’ are normal with common mean but with different variances. We may then
make the likelihood arbitrarily large by setting the mean equal to an arbitrary observation and
letting one of the (conditional) variances tend to zero. The conditional output distributions of
our HMMs have fixed means, however, whence the likelihood is bounded (unless at least one
observation is exactly zero).

4.2. Testing Linearity and Selecting the Number of States

The HMM is a non-linear model with the property that it is not identified if the number of states
in reality is less than postulated. Many non-linear time series models share a similar property (see,
for example, Granger and Terdsvirta, 1993, chapter 6). For a general discussion of this
identification problem, see Davies (1977). In the case of an unidentified HMM, some of the
transition probabilities are nuisance parameters, and consistent estimation of the parameters is
not possible. An important special case is the one in which one postulates an HMM with two
states but the observations originate from just a single normal distribution. This means that the
conditional and unconditional variances of r, are equal. Thus testing linearity (constant condi-
tional variance) is at least as important in our case as it is, for instance, when the alternative to
that hypothesis is an ARCH model. In fact it is even more important here because fitting an
HMM to data generated by a linear model does not lead to consistent parameter estimates.

Likelihood ratio tests and penalized likelihood criteria are two standard procedures for making
the ‘best’ choice among a sequence of nested classes of models, and both of these may be applied
to HMMs. Let H, denote the class of HMMs for which the hidden Markov chain {S,} has d
states, and for which the conditional distribution of r, given S, = is normal with zero mean.
Then H,is characterized by d(d — 1) transition probabilities and d conditional variances, m, = d*
parameters in all. Moreover, these classes are nested, i.e. H; € H,_,, in the sense that for each
model in H ,, there exists a model in H,, , that induces the same distribution for {r} (in fact there
are infinitely many such models).

The use of the penalized likelihood criterion may be interpreted as a likelihood ratio test when
two nested models are compared with each other. Let Gd be the maximum-likelihood estimator of
6 over H,. A penalized likelihood estimator selects the class H, j» where d maximizes

log L@ ry,...or) — 0, 4 (11)

overd=1,2,3,.... Here w, ,is a penalty term, satisfying », ;> 0 and 0, , < w, 4, for each n,
and thus preventmg an overly large model from being selected. The two most common choices

© 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 217-244 (1998)
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for w,, are w, ,=m, (AIC, Akaike Information Criterion) and w,,=(1/2)m,log n (BIC,
Bayesian Information Criterion). Define the LR statistic as

LRY =2{log LG*;r,,...,r,) —log L@ r,, ..., 7))

and, according to equation (11), we select H,, , if LR? > 2(w, 4, — @, ). Thus the penalties
define the critical value of the test. However, in the present case the corresponding size remains
unknown because LRﬂ does not have the customary asymptotic y?-distribution with m el — My
degrees of freedom when the null hypothesis ‘the true parameter 6, is in H; holds and n — oo.
This is because of the lack of identifiability of the HMM under this null hypothesis when the
alternative is that 6, is in H,_.

Short of the limiting distribution, we approximated it by bootstrap techniques. We preferred a
parametric approach, i.e. resampling from the distribution induced by the ML-estimate 9‘: .
McLachlan (1987) did the same to test the number of components in a normal mixture.
Furthermore, we did not resample »n observations, but only m, where m is a function of » such
that m/n — 0 as n — oco. The reason for this is that in order for the ‘full’ bootstrap to work, some
kind of smoothness (differentiability) condition on the mapping § — Fj, where Fj is the law of
LRﬂ under 6, is needed; see Bickel and Freedman (1981, p. 1200) in the non-parametric setting.
Such a condition is difficult to verify. By performing an ‘m-out-of-n’ bootstrap, we can trade
smoothness of this mapping for smoothness of the mapping 6 — Pj, where Pj is the law of
r,..., r, under 0; cf. Bickel, Gotze, and Van Zwet (1997), in particular the proof of their
Theorem 3. In the context of HMMs, this idea is due to Peter Bickel (personal communication)
and may be characterized as follows. For an HMM with a smooth parameterization, § — P},
such as ours, the proof of Lemma 3.14 in Bickel and Ritov (1996) shows that
df,(Pg', Pg) =0(m|0 — 6°|2). Hence, since Py — Pg},ll < 2d(PY, Pg’o) (Le Cam, 1986, p.47),

1Py — Ppll = O(v/m|6 —6°))

where dy; and || - || denote Hellinger distance and variational norm, respectively. If PecH 4
(that is, if the null hypothesis is true), then the ML-estimate 0,‘f is +/n-consistent, i.e.
nﬂ(Bﬁ - 00) — 0 in Pp-probability for each B < 1/2 (see Bickel, Ritov, and Rydén, 1997).
Note that 6“1 is computed from »n observations (n > m), so that the size of the bootstrap replicates
is smaller than the full sample size.

Thus, if m=nf with g < 1,

IPE = Pl — 0

in Py-probability. In particular,

SoP | PL(LR € A) — P(LR% € A)| — 0

in Pp-probability, so that the m-out-of-n parametric bootstrap consistently approximates the
distribution of the LR-statistic. In practice, a number of bootstrap replicates, say K, of sample
size m are simulated from the distribution Py, and the corresponding LR-statistics LR,‘i, Iseeos
LR, . are computed. If k of these statistics exceed the observed LR-statistic (computed from m
observations), then the p-value of the test is estimated by (k + 1)/(K + 1). For the results reported

below, we used K = 50.

© 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 217-244 (1998)



226 T. RYDEN, T. TERASVIRTA AND S. ASBRINK

4.3. Evaluation of the Model

Most time-series models, for example the autoregressive, ARCH, and GARCH models, are
defined in terms of an i.i.d. sequence of innovations. After estimating the parameters of such a
model, one may try to reconstruct these innovations by estimating them: this yields a sequence of
residuals. The model may then be evaluated by checking whether or not the residuals are at least
approximately i.i.d. with the prescribed marginal distribution. The HMMs under study may also
be constructed in terms of an innovation sequence. This is done by letting {e,} be an i.i.d.
sequence of standard normal random variables and defining r, =g e It is then immediate that
{r} is an HMM of the form given above. Contrary to many other tlme -series models, however,
{e,} cannot be reconstructed from {r,} even if the true parameter were known. This is true since
the hidden Markov chain cannot be reconstructed exactly, only conditional probabilities of the
type P(S,=i|r,..., r,) may be computed. Accordingly, HMMs must be evaluated by other
means.

In this paper we consider a goodness-of-fit test of Milhgj (1981) that focuses on the spectral
properties of a zero mean stationary process. If {x,} is such a process, then Milhgj’s statistic is

1 R 2 n—1 N 2
[{Z 1)/, w,)}z] / [—n’f PRUCHEC w,)}] (12)

=1

where w, = 2nt/n, and I(w) is the periodogram,

—iwt
€

I(w) ===

Furthermore, g(, w) is the spectral density of the process, and fisa parameter estimate. A large
value of W indicates that the model is not adequate. In order to apply the test statistic (12) we
have to derive the spectral density of the HMM. This is done in the Appendix. The Milhgj test is
applied to the series of absolute returns. Applying it to the original series is useless because the
series themselves are uncorrelated (our HMMs generate series with exactly this property), and
hence have constant spectra. To obtain series with zero mean we subtracted the sample mean of
|r,| from each subseries.

Milhgj (1981) derived the asymptotic distribution of W as n — oo for processes that can be
expanded in a Wold decomposition with i.i.d. innovations. For an HMM it is not known,
however, whether or not such an expansion is valid, because Wold’s theorem guarantees only the
validity of an expansion based on uncorrelated innovations. For this reason, we approximate the
distribution of W by the parametric bootstrap as in the previous section. This time the size m of
the bootstrap replicates is set to n, as this test in general may have relatively low power. Saikkonen
(1984) showed that the asymptotic relative efficiency (ARE) of Milhgj’s test with respect to the
usual portmanteau statistic for testing the hypothesis of no autocorrelation in the error sequence
of an ARMA model equals zero. The test can therefore be expected to be less powerful than the
time-domain portmanteau test even for finite sample sizes and global alternatives.

In the present situation the portmanteau test is not available because the innovations cannot be
reconstructed. Nevertheless, the above ARE result may serve as a general indication suggesting
that in many cases Milhgj’s statistic may not be very powerful. Reducing the replicate sample size
would thus decrease an already low power. Although a completely formal justification for this
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test does not exist it may in any case be viewed as an indicator of poor fit. Also in this case,
50 bootstrap replicates were simulated, and the test results are presented in Section 5.3. Finding
out how well the estimated models reproduce the stylized facts discussed in the Introduction
constitutes another way of evaluating them. Details of this approach will be discussed in
connection with the empirical modelling results in Section 5.4.

5. APPLICATION TO THE S&P 500 US STOCK INDEX
5.1. Testing Linearity and Selecting the Number of States

We apply our model to the S&P 500 US stock price index. The series we have is the same as in GD,
consisting of 17,055 daily observations from 3 January 1928 to 30 April 1991. We split the series
into 10 subseries with 1700 observations in each, omitting the first 55 observations. The mean is
subtracted from the series and this is done for each subsample before we start the analysis. The
subseries are lettered from A to J in chronological order. Statistics on the subseries can be found in
Table I. Each subseries has been tested for linearity (meaning the null was constant conditional
variance) by bootstrap as described in Section 4.2. As the procedure is time consuming, the
number of bootstrap replications of length m = 800 was restricted to 50. In Table II it is seen that
the null hypothesis of a single regime is rejected for all subseries at the significance level 0.02. Since
it is well known that the return series usually have a time-varying conditional variance, this is
hardly a surprising result. In testing two regimes against three, the results in Table III are more
variable. For three series, E, F, and H, the null hypothesis is not rejected at the 0.05 significance
level. For those we consider a two-regime HMM to be the final one.

GD found that the series they considered only satisfied the distributional properties PED2 and
PED3 after outlier reduction. As we were interested in seeing how well we could reproduce the
stylized facts that GD reported, we also wanted to model outlier-reduced series. Following GD,
we ‘cleaned’ the series by replacing every observation r, outside the interval 7, + 46, where 6 is the
estimated standard deviation, by the limit of the interval and carried out the tests for the
transformed series. We did this separately for each subseries, whereas GD did it for the whole
(17,055 observations) series. Thus we shrank a somewhat greater number of observations
towards the sample mean than did GD. The outlier reduction also enabled us to investigate the

Table I. Statistics concerning the absolute return series estimated directly from the S&P 500 subseries (D)
and from the estimated hidden Markov model (M), original observations. The estimated models are those
found by specification tests

Subseries

A B C D E F G H I J
Mean/standard deviation ratio
D 0-94 1-03 0-83 0-94 1-04 098 1-04 113 1-16 0-79
M 0-95 1-09 0-86 0-97 1-10 1-03 0-49 1-14 1-18 093
Skewness
D 2-53 220 4.22 293 3-13 3.74 225 1-78 1-62 9-99
M 2-86 1-89 3-32 2-66 1-90 2:62 3093 1-70 1-47 7-26
Kurtosis
D 12-8 10-9 33.7 17-8 27-1 33.7 124 7-83 7-17 208
M 16-4 824 209 15-5 8-23 140 1357 7-00 580 117
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Table II. Maximal values of the observed LR statistics of a two-regime HMM and those of the simulated

LR statistics for the original subseries A—J when testing linearity against a two-regime HMM using a

parametric bootstrap, the number of times (k) when the simulated likelihood ratio exceeds the observed one
and the p-value of the test

Obs. LR Max. sim LR? k (k+1)/(50+1)
A 413-14 677 0 0-02
B 55-65 6-77 0 0-02
C 37777 6-77 0 0-02
D 180-35 677 0 0-02
E 60-28 6-77 0 0-02
F 45-22 6-77 0 0-02
G 21197 677 0 0-02
H 149-76 6-717 0 0-02
I 46-18 671 0 0-02
J 55895 6-77 0 0-02

2 All simulated maximal LR statistics agree just because the same seed was used for the random number generator
throughout.

Table III. Maximal values of the observed LR statistics of a three-regime HMM and those of the simulated

LR statistics for the original subseries A-J when testing a two-regime HMM against a three-regime HMM

using a parametric bootstrap, the number of times (k) when the simulated likelihood ratio exceeds the
observed one and the p-value of the test

Obs. LR Max. sim LR k (k+ 1)/(50+ 1)
A 78:30 5-04 0 0-02
B 16-87 6-82 0 0-02
C 58-88 12-90 0 0-02
D 28:43 11-02 0 0-02
E 3:65 6-71 12 0-25
F 1-65 7-56 21 0-43
G 15-74 7-84 0 0-02
H 1-13 7-14 19 0-39
I 8-80 5-78 0 0-02
J 68-26 6-09 0 0-02

role and significance of the outlying, and thus rare, observations on the estimation results. An
across-the-board reduction would have affected early subseries more than the more recent ones,
which we did not want. Table IV contains statistics for the cleaned series. The test results appear
in Table V and are rather similar to those in Table II. The linearity tests all reject the null
hypothesis. When testing two regimes against three, Table VI shows that the null hypothesis is
not rejected for subseries E. In addition, for series F and H the maximum value of the likelihood
of the three-regime model remains below that of the two-regime one despite 500 starts, which is
taken to imply that a two-regime model is adequate. (To ensure that the test results are just not
numerical artefacts we set the tolerance limit of the optimization routine so low that any further
tightening of the stopping rule only had a negligible effect on the LR statistic.) Cleaning series J
means removing the crash of October 1987, but the test result suggests a three-regime model for
this series all the same. Series B is a borderline case, and we consider the three-regime HMM to be
the final one for it. The estimation results themselves will be discussed in the next section.
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Table IV. Statistics concerning the absolute return series estimated directly from the S&P 500 subseries (D)
and from the estimated hidden Markov model (M), outlier-reduced observations. The estimated models are
those found by specification tests

Subseries

A B C D E F G H I J
Mean/standard deviation ratio
D 0-97 1-06 0-94 1-00 1-10 1.07 1-07 1-14 1-17 1-02
M 0-98 1-09 0-97 1-00 1-14 1-10 1-09 1-14 1-20 1-05
Skewness
D 2-05 1-89 2:28 2-08 1.78 2-02 1-83 1-64 1-49
M 2:42 1-60 2:25 2-13 1-63 2-03 1-80 1-67 1-40
Kurtosis
D 8-14 7-53 9-93 8.76 7-29 9-06 7-29 6-61 600 102
M 12:0 6-10 104 9-76 6-60 9-44 7-30 6-89 5-64 9-97

Table V. Maximal values of the observed LR statistics of a two-regime HMM and those of the simulated

LR statistics for the outlier-reduced subseries A—J when testing linearity against a two-regime HMM using

a parametric bootstrap, the number of times (k) when the simulated likelihood ratio exceeds the observed
one and the p-value of the test

Obs. LR Max. sim LR® k k+ 1)/(S0 + 1)
A 25267 6-77 0 0-02
B 33-40 6-77 0 0-02
C 141-37 6-77 0 0-02
D 69-84 6-77 0 0-02
E 41-10 6-77 0 0-02
F 24-34 6-77 0 0-02
G 168-44 6-77 0 0-02
H 131-05 6-77 0 0-02
I 3475 6-77 0 0-02
J 177-99 6-77 0 0-02

2 All simulated maximal LR statistics agree just because the same seed was used for the random number generator
throughout.

Table VI. Maximal values of the observed LR statistics of a three-regime HMM and those of the simulated

LR statistics for the outlier-reduced subseries A—J when testing a two-regime HMM against a three-regime

HMM using a parametric bootstrap, the number of times (k) when the simulated likelihood ratio exceeds
the observed one and the p-value of the test

Obs. LR Max. sim LR k (k+ 1)/(50 + 1)

A 13-44 8-51 0 0-02
B 5-34 6-15 1 0-04
C 49-85 17-09 0 0-02
D 29-84 11-65 0 0-02
E 1-23 14.55 29 0-57
F —0-031

G 8-24 6-98 0 , 0-02
H —0-12

I 6-90 6-34 0 0-02
J 27-98 6-49 0 0-02
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The logical next step in the specification sequence would be to test three regimes against four
for series for which a three-regime model was accepted. This would have involved estimating
four-regime models and a four-regime bootstrap. Since the amount of computing time necessary
for doing this would have been prohibitive we had to abstain from such an extension.

5.2. [Estimation Results

We report results of both original and outlier-reduced data. First, consider the HMMs estimated
from the original data. Note that the regimes are ordered by increasing standard deviations.
Table VII contains the estimated transition probabilities and standard deviations for its two or
three normal distributions, for the ten original subseries. It also contains the stationary
probabilities of the process being in a given state. There exist some similarities between the
models. Of the two-regime models, E and F (calling the models by the same name as the series)
are similar in the sense that they have one rather persistent regime: g, > 0-96, for both models,

Table VII. Estimated transition probabilities, standard deviations of normal distributions of different
regimes and stationary probability estimates for models A-J from original observations

Standard Stationary

Model Transition probabilities deviations probabilities
A 0-966 0-034 0-000 0-0091 0-248
0-013 0-960 0-027 0-0216 0-672
0-000 0-230 0-770 0-0601 0-079
B 0-225 0-759 0-016 0-0074 0-227
0-299 0-695 0-006 0-0126 0-578
0-016 0-021 0-963 0-0245 0-195
C 0-375 0-612 0-013 0-0028 0-351
0-374 0-612 0-014 0-0082 0-586
0-000 0-196 0-804 0-0250 0-063
D 0-457 0-541 0-002 0-0034 0-348
0-312 0-670 0-018 0-0087 0-601
0-019 0-210 0-771 0-0223 0-051
E 0-964 0-036 0-0049 0-750
0-108 0-892 0-0109 0-250
F 0-987 0-013 0-0049 0-884
0-098 0-902 0-0139 0-116
G 0-970 0-029 0-001 0-0039 0-600
0-043 0-955 0-002 0-0087 0-399
0-361 0-332 0-307 0-2372 0-001
H 0-995 0-005 0-0063 0-691
0-011 0-989 0-0126 0-309
I 0-473 0-510 0-017 0-0055 0-315
0-404 0-586 0-010 0-0087 0-390
0-028 0-004 0-968 0-0125 0-295
J 0992 0-006 0-002 0-0078 0-861
0-048 0-930 0-022 0-0150 0-133
0-018 0-759 0-223 0-0745 0-006
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whereas the higher regime is ‘semi-persistent’, p,, ~ 0-90. The three-regime models are less
similar to each other. The estimation results seem heavily dependent on outlying observations.
Models A, G and perhaps J have two persistent states, B and I have one and C and D none. For
models A, C, D, G and J, the regime with the highest standard deviation is clearly an outlier
regime with p;; < 0-8 and a low stationary probability. These findings accord with the fact that
the absolute return series A, C, D, and J have high kurtosis. On the other hand, the kurtosis of
series G is relatively low. Compared to G, = 0-237, an extremely high value, this is a first
indication of model G misrepresenting the data quite badly.

The results of modelling the outlier-reduced series in Table VIII are somewhat different
from those obtained with the original data although similarities do exist. The two-regime models
E, F, and H are similar to the ones obtained from the original data because these subseries do not
contain large outliers (compare the kurtosis with and without outlier reduction in Tables I and
IV). In models E and F, the higher regime is slightly more persistent than before. The three-regime
model for series G now has two persistent regimes (5, > 0-94, i = 1, 3) and a rather rarely visited
middle regime. The estimate 75 is not a cause of worry. The same is true for model A (p;; > 0-98,
i=1, 2). For other series modelled with three-regime HMMs, reducing the outliers also makes a
difference. In particular, models I and J have changed completely. Model J for the data with the
October 1987 outliers reduced contains only a single seemingly high-persistence regime and it is
the highest one. However, the estimated probability of entering that state is extremely low so that
the state is still more of an outlier regime than anything else. Most of the time the process is visiting
the two lowest regimes. The lowest state in model I now seems an outlier regime and the remaining
two are persistent ones. We may conclude that the outlier reduction may not have an impact on the
number of states selected, but it does seem to change the interpretation of many of the three-
regime models. The number of pure ‘outlier-determined’ models is less than in the case of original
observations but at least three regimes are still required for the same series as before.

It is clear from Table VII that the estimated relationship is not fully stable over time.
Nevertheless, some regularities between adjacent models can be found in the results. First, the
three-regime models C and D are rather alike. Second, the two-regime models E, F, and H that
follow have a fairly similar pattern. The estimated standard deviations of the regimes in different
models are reasonably close to each other. Model G in between is different but then it fails the
evaluation tests. Thus, although the results are not stable overall, the same pattern seems to
prevail at least over a number of subperiods. This fact is even more visible in Table VIII, based on
outlier-reduced data as model G is now quite well in line with E, F, and H. This indicates that the
obtained results are not completely spurious.

5.3. Evaluation: Test Results

As mentioned above, testing three regimes against four is not a practical idea because of the
amount of computation involved. Nevertheless, the goodness of fit of three-regime HMMs can
be investigated using the test of Milhgj (1981) as discussed in Section 4.3. The results for the
models based on the original data appear in Table IX. The test rejects models A and G at the
0-05 significance level. We shall see later on that most evaluation checks also reject model G.
The fit of model C is a borderline case (« = 0-10). These three models are ones with at least one
outlier regime. The other three-regime models pass the test. When the outlier-reduced series are
concerned (see Table X) four of the five three-regime HMMs pass the test, while model G is
rejected.
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Table VIII. Estimated transition probabilities, standard deviations of normal distributions of different
regimes and stationary probability estimates for models A-J from outlier-reduced observations

Standard Stationary

Model Transition probabilities deviations probabilities
A 0-986 0-014 0-000 0-0106 0-475
0-016 0-848 0-135 0-0220 0-421
0-000 0-549 0-451 0-0452 0-104
B 0-677 0-313 0-010 0-0074 0-347
0-430 0-523 0-047 0-0137 0-261
0-000 0-040 0-960 0-0212 0-392
C 0-262 0-679 0-058 0-0026 0-254
0-300 0-700 0-000 0-0073 0-598
0-058 0-042 0-900 0-0163 0-148
D 0-281 0-605 0-114 0-0031 0-273
0-329 0-671 0-000 0-0077 0-583
0-030 0-187 0-783 0-0160 0-144
E 0-963 0-037 0-0046 0-648
0-069 0-931 0-0092 0-352
F 0-985 0-015 0-0047 0-822
0-070 0-930 0-0107 0-178
G 0-953 0-029 0-018 0-0040 0-647
0-416 0-340 0-244 0-0068 0-029
0-057 0-000 0-943 0-0090 0-324
H 0-995 0-005 0-0062 0-686
0-011 0-989 0-0124 0-314
I 0-158 0-681 0-161 0-0032 0-058
0-061 0-939 0-000 0-0076 0-664
0-033 0-001 0-966 0-0121 0-278
J 0-564 0-427 0-008 0-0060 0-613
0-895 0-105 0-000 0-0115 0-293
0-056 0-000 0-944 0-0190 0-094

To gain extra insight in the functioning of the test we also carried it out for the two-regime
models of all series A-J. For the original data, the results are found in Table XI. The Milhgj test
rejects models C and G at « = 0-02, whereas D is a borderline case. These results agree with those
of the bootstrapped likelihood ratio test. On the other hand, the two-regime models of series A,
B, I, and J are accepted although the likelihood ratio test rejects them. As to the outlier-reduced
series, it is seen from Table XII that the two-regime model is rejected for series C, D, and G. For
model D the significance level is 0-06, for the other two models 0-02. The likelihood ratio test also
rejects the two-regime model for these series. Furthermore, both tests accept the two-regime
model for series E, F, and H. Again there exist series (A, B, I, and J) for which the likelihood ratio
test rejects the null hypothesis of two states, whereas the Milhgj test does not. A tentative
conclusion thus is that the goodness-of-fit test may be less powerful than the likelihood ratio
specification test. This result is not surprising since the alternative hypothesis in the Milhgj test is
more general than that in the likelihood ratio test.
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Table IX. p-values of the Milhgj goodness-of-fit

test for estimated HMMs with three regimes, original

observations; kK = number of times the simulated value of

the statistic exceeds the value computed from the
estimated model

Model k (k+1D/50+1)
A 1 0-04
B 19 0-39
C 4 0-10
D 18 0-37
G 0 0-02
I 12 0-25
J 45 0-90

Table X. p-values of the Milhgj goodness-of-fit test for

estimated HMMs with three regimes, outlier-reduced

observations; kK = number of times the simulated value of

the statistic exceeds the value computed from the
estimated model

Model k (k + DJ(S0 + 1)
A 5 012
B 4 0-10
C 5 012
D 13 027
G 0 0-02
1 12 025
J 50 1:00

Table XI. p-values of the Milhgj goodness-of-fit test

for estimated HMMs with two regimes, original

observations; k = number of times the simulated value

of the statistic exceeds the value computed from the
estimated model

Model k (k+D/50+1)
A 8 0-18
B 16 0-33
C 0 0-02
D 4 0-10
E 9 0-20
F 24 0-49
G 0 0-02
H 19 0-39
1 11 0-24
J 38 0-76
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Table XII. p-values of the Milhgj goodness-of-fit test for

estimated HMMs with two regimes, outlier-reduced

observations; k = number of times the simulated value

of the statistic exceeds the value computed from the
estimated model

Model k (k + 1)/(50 + 1)
A 7 016
B 19 0-39
C 0 0-02
D 2 0-06
E 17 035
F 17 035
G 0 002
H 18 037
I 10 022
J 48 096

5.4. Evaluation: Stylized Facts

Another, more informal way of checking the results is to see how well the models reproduce
stylized facts in the data. Table I contains the mean/standard deviation ratio, skewness and
kurtosis of absolute returns from the original data for all the subseries and their estimates from
corresponding models. The latter were computed from equation (6) by using maximum likelihood
estimates of the stationary probabilities and standard deviations. The mean/standard deviation
ratio is reproduced rather well, model G being an exception. Given Figure 1 (for a two-regime
HMM) this may not be surprising because a large number of combinations of standard deviation
and stationary probability yield ratios close to unity, and that is where the ratios observed from the
data lie. As to the skewness and kurtosis, a clear tendency emerges. If these values are relatively
small in the data, the models also yield small estimates, and they increase when the corresponding
subseries display higher values. The only clear failure is model G. The other models reproduce the
stylized facts reasonably well. The kurtosis of series J estimated from the model remains far below
that estimated directly from the data, but on the other hand the latter estimate is remarkably large.

Figure 4 shows the autocorrelation functions of absolute returns for the first 50 lags for the
series A—J and the corresponding models. It is seen that the autocorrelations estimated directly
from the series decay very slowly as Granger and Ding (1995a) and GD noted. The auto-
correlation function estimated from the model typically shows somewhat faster decay, but it does
often capture the general tendency reasonably well. Models C, D, and again G are perhaps the
largest exceptions to this observation. It should be noted that the HMM can only produce series
with exponentially decaying autocorrelation functions. As for TP2, the model thus seems
doomed from the start. Nevertheless, the exponential decay in an HMM may also be quite slow
for appropriate values of the transition probabilities. Our results show, however, that given all the
other properties of the data the HMM have to satisfy, the maximum likelihood estimated models
cannot capture the behaviour of the empirical autocorrelation functions in a satisfactory fashion.

Table IV contains the mean/standard deviation ratio, skewness and kurtosis of absolute
returns for the outlier-reduced series and the estimated models. All models, that for series G
included, reproduce the stylized facts quite well. Model A underestimates both the skewness and
kurtosis, but in general, the outlier reduction has a remarkable effect on the results. It is clear
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Figure 4. Autocorrelation functions of absolute returns for subseries A-J estimated from the original
observations (left-hand panels) and from the hidden Markov models (right-hand panels)
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Table XIII. Values of 6 maximizing the first-order
autocorrelation of |r,| 9 estimated from series A-J and
the corresponding HMMs, original observations

Period Data Model
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from this comparison that the HMM is sensitive to outlying observations but then this means
that the model faithfully reflects the properties of the data. As to the autocorrelation functions
the broad picture is as before: the decay of the autocorrelations in the models is faster than in
reality. The graphs are therefore not shown separately. The slow decay seems the most difficult
stylized fact to reproduce with an HMM.

The remaining stylized fact of GD to check is the Taylor effect (TP3). For this we need
autocorrelation estimates from the models. After estimating an HMM we obtain conditional

estimates of £| X |? using
EIX|" = py= = [0 e
[ X" = py = g y e dy

(20"
=
where I'( - ) is the Gamma function. These are computed for each regime in turn by substituting

the estimated variance of the corresponding normal distribution for ¢? in expression (13). To
obtain the autocorrelation function, the results are inserted while defining g(r,) = | r,| %, This and

(e +1/2) (13)

Table XIV. Values of 6 maximizing the first-order
autocorrelation of |r,| 9 estimated from series A—J and
the corresponding HMMs, outlier-reduced observations

Period Data Model
A 1-6 0-8
B 1-6 0-8
C 2.0 1-4
D 14 1-4
E 14 12
F 2-0 1-4
G 1-8 1-0
H 1-4 1-2
I 20 1-6
J 2.0 1-8
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Figure 5a

the use of estimated stationary and transition probabilities yield the autocovariances defined in
matrix form in expression (8). An estimate of the second moment of |r,|? needed in the auto-
correlation function is obtained through expression (6) by setting g(r,) = | r,| ?. Tables XIII and
XIV contain the values which maximize the first-order autocorrelation for each model over the
range 6 =0-2, 0-4,..., 2-0. As Figures 5 and 6 indicate, the autocorrelation functions estimated

© 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 217-244 (1998)



STYLIZED FACTS OF DAILY RETURN SERIES 239

Figure 5b

Figure 5. Autocorrelation functions for transformed subseries |r? |, 8=0-2,04,..., 2-0, estimated from
the hidden Markov models A-J, original data

from the models have a ridge appearing for 8 < 2 for both the original and the outlier-reduced
data. The maximum first-order autocorrelations are obtained for 0-8 < 8 < 1-8 (see Tables XIII
and XIV). The maximizing values of 0 agree reasonably well with those obtained by
estimating the autocorrelations directly from the subseries A—J. Another interesting feature in
Table XIV is that the outlier reduction seems to weaken the Taylor effect in the data as the
autocorrelation-maximizing 6 systematically increases with this transformation. For the
transformed subseries C, F, I, and J the maximizing 6 even has the value 2-0.

6. CONCLUSIONS

We have shown that in modelling returns, a mixture of normals is capable of characterizing stylized
facts that Granger and Ding (1995a) and GD found in a large number of high-frequency series.
Furthermore, higher-order dependence present in those series can be conveniently modelled using
the hidden Markov model. The one stylized fact that cannot be generated by this model, at least
not easily by ML estimation, is the very slowly decaying autocorrelation function for the absolute
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returns. While Ding and Granger (1996) proposed a model which reproduces this property, that

paper is not explicitly concerned about the distributional properties of the absolute returns.
There exist many other studies applying the HMM to economic series. Our study differs from

many of them in the sense that the number of regimes has not been fixed in advance. Because of
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Figure 6. Autocorrelation functions for transformed subseries |7, | 9 9=02,04,..., 20, estimated from
the hidden Markov models A-J, outlier-reduced data

the identification problem present in the form of an overparameterized HMM we select the model
by testing from specific to general and thus seek to minimize the risk of fitting unidentified models
to data. We believe that this should be a standard approach when modelling with the HMM.

Fitting an HMM to subseries of the long S&P 500 series reveals a potential problem: very
exceptional observations have a tendency of being allocated in a separate regime. Having said
that we would like to remind the reader of the fact that there is some stability in the parameter
estimates over time so that the results do not appear completely spurious. The HMM based on a
mixture of normal distributions thus seems an interesting alternative to the double exponential
error distribution Granger and Ding (1995a) and GD used to characterize high-frequency return
series.

APPENDIX

In this appendix we derive the spectral density of an HMM. To that end, let {(S,, X,)} be an
HMM, i.e. {S,} is the hidden Markov chain and {X,} is the observable process. The transition
probability matrix P of {S,} is assumed to be ergodic. Let also M, and M, be the diagonal
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matrices with entries E{X,|S,=i} and E{X?|S, = i}, respectively. In our case with X,= |r,],
M, = diag(y/{2/n}o;) and M2=diag(af), respectively. We can then write E{X,} =aM,1 and
E{X?} = aM,1, where a is the vector of stationary state probabilities for P and 1 is a column
vector of ones. Thus,

Var(X,) = aM,1 — (aM, 1)’
and as shown in Section 3,
cov(X,, X,) = aM,(P' — 1a)M, 1
for z > 1. The spectral density of {X,} is defined by

I & o
g((u):Z Z e cov(X,, X,)

1=—00

Theorem 1 For the HMM defined above,
2ng(w) = aM,1 — (aM,1)* + 2aM, (B cos @ — B*)(I — 2B cos » + B%)'M|1

where B=P — 1a.

For the proof, we need the following lemma.
Lemmal Foreacht=1,2,3,..., P'—1a=(P — la)’.
Proof. This follows easily by induction.
Proof of Theorem 1. Since P is ergodic, it has a single eigenvalue of modulus one, namely 4 = 1.
Thus, the spectral radius of B is less than one, and the same holds true for B exp(iw?). This fact
and Lemma 1 imply that

o0

e

e cov(X,, X,) = aMll B e_i“’)’]Mll =aM,{(I-Be ™)™ — M, 1.

=1 =1

Similarly,
Y e cov(X,, X,) = aM,{(1 - B ) — M1
=—00
whence
2ng(w) = Var(X,) + aM, (I —Be )™ + I - B €)™ —2IM|1
Now,

I-Be ™)'= @A-Be)I-Be ™)1 —-Be)!
= (I-Be“)I - 2Bcos w+ B!
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so that

I-Be ™)' +dA-Be) ' =1-Be“ +1-Be )I-2Bcosw+B)™
= (2 — 2B cos w)(I — 2B cos w + B?)™!

and
I-Be ™)' +d-Be?) ™" — 21 = (2B cos  — 2B*)d — 2B cos w + B~

The proof is complete.

ACKNOWLEDGEMENTS

The research of TR was supported by the Swedish Natural Science Research Council (contract
No. M-AA/MA 10538-303), whereas TT received support from the Swedish Council for
Research in the Humanities and Social Sciences and SA from the Tore Browaldh Foundation for
Scientific Research (contract No. T96541). Versions of the paper have been presented at the 14th
International Symposium on Forecasting, Istanbul, June 1996, the NBER/NSF Time Series
Seminar, Rotterdam, October 1996, and in seminars at the Central Bank of Norway (Oslo),
CREST-INSEE (Malinvaud Seminar, Paris), GREMAQ-Université de Sciences Sociales
(Toulouse), Humboldt-Universitdt zu Berlin, Institute for Advanced Studies (Vienna) and
Swedish School of Economics (Helsinki). Comments from participants, Christian Robert in
particular, and two referees are gratefully acknowledged. John Geweke (associate editor) has
contributed with several useful suggestions. Furthermore, we wish to thank Clive Granger
for inspiration, Tony Hall and Gabriela Mundaca for useful remarks, and William Schwert for
the S&P 500 daily series. The responsibility of any errors or shortcomings in the paper remains
ours.

REFERENCES

Bickel, P. J. and D. A. Freedman (1981), ‘Some asymptotic theory for the bootstrap’, Annals of Statistics, 9,
1196-1217.

Bickel, P. J. and Y. Ritov (1996), ‘Inference in hidden Markov models: Local asymptotic normality in the
stationary case’, Bernoulli, 2, 199-228.

Bickel, P. J., F. Gotze and W. R. van Zwet (1997), ‘Resampling fewer than n observations: gains, losses, and
remedies for losses’, Statistica Sinica, 7, 1-31.

Bickel, P.J., Y. Ritov and T. Rydén (1997), ‘Asymptotic normality of the maximum-likelihood estimator for
general hidden Markov models’, preprint.

Davies, R. B. (1977), ‘Hypothesis testing when a nuisance parameter is present only under the alternative’,
Biometrika, 64, 247-54.

Ding, Z. and C. W. J. Granger (1996), ‘Modeling volatility persistence of speculative returns: A new
approach’, Journal of Econometrics, 73, 185-215.

Ding, Z., C. W. J. Granger and R. F. Engle (1993), ‘A long memory property of stock market returns and a
new model’, Journal of Empirical Finance, 1, 83—-106.

Granger, C. W. J. and Z. Ding (1995a), ‘Some properties of absolute returns. An alternative measure of
risk’, Annales d’économie et de statistique, 40, 67-91.

Granger, C. W.J. and Z. Ding (1995b), ‘Stylized facts on the temporal and distributional properties of daily
data from speculative markets’, Department of Economics, University of California, San Diego,
unpublished paper.

© 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 217-244 (1998)



244 T. RYDEN, T. TERASVIRTA AND S. ASBRINK

Granger, C. W.J. and T. Terésvirta (1993), Modelling Nonlinear Economic Relationships, Oxford University
Press, Oxford.

Hamilton, J. D. (1988), ‘Rational-expectations econometric analysis of changes in regime: an investigation
of the term structure of interest rates’, Journal of Economic Dynamics and Control, 12, 385-423.

Hamilton, J. D. (1994), Time Series Analysis, Princeton University Press, Princeton, NJ.

Le Cam, L. (1986), Asymptotic Methods in Statistical Decision Theory, Springer-Verlag, New York.

Leroux, B. G. (1992), ‘Maximum-likelihood estimation for hidden Markov models’, Stochastic Processes
and Their Applications, 40, 127-43.

Lindgren, G. (1978), ‘Markov regime models for mixed distributions and switching regressions’,
Scandinavian Journal of Statistics, 5, 81-91.

McLachlan, G. J. (1987), ‘On bootstrapping the likelihood ratio test statistic for the number of components
in a normal mixture’, Applied Statistics, 36, 318-24.

Milhgj, A. (1981), ‘A test of fit in time series models’, Biometrika, 68, 177-87.

Mittnik, S. and S. T. Rachev (1993), ‘Modelling asset returns with alternative stable distributions’,
Econometric Reviews, 12, 261-330.

Pagan, A. R. and G. W. Schwert (1990), ‘Alternative models for conditional stock volatility’, Journal of
Econometrics, 45, 267-90.

Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling (1989), Numerical Recipes, Cambridge
University Press, Cambridge.

Saikkonen, P. (1984), ‘Asymptotic relative efficiency of some tests of fit in time series models’, Journal of
Time Series Analysis, 4, 69—78.

Sola, M. and A. Timmermann (1994), ‘Fitting the moments: A comparison of ARCH and regime switching
models for daily stock returns’, London Business School, Centre for Economic Forecasting, Discussion
Paper No. DP 6-94.

Tyssedal, J. S. and D. Tjestheim (1988), ‘An autoregressive model with suddenly changing parameters and
an application to stock market prices’, Applied Statistics, 37, 353-69.

© 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 217-244 (1998)



