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Modeling Asymmetric
Comovements of Asset Returns

Kenneth F. Kroner
Barclays Global Investors

Victor K. Ng
Goldman Sachs

Existing time-varying covariance models usually impose
strong restrictions on how past shocks affect the fore-
casted covariance matrix. In this article we compare
the restrictions imposed by the four most popular mul-
tivariate GARCH models, and introduce a set of robust
conditional moment tests to detect misspecification. We
demonstrate that the choice of a multivariate volatility
model can lead to substantially different conclusions in
any application that involves forecasting dynamic covari-
ance matrices (like estimating the optimal hedge ratio
or deriving the risk minimizing portfolio). We therefore
introduce a general model which nests these four mod-
els and their natural “asymmetric” extensions. The new
model is applied to study the dynamic relation between
large and small firm returns.

The estimation of time-varying covariances between as-
set returns is crucial for asset pricing, portfolio selection,
and risk management. Yet the development in this area is
lagging significantly behind the development in the time-
varying volatility area, as evidenced by the sparcity of the
literature on modeling time-varying covariances compared
to modeling time-varying volatility. There is also no study
that compares the properties and relative performance of
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the existing multivariate covariance models. In contrast, many univariate
time-varying volatility models have been carefully examined and compared.
For examples, see Pagan and Schwert (1990), Engle and Ng (1993), Amin
and Ng (1994a, b), and Kim and Kon (1994).)

Moreover, none of the popular multivariate models capture the asymmet-
ric volatility effect — a phenomenon that a negative return shock (unex-
pected price drop) will lead to a higher subsequent volatility than a positive
return shock (unexpected price increase) of the same magnitude. In contrast,
there are several univariate models that capture this property. For examples,
see Nelson (1990), Glosten, Jagannathan, and Runkle (1993), and Engle
and Ng (1993). In addition, none of the popular multivariate models allow
for an asymmetric effect in the covariance. Such a phenomenon is likely if
there is an asymmetric effect in the variance. For instance, if the asymmetric
effect is caused by a leverage effect — an increase in the riskiness of the
stock due to an increase in the debt:equity ratio of the firm following a price
drop — then the change in financial leverage in the firm should also change
the covariance between its stock return and the stock returns of other firms
that have not experienced a change in financial leverage. Alternatively, if the
asymmetric effect in volatility is caused by an increase in the information
flow following bad news, then the covariance between stock returns should
be affected because there will be a change in the relative rate of information
flow across firms.

Furthermore, there are few specification tests for the multivariate models.
Perhaps because of this, most multivariate time-varying covariance models
are often chosen on an ad hoc basis. In many cases, the ease of estimation
is the primary factor affecting the choice of model. Robustness checks that
analyze the sensitivity of economic results to model specification are often
omitted.

One objective of this article is to fill these gaps. Specifically, we illustrate
how the existing time-varying covariance models differ from each other. We
propose a way to evaluate the specification of these models, and demonstrate
that the choice of a multivariate volatility model can affect estimated portfo-
lio weights and hedge ratios. We also demonstrate that the existing models
do not capture some important stylized facts about asymmetric volatility
relationships, and in the spirit of Hentschel (1995) propose a model that
encompasses the existing models while modeling these stylized facts.

A second objective of this article is to use a general approach to study
the time-varying covariance between the stock returns of large and small
firms. Conrad, Gultekin, and Kaul (1991) found that shocks to large firm
returns are important to the future dynamics of their own volatility as well
as the volatility of small firm returns. Conversely, shocks to small firms have
no impact on the behavior of the volatility of large firms. Our application
furthers this line of research by examining how robust the Conrad, Gultekin,
and Kaul result is with respect to model specification by using our proposed
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encompassing model; extending the study to cover the differential effects
of large and small firm shocks on the covariance; and extending the model
to allow for the asymmetric effects of positive and negative shocks on both
volatility and covariance.

The organization of this article is as follows: In Section 2, alternative ap-
proaches to modeling time-varying covariances are reviewed. In Section 3,
these models are applied to a dataset containing a large-firm portfolio return
series and a small-firm portfolio return series. Various summary statistics
and graphical techniques are used to highlight the differences between the
existing models on the assumed dynamics of large- and small-firm return
volatilities. In Section 4, a formal testing approach is introduced. The tests
are applied to the models to evaluate their ability to describe the dynamic be-
havior of the covariance between large- and small-firm returns. In Section 5,
an encompassing modeling approach is introduced. The model, which nests
many existing multivariate GARCH models as special cases, is further ex-
tended to allow for asymmetric effects in the variance and covariance. The
general model is then applied to study the time-varying covariance between
large- and small-firm returns. In Section 6 we illustrate the importance of our
results in portfolio selection and dynamic hedging applications. Section 7
concludes the article.

1. Alternative Approaches to Modeling Time-Varying Covariances

Multivariate GARCH models are among the most widely used time-varying
covariance models. These include the VECH model of Bollerslev, Engle,
and Wooldridge (1988), the constant correlation (CCORR) model of Boller-
slev (1990), the factor ARCH (FARCH) model of Engle, Ng, and Rothschild
(1990), and the BEKK model of Engle and Kroner (1995). These models
have been applied to many markets and many asset pricing and investment
problems. For an extensive summary, see the survey by Bollerslev, Chou,
and Kroner (1992).
To describe these models, we adopt the following notation:

R;; . the rate of return of asset i from time ¢ — 1 to time ¢.

Wir: the expected return of asset i given all information at time ¢ — 1.
€;;: the unexpected return of asset i (¢;; = Ri; — Lir).

h;ie: the conditional variance of R;; given all information at time ¢ — 1.

hij;: the conditional covariance between R;; and R;; given all infor-
mation at time ¢ — 1.

H;: the conditional covariance matrix (H; = [h;j;]).
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1.1 The VECH model
The VECH model is characterized by the following equation: !

h,‘j, = wjj +,3,'jh,'j,_| + ®ij€ir—18j—1 foralli,j=1,...,N, (1)

where w;j, Bij, and o, i = 1,...,Nand j = 1, ..., N are parameters.
An advantage of the VECH model is that it is easy to understand — it is
simply an ARMA model for ¢;,¢j;. Provided that 8;; € (0, 1) for all i and
J» Equation (1) can also be rewritten as

hije = 0} + i; Zem1 B (Risot = i) (Rjm1 — 1) (2)

where o, = [B'ho + w;j01=0,1—1 ﬂfj]. That is, except for an adjustment term
o, which ensures that the expectation of 4;;; is the unconditional covari-
ance between returns i and j, the VECH model estimates the covariance
as a geometrically declining weighted average of past cross products of
unexpected returns, with lower weights for older observations.

The VECH model has two practical shortcomings. First, it has %N (N +
1) parameters. So a 20-asset model will have 630 parameters.> A second
implementation problem is that the model might not yield a positive definite
covariance matrix unless nonlinear inequality restrictions are imposed that
govern the rates at which the weights are reduced for older observations
[see Kraft and Engle (1983)]. Without these restrictions, the weights for the
covariance terms could decline too slowly relative to the weights for the
variance terms, causing the off-diagonal terms of the estimated covariance
matrix to become too big relative to the diagonal terms, thus causing the
matrix to be nonpositive definite.

1.2 The BEKK model
The BEKK model represents a solution to the positive definiteness problem.
It is characterized by the following equation:

H =Q+ B'H_ B+ As_js_ A, 3)

where 2, A, and B are N x N matrices, with 2 symmetric and positive
definite. In this model, the ijth covariance can be written as

hijr = wij +covi_1(&r, &51) + Ept—1€q.1—1
J J

where €,, &4, &, and & are the unexpected shocks to portfolios p, g, r,
and s, and w;; is the ijth element of Q. The weights in portfolios p and
g come from the ith and jth columns of the A matrix, and the weights in

! Some, including Bollerslev, Engle, and Wooldridge (1988), refer to this model as the “diagonal VECH”
model.

2210 of these are contained in the estimate of €.
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portfolios r and s come from the ith and jth columns of the B matrix. If we
restrict B = x A for some scalar «, then we can interpret this model as one
in which there are N factors (or portfolios of assets) driving the conditional
covariance matrix.

This model assumes the conditional covariance matrix of asset returns is
determined by the outer product matrices of the vector of past return shocks.
Because the second and third terms on the right-hand side of Equation (3)
are expressed in quadratic forms, the positive definiteness of the conditional
covariance matrix of asset returns is guaranteed, provided that 2 is positive
definite. While this model overcomes this major weakness of the VECH
model, it still has (5/2) N + (N /2) parameters. So for N = 20, the BEKK
model has 1010 parameters, seriously restricting the applicability of the
BEKK model to many financial systems.

1.3 The factor ARCH (FARCH) model

The FARCH model was constructed to solve this large-system applicability
problem, while retaining the benefits of positive definiteness. The model is
characterized by the following equation:

H, = Q+ M [Bw Hyw + a(w'e, 1), 4

where X and w are N x 1 vectors, « and § are scalars, and €2 is a symmetric
positive N x N matrix. This model is a special case of the BEKK model
in which the A and B matrices are rank one and equal except for a scale
factor. More specifically, the BEKK model becomes the FARCH model if
A = Jaw)' and B = /Bw) . For an N variable system, the number of
parameters in this model is (1/2)N? 4 (5/2)N + 2, which is significantly
less than that of the general BEKK model. If N = 20, this model has 252
parameters, 210 of which are used for estimating .

Let R, = w'R,, where R, = (R, ..., Rn;)" is the return to a portfolio
formed with a vector of weights w. The return shock of this portfolio at
time t — 1 is 5,1 = w’g,_y, and the conditional variance of this portfolio
attime t — 1is h,, = w'H,w. Using h,, and €,,_; the FARCH model can
be rewritten in the following alternative form:

h,'j, = a),'j-i-)»,‘)»jhp, foralli,j=1,...,N (5a)
hpt = w,+ ,BHpt—l +C¥8§,_|, (5b)

where w, = w'Qw, 0;; = Qjj — AjAjw,, w;j is the (i,j)th element of Q.
Intuitively this FARCH model assumes that there is a single portfolio whose
variance is driving all the conditional variances and covariances of asset
returns. This common portfolio, or factor, follows a GARCH process. In
the one factor model in Ng, Engle, and Rothschild (1992), R, is taken to be
the market return. Under this assumption, the entire conditional covariance
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matrix of stock returns is driven by the conditional variance of the market
portfolio.

The key difference between the FARCH model and the BEKK model
is the number of factors that are driving the conditional covariance matrix.
If there are N factors driving the covariance matrix, the BEKK model is
implied. If there is one factor, the FARCH model is implied. The extension
to k factors, 1 < k < N, is obvious, and is suggested in Ng, Engle, and
Rothschild (1992).

1.4 The constant correlation (CCORR) model
The CCORR is another way to parsimoniously model a time-varying co-
variance matrix. It restricts the conditional covariance between two asset
returns to be proportional to the product of the conditional standard devia-
tions. In this model the conditional correlation coefficient of the two asset
returns is time invariant. Specifically the model is

hiie = wii + Bithii—1 +aziel_, foralli=1,....,N  (6a)
hije = pij(Vhiien/hjj) foralli # j. (6b)

The CCORR model is positive definite if and only if the correlation
matrix [p;;] is positive definite. The number of parameters in this model is
only (1/2)N? 4 (7/2)N. For N = 20, this is 270.

2. Properties of the Four Multivariate GARCH Models

Each of the four models presented in the previous section implicitly imposes
a different set of restrictions on the variance and covariance processes. We
illustrate these differences with a bivariate system of large-firm and small-
firm portfolio returns obtained from the dataset used by Conrad, Gultekin,
and Kaul (1991). The sample period is from July 1962 to December 1988,
for a total of 1371 weekly observations.

Since we are not interested in the behavior of the time-varying mean
returns in this study, we simply model the mean of the return vector as a
10th order vector autoregression (VAR) with 10 lags of a threshold term.
Specifically, the model is (fori = 1, 2)

Rit = 8io + Zj=12Zc=1,10[8}, Rjr_, + dj, max(—=R;;_, 0] +¢&;,.  (7)

Throughout this article, i = 1 refers to the small-firm portfolio and
i = 2 refers to the large-firm portfolio. The threshold terms are added to

# Since our main focus is on the effect of last period’s return shocks on current volatility, we replaced the
GARCH terms in all the models except CCORR with [B;;/;;,-,], where f;; = B;;. We chose not to make
this modification to the CCORR model because it would invalidate the essential feature of the CCORR
model, which is that correlations are constant.

822



Modeling Asymmetric Comovements of Asset Returns

ensure that any asymmetric effects found in the variances and covariances
are not caused by a misspecification in the mean. The estimation is done
in two steps. First we estimate the mean equation to get the residuals ¢,
and &y, then we estimate the conditional covariance matrix parameters
using maximum likelihood, treating &), and &5, as observable data.* The
block diagonality of the information matrix under this setup guarantees that
consistency and efficiency are not lost in such a procedure.

The four multivariate GARCH models give very different variance and
covariance estimates. For evidence of this, consider first the summary statis-
tics of the variance and covariance series obtained from the four models.
These summary statistics, including the mean, standard deviation, mini-
mum, and maximum, are reported in Table 1. The covariances obtained
from the BEKK model and the FARCH model tend to be slightly higher
and more volatile than those from the VECH model and the CCORR model.
The BEKK model in particular produces a broad range of covariance es-
timates, as evidenced from the large maximum-minimum range. Focusing
next on the variance estimates, the VECH and CCORR model estimates for
the small-firm variance series are more volatile than those from the FARCH
and the BEKK models. In contrast, the VECH and CCORR estimates of the
large-firm variance series are less volatile than the FARCH and the BEKK
estimates.

For further evidence that the four models can give very different variance
and covariance estimates, consider the correlations between the estimates
from the different models, reported in Table 2. The first panel of Table 2
gives the correlations between the small-firm variance estimates obtained
from the four models. The second panel gives the correlations between the
large-firm variance estimates. The third panel gives the correlations between
the covariance estimates obtained from the four models. The correlations
in panel 2 all exceed 0.99, suggesting that the four models give very sim-
ilar large-firm variance estimates. Therefore, if we are only interested in
estimating the large-firm variance in this dataset, the choice of models is
unimportant. This conclusion does not hold for the small-firm variance and
the covariance. The small-firm variance estimates obtained from the FARCH
and BEKK models are not highly correlated with those obtained from the
VECH and CCORR models. In fact, the correlation between the small-
firm variance estimates obtained from the FARCH model and the CCORR
model is only 0.366. This suggests that these models are producing sub-
stantially different small-firm variance estimates. Similarly, the correlations
between the covariance estimates from all combinations of models are less
than 0.89.

4 This follows the two-step approach of Pagan and Schwert (1990), Gallant, Rossi, and Tauchen (1992),
and Engle and Ng (1993).
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Table 1
Summary statistics of estimated variance and covariance series

Model Variable = Mean SD Minimum  Maximum

Small-firm variance

e, 7.43 28.97 0.00 825.45
VECH hyy 7.73 6.31 3.82 104.98
CCORR hyy 791 7.08 3.54 117.60
FARCH hyy 7.51 4.14 2.87 33.24
BEKK hiy 7.53 491 2.64 50.67

Large-firm variance

agl 3.93 8.12 0.00 147.87
VECH ho 3.89 2.58 1.10 21.53
CCORR hay 3.96 2.78 0.98 23.49
FARCH hay 4.12 3.18 0.74 27.08
BEKK hay 4.16 3.20 0.76 26.15
Covariance

€116 2.61 8.59 —45.44 167.55
VECH Ny 2.33 1.49 0.30 17.59
CCORR i 2.47 1.48 0.91 15.60
FARCH Ry 2.79 242 0.30 21.71
BEKK Ry 2.77 2.66 0.25 30.71

This table gives summary statistics for the variance and covariance
series estimated from the four multivariate GARCH models discussed
in the article. All four models were applied to the same dataset of
large-firm and small-firm portfolio returns. ¢, is the return shock to
the small-firm portfolio and &, is the return shock to the large-firm
portfolio. /1y, is the estimated variance of the small-firm portfolio
returns. Ay, is the estimated variance of the large-firm portfolio
returns. hy, is the estimated covariance between the small-firm and
large-firm portfolio returns.

Judging from these results, it seems clear that the four models can pro-
duce substantially different covariance matrix estimates. These differences
could affect the results of asset pricing exercises and portfolio management
applications, making the choice of the model very important. Given this
conclusion, the obvious next question is: What causes the differences in
the variance and covariance estimates? To answer this, we introduce a mul-
tivariate generalization of the graphical “news impact curve” from Engle
and Ng (1993). Univariate applications, which involve plotting the condi-
tional variance against last period’s shocks, appear in Engle and Ng (1993)
and Hentschel (1995). The multivariate generalization plots the conditional
variance and covariance against large- and small-firm shocks from the last
period, holding the past conditional variances and covariances constant at
their unconditional sample mean levels. We will call these “news impact
surfaces.”

Specifically, let z,_; denote the vector of inputs (known at time ¢ — 1)
for the determination of h;;,, excluding &;,_ and &;,_;. Also, let Z denote
the unconditional mean of z,_;. The news impact surface for 4;j, is the
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Table 2
Correlations of estimated second moments from alternative models

Panel 1: Small-firm portfolio variance series

VECH CCORR FARCH BEKK
VECH 1.000
CCORR 0.999 1.000
FARCH 0.367 0.365 1.000
BEKK 0.642 0.640 0.834 1.000

Panel 2: Large-firm portfolio variance series

VECH CCORR FARCH BEKK
VECH 1.000
CCORR 0.999 1.000
FARCH 0.999 0.999 1.000
BEKK 0.954 0.954 0.955 1.000

Panel 3: Covariance series

VECH CCORR FARCH BEKK
VECH 1.000
CCORR 0.876 1.000
FARCH 0.748 0.785 1.000
BEKK 0.752 0.719 0.885 1.000

Panel 1 of this table gives the correlation matrix of the small-firm variance
series estimated from the four multivariate GARCH models discussed in the
text. Panel 2 gives the correlation matrix of the large-firm portfolio variance
series estimated from these same models. Panel 3 gives the correlation matrix
of the covariance series estimated from these models.

three-dimensional graph of the function:
hijr = hij(&ir—1, €j1—15 221 = Z).

The news impact surfaces generated by the four models for the covariance
h12¢, the small-firm variance h,,, the large-firm variance A5;,, and the cor-
relation fy5, /o/h11:+/h22: are plotted in Figures 1, 2, 3, and 4, respectively.

Figure 1 shows that, in contrast to the univariate model comparisons in
Hentschel (1995), the different models imply substantially different news
impact surfaces for the covariance, even though they are fitted to the same
dataset. These differences are caused by the different functional forms as-
sumed by each of the specifications. For instance, under the VECH model,
past return shocks to the large- and small-firm portfolios enter into the co-
variance equation in the cross-product form (&,_1€2;—). Hence when the
shocks are both large but of opposite signs, the covariance can be small
or even negative. This is evident from the saddle shape of the VECH news
impact surface in Figure 1. On the other hand, under the CCORR model, the
covariance is proportional to the product of the standard deviations. Thus
when shocks are large, regardless of their signs, the standard deviations and
hence the covariance will be large. Therefore the news impact surface for
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Sovarianee 4

FARCH CCORR

Figure 1

News impact surfaces for covariances

The figures give the news impact surfaces for the covariance between small-firm and large-firm return
shocks under the VECH model, the BEKK model, the FARCH model, and the CCORR model.

the CCORR model is bowl-shaped. For the FARCH model, since the co-
variance is proportional to the variance of a factor which is loaded primarily
on the large-firm portfolio, the FARCH covariance news impact surface is
a U-shaped surface along the axis for the large-firm return shock.

These general shapes are not specific to the dataset analyzed here. For
any application, the impact on covariances of opposite-signed shocks in the
CCORR model will be substantially different than in the VECH model.
Also, the news impact surface for covariances from a FARCH model will
always be U-shaped, with the data determining the direction the parabola
points. Ignoring these differences when choosing which multivariate
GARCH model to employ could lead to a seriously misspecified model.

Figure 2 shows that there are also significant differences between the
news impact surfaces for the variance of the small-firm portfolio obtained
from the four different models. The VECH model and the CCORR model
restrict the variance of the small-firm portfolio to depend only on the square
of the return shock for the small-firm portfolio. This restriction forces the
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VECH BEKK
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F-ARCH CCORR

(L

Figure 2

News impact surfaces for small-firm variances

The figures give the news impact surfaces for the small-firm variances under the VECH model, the BEKK
model, the FARCH model, and the CCORR model.

large-firm return shock to have no effect on the small-firm variance, thereby
restricting the news impact surfaces to be flat along any line parallel to the
large-firm axis. On the other hand, the news impact surface implied by the
FARCH model suggests that it is the large-firm return shock which has
the biggest impact on the variance of the small firm portfolio, while the
news impact surface from the BEKK model suggests that both large- and
small-firm shocks matter.

Notice also that the news impact surface generated for the small-firm
variance (Figure 2) and for the covariance (Figure 1) from the FARCH
model are identical, except for a scale factor. This restriction must hold
because the same portfolio drives all the elements of the FARCH covariance
matrix.

Consider next the news impact surfaces for the large-firm variances in
Figure 3. The four models give almost identical large-firm news impact
surfaces, suggesting that when modeling large-firm variances, these four
models are very similar. But notice also that the large-firm news impact
surfaces from the CCORR and VECH models point along the opposite axes
from the small-firm variance surfaces for these same models. This result
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VECH

Figure 3

News impact surfaces for large-firm variances

The figures give the news impact surfaces for the large-firm variances under the VECH model, the BEKK
model, the FARCH model, and the CCORR model.

is caused by restrictions in the underlying models. Similarly, restrictions
in the FARCH model force the FARCH news impact surfaces to all point
along the same axis.

Finally, we provide the news impact surface for the correlations in Fig-
ure 4. The surface from the CCORR model is flat, because correlations in
this model are not a function of the information set. However, notice that
the news impact surfaces for the correlations from the FARCH model are
also quite flat. This is not surprising, because in a one-factor model the
correlation is

_ Oij +A'i)\'jhpt
\/(0’,']' + A —'i)»,'h,,,)(ajj +)\j)\jhpt)

Pt

The same dynamics are driving both the numerator and denominator of
this expression, leaving only minimal dynamics in the ratio. In a two-factor
model, one would expect more dynamics in the correlations.

Based on the above observations, we can conclude that (i) the different
covariance matrix models impose significantly different restrictions on the
dynamic behavior of the variances, covariances and correlations; and (ii) an
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YECH BEKK

Figure 4

News impact surfaces for correlations

The figures give the news impact surfaces for the correlation between small-firm shocks and large-firm
shocks under the VECH model, the BEKK model, the FARCH model, and the CCORR model.

important difference between the models is the way they allow past shocks
of asset returns to affect the variances and covariances. These results can-
not be overemphasized and are particularly important for applications that
rely crucially on covariance estimates, such as portfolio choice problems,
hedging problems, and asset pricing problems. Very careful consideration
should go into the choice of a multivariate GARCH model before estimation
is conducted, and thorough specification testing on the estimated model is
essential before conclusions are made based on the model. It is therefore
valuable to have a set of specification tests available, and it is to this that
we now turn our attention.

Robust Conditional Moment Tests

To test the validity of a model, a natural approach is to compare the ex post
cross-product matrix of the vector of residuals to the estimated covariance
matrix. For the covariance case, this is like superimposing a scatter plot of
the cross-product of residuals (a plot of ¢;,¢;, against &;;_| and ¢j;_) on
the three-dimensional graph for the covariance news impact surface. Rec-
ognizing that the covariance news impact surface is a graph of h;;, against
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gir—1 and &;;_; and recognizing that the unconditional expectation of ¢;,¢;;
is h;j;, we can test the models by measuring the vertical distance between
&ir&j; and h;j; and studying whether these distance measures follow some
specific patterns. For instance, if the model gives a covariance news impact
surface that is too low whenever ¢;,_| is negative, then the vertical distance
between ¢;,¢;; and h;j; will tend to be positive when ¢;;_ is negative.

Based on this idea, we define a “generalized residual” u;;, to be the
(i, j)th element of e,&; — H, so that u;;, = &;&j; — h;j;. A generalized
residual is the distance between a point on the scatter plot of &;,¢;; from
a corresponding point on the news impact surface. If the model is correct,
E;_1(u;j;) = 0, thus u;;, should be uncorrelated with any variable known
at time ¢ — 1. This observation gives us a natural way to identify mis-
specification by examining whether u;, is correlated with variables known
at time r — 1. These variables are called misspecification indicators. The
choice of misspecification indicators is very important because different in-
dicators can target different forms of misspecification. Inappropriate choice
of misspecification indicators will reduce the ability of the test to detect
misspecification.’

In this regard, the graphical representation of the news impact surface
provided above has provided useful hints for finding suitable misspecifica-
tion indicators. Knowing that a major difference between the models is their
asymmetric property, a beneficial approach is to partition the (&;;—1, €j—1)
space in a way that can highlight the asymmetric property. Misspecification
indicators can then be built based on this partition.

A natural way is to partition the (¢;,_1, €j,—1) space into four quadrants
corresponding to the following sign combinations of (g;;_1, &j;—1): (—, =),
(=, +), (4, —=),and (+, +). Let I (-) be an indicator function that equals one
if the argument is true and zero otherwise. The misspecification indicators
corresponding to such a partition are

Xi—1 = 1(gi—1 < 0; 5,1 < 0)
X1 = I(ei—1 <05¢5,-1 > 0)
x3—1 = I(ei—1 > 05611 <0)
Xar—1 = I(gjr—1 > 05811 > 0).

Related to these, we can consider the “sign indicators,”

xsi—p = I(gii—1 <0)
I(gj—1 <0),

X6t —1

5 See Brenner, Harjes, and Kroner (1996) for a detailed description of these types of tests and an illustration
in a univariate GARCH framework.
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which will allow us to test for traditional leverage-type asymmetries in the
data.

As pointed out by Engle and Ng (1993), the magnitudes of the shocks can
also play an important role. Furthermore, the effect of the size of a shock on
the variances and covariances might also depend on the sign of the shock
and possibly the sign of other shocks. To capture such possibilities, we
scale the sign indicators by the size of the shocks. This yields another set
of misspecification indicators:

2

X7t—1 = 8,-,_1](8ir—l <0)
2

xgi—1 = &;_11(gj—1 < 0)
2

Xor—1 = &j,_1(g1—1 < 0)

j
2
Xio—1 = €;_11(gjr—1 <0).

jt=

When N = 1, the entire set of 10 indicators reduces to indicators that
match the sign and size-bias tests introduced in Engle and Ng (1993).

To complete the testing design, we borrow the robust conditional mo-
ment test framework of Wooldridge (1990). A test statistic that is robust to
the conditional distribution used when estimating the multivariate GARCH
model is constructed as

Crem = [(1/T)Srmt rttijihg 11 PIA/ TS ruli 22,17 (8)

where Ag_; is the residual from a regression of the misspecification indi-
cator xg_| on the derivatives of h;;; with respect to the parameters of the
model. Under general regularity conditions, Wooldridge (1990) shows that
C, e has an asymptotic x2(1) distribution.

The robust conditional moment test statistics can be computed easily
from two auxiliary regressions. The first regression is x,,_ on the deriva-
tives of h;;, with respect to all parameters of the null model. The second
regression is a vector of ones on the product u;j;Ag 1, where A,;_; is the
residual from the first regression. The test statistic is 7 times the uncentered
R? from the second regression.

The test statistics for the covariance between the small-firm and the large-
firm returns are reported in panel A of Table 3.6 To highlight the usefulness
of the tests, the Ljung-Box tests for serial correlation in the normalized
cross-product of residuals, &;;&;,/ h;j;, are reported in panel B of Table 3.
The Ljung-Box test is a popular diagnostic for models with time-varying
conditional second moments because it addresses whether the model has
adequately captured the serial correlation in the second moments.

As can be seen from Table 3, the Ljung—Box tests do not reject any of

6 The final column of Table 3, labeled ADC, will be discussed shortly.
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Table 3
Diagnostic tests for covariance specification

Panel A: Robust conditional moment tests
VECH CCORR FARCH BEKK ADC

I(ei-) <0) 485 5.32 491 4.85 —
(s~ <0) 16.22 17.63 16.34 16.27 548
I(en—i < 0;ey_; < 0) 5.88 10.95 6.40 6.45 —
I(ey~) <0569 >0) — 6.84 — — —
I(ey-) > 05691 <0) — — — 4.10 —
I(ey—) > 0y 65, >0) 1109 10.46 12.06 12.67 —
e _I(e;- <0) — — — — —
e I(exnoy < 0) 3.99 6.45 5.01 5.54 -
&, I(e-1 < 0) — 4.03 4.24 5.40 —
2, 1(ez-1 < 0) 4.41 4.95 5.11 6.29 —

Panel B: Ljung-Box tests for serial correlation in &,2,/ h 2,
VECH CCORR FARCH BEKK ADC

0(6) 3.81 6.18 1.18 2.50 5.63
0(12) 6.42 10.39 4.28 5.58 7.90
0(18) 9.39 13.37 9.07 9.88 10.43

Panel A gives the robust conditional moment test statistics for each of the five
models estimated. The misspecification indicators are listed in the first column
and the remaining five columns give the test statistics for each of the five models.
This statistic is distributed )(]2 and has a 95% critical value of 3.84. Only those
statistics that are significant at the 5% level are reported. &,_, is the return shock
to the small-firm portfolio, and &5, is the return shock to the large-firm portfolio.
Panel B gives the Ljung—Box test statistic for serial correlation in the standardized
cross-product of residuals from these five models. Q (r) is the Ljung—Box statistic
for rth order serial correlation. The 5% critical levels for Q(6), Q(12),and Q(18)
are 12.6, 21.0, and 36.4, respectively.

the models. This is hardly surprising given that we rarely see Ljung-Box
tests rejecting any variations of GARCH models in the literature. However,
looking at our robust conditional moment tests, the message is very different.
Each model is strongly rejected. The test statistics indicate that all models
fail to capture the asymmetric response of covariance to both large-firm
and small-firm portfolio shocks. As evidenced by the strong test statistics
arising from the I(gy—; < 0) indicator, the models are especially bad
at capturing the asymmetric relationship between covariances and shocks
to the large-firm portfolio. Also, judging from the test statistics, there are
more rejections when the shocks are large than when the shocks are small,
suggesting that the size of the shocks matters.

There are more rejections when both &, and &;, are negative and when
both are positive. There are two potential explanations for this. First, this
might be due to the high correlation between small- and large-firm returns
(their correlation is 48%), which leads to more observations and therefore
higher power in the (4, 4+) and (—, —) quadrants.” And two, it could arise

7 About one-third of the observations are in each of the (+, +) and (—, —) quadrants, and about one-sixth
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because the asymmetric predictability is more pronounced when the com-
mon shock is large. Intuitively, any big shock (whether positive or negative)
is likely to be shared by both the large firm and small firm portfolios, leading
to large return shocks of the same sign. So the observations that drive the
asymmetries are likely to be located in the (+, +) and (—, —) quadrants.

One important conclusion from these results is that we should not place
too much confidence in statistically insignificant Ljung-Box statistics when
evaluating GARCH models. Even badly misspecified models can capture
the serial correlation in the second moments and give insignificant Ljung—
Box test statistics.

4. A General Dynamic Covariance (GDC) Model

The robust conditional moment test results call for a more general model
with an ability to capture the asymmetric effects explicitly. Instead of work-
ing on extensions of each of the four models and comparing the large num-
ber of possible extensions, we adopt a more structured approach, similar to
Hentschel (1995). First, we introduce a general dynamic covariance matrix
model that can nest many of the existing models. Then we generalize this
model to include asymmetric effects. The resulting asymmetric covariance
matrix model encompasses various asymmetric extensions of the four mod-
els. Model selection is much easier under this approach. The specification
of the basic encompassing model is as follows.

4.1 A general dynamic covariance (GDC) matrix model — Definition
H; = DIRDt + do @f,

where o is the Hadamard product operator (element-by-element matrix mul-
tiplication) and

D, = [dijz], d,',', = \/9,',', for all i d,'j, =0 foralli ;ﬁ]

O, = [6;jt]

R = [r,-j], (]5,',‘ =0 foralli

® = [¢;j], ¢ =0 foralli

9,'1', = wij + b/H,_lbj +a£e,_18;_laj forall i, j )
and

ai,b;,i=1,..., N are N x 1| vectors of parameters,

wij, pij, and @;;, i, j = 1,..., N are scalars with Q = [w;;] positive

definite.

in each of the other two quadrants.
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The GDC model has two components, the first term, D; R D;, is like the
constant correlation model, but with the variance functions given by that of
the BEKK model. The second term, ® o ®,, has zero diagonal elements, but
has off-diagonal elements given by the BEKK-type covariance functions,
scaled by the ¢;; parameters.

To further clarify the model structure, we can write down the expressions
for the elements of H, directly. Specifically, under the GDC model,

hiiw = 6, foralli
hije = pij/Giit/0jj + $ij6ije  foralli # j,

where, 6;;,i, j = 1, ..., N are given by the above BEKK form (Equation 9).

The GDC model is therefore a hybrid of the CCORR model structure and
the BEKK model structure. An interesting property of this model is that it
encompasses the four multivariate GARCH models discussed above. This
encompassing result is given in Proposition 1.

Proposition 1. Consider the following set of conditions:

(i) pij=O0foralli # j.
(ii) a; = a;t; and b; = B;t; for alli, where i; is the ith column of an N x N
identity matrix, and o; and B;, i = 1, ..., N are scalars.
(iii) ¢ij =Oforalli # j.
(iv) ¢ij =1foralli # j.
(v) A = a(w)) and B = B(wd'), where A = [ay,...,ay], B =
[b1,...,by], wand A are N x 1 vectors, and o and B are scalars.

The GDC model will reduce to the different multivariate GARCH models
under different combinations of these conditions. Specifically, the GDC
model will become a restricted VECH model (with the restrictions B;j =
BiiBjj and a;; = ajiaj;) under conditions (i) and (ii), the CCORR model
under conditions (ii) and (iii), the BEKK model under conditions (i) and
(iv), and the FARCH model under conditions (i), (iv) and (v).

Proof. See Appendix for all proofs.

This encompassing property makes the GDC model a useful and attrac-
tive framework for estimating time-varying covariance matrices and for
comparing and testing existing multivariate GARCH models. The general-
ity of the GDC model also provides a natural ground for an extension that
permits asymmetric effects in both variances and covariances. An exten-
sion of the GDC model following the approach of Glosten, Jagannathan,
and Runkle (1993) is given below.
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4.2 Asymmetric Dynamic Covariance (ADC) Matrix Model —
Definition

Let ;; = max[0, —¢&;;] and n; = [114, ..., nn:1, the ADC model is defined
as

Ht = DtRD; + b o @;,
where
D, = [dij:], diir = /6;i; foralli, d;j, =0foralli # j
0, = [eijt]
R = [r,-j], Fij = 1 for all i, rij = Lij for all i 75]

® = [¢;j], ¢ foralli
0ijr = wij +biH,_\b; +aje,_1&,_,a; + gin—1n,_, g for all i, j (10)
and
ai,bi,and g;,i =1,..., N are N x 1 vectors of parameters,
wij, pij,and ¢;j, i, j = 1,..., N are scalars.

The essential difference between the ADC model and the GDC model is
the addition of the term g;n,_n,_, g; in the equation for 6;;, (Equation 10).
The asymmetric dynamic covariance matrix model nests some natural ex-
tensions of the four multivariate GARCH models that allow for asymmetric
effects in the variances and covariances. These are summarized in Propo-
sition 2. The proof for Proposition 2 follows directly from the proof for
Proposition 1 and hence is not given to conserve space.

Proposition 2. Consider the following set of conditions:

(i) pij =0foralli # j

(ii') a; = a;i;, b; = Bit;, and g; = y;i; for all i, where 1; is the ith column
of an N x N identity matrix, and o;, B;, and y;, i = 1,..., N are
scalars

(iii) ¢ij =0fori # j

(iv) ¢ij =1foralli # j

(V') A =a(wd), B=B(wl),and G = y(wA') where A = [ay, ..., an],
B=1[b,....,by),and G = [g1, ..., gn], wand A are N x 1 vectors,
and o, B, and y are scalars.

The ADC model will reduce to the different asymmetric multivariate GARCH
models under different combinations of these conditions. Specifically the
ADC model will become an asymmetric VECH model under conditions (i)
and (ii’), an asymmetric CCORR model under conditions (ii') and (iii), an
asymmetric BEKK model under conditions (i) and (iv), and an asymmetric
FARCH model under conditions (i), (iv) and (V').
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The exact form of these specialized multivariate asymmetric models are
given below:

Asymmetric VECH:

i = o + BHhii—1 + afel,_ + vind_
foralli (GJR asymmetric variance function)

hije = Qijwij + ¢ijBiBihij + Gijaictj€ir—18j1—1 + Gij ViViNit—1Mji—1
foralli # j.

Asymmetric CCORR:

hiir = i + BPhii—1 + olel_ + vind
foralli (GJR asymmetric variance function)
hije = pij/hiit/hjj; foralli # j.

Asymmetric BEKK:
Hr == Q + AIE;_]E;_IA + BlHt.__]B + G/r’t—ln;_lG

Asymmetric FARCH.:
hiji = 0jj +AiAjhy  foralli
hp = @p+ Bhpot + 00| +¥15
where
hp = w'Hw, ey =w'e, ny=wn, and oj; = w;j — Lirjw'Qw

The above multivariate asymmetric GARCH models are natural exten-
sions of their standard counterparts. The asymmetric VECH and asymmetric
CCORR models have variance functions given by the Glosten, Jagannathan,
and Runkle (GJR) model instead of the standard GARCH(1, 1) model. The
asymmetric VECH also allows a cross-product term of the negative shocks
to determine the covariance. An implication of this is that the covariance
will be higher when there is bad news for both firms. The asymmetric BEKK
extends the standard one by having an additional quadratic form that is de-
pendent on the outer product of the vector of negative return shocks. Finally,
the asymmetric FARCH model utilizes a bad news portfolio, ,, produced
by taking a weighted average of the individual asset bad news with the
weights being the original factor weights.

To examine the performance of the ADC model and to further study the
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Table 4

ADC model estimation results

Parameter Estimate Standard Error
) 0.218 0.040
W -0.595 0.436
wn 0.027 0.019
ay 0217 0.015
ap -0.083 0.025
as -0.070 0.057
az 0.254 0.033
gn 0.075 0.041
gn -0.008 0.037
821 0.436 0.044
82 0.373 0.048
P12 0.381 0.151
d12 0.626 0.163
By 0.868 0.014
B, 0.495 0.241
By, 0.884 0.015

This table gives the maximum likelihood estimates for the ADC model:
hiy = 6y foralli=1,2
My = 0123/601+/ 02 + 1261
Oyr = wij + Bijhyj—1 +ajeig_a;
+gin—im,_,g foralli,j
where, a; = lain,anl, & =8, gl
i =12

Heteroskedasticity-consistent standard errors are reported. i = 1 refers
to the small-firm portfolio and i = 2 refers to the large-firm portfolio.

dynamic relation between large- and small-firm returns, we apply the ADC
model to our large- and small-firm return series. The estimation results are
reported in Table 4. With these results, the first question to ask is whether the
estimated ADC model would reduce to one of the more specialized models.
For this, we can test the conditions given in Proposition 2. The ¢ statistic
for the hypothesis pj; = 0 is 2.52. Thus condition (i) is rejected at the 5%
level. The ¢ statistic for ¢ = 0 is 3.84. So condition (iii) is also rejected.
The ¢ statistic for ¢, = 11is2.29. Thus condition (iv) is also rejected. These
results indicate that the estimated ADC model is statistically different from
any one of the specialized models. Also, the rejection of ¢, = O implies
that there exists an asymmetry in the covariances that is not driven by the
asymmetry in the variances.

We next address whether the asymmetric effects are important for the
variances and covariances. For this, the results in Table 4 show that both g5,
and g, are statistically significant. Since the g, vector captures the negative
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Figure 5

News impact surfaces for ADC model

The figures give the news impact surfaces for the small-firm variance, the large-firm variance, the
covariance between small-firm and large-firm shocks, and the correlation between small-firm shocks
and large-firm shocks under the ADC model.

shocks of the large-firm portfolio (as i = 2 is for the large firm), the results
indicate that the sign of the large-firm return shocks is more important than
the sign of the small-firm return shocks.

Such effects can also be seen more clearly by inspecting the variance
and covariance news impact surfaces for the ADC model. These graphs are
given in Figure 5. Panel 1 of Figure 5 indicates that the small-firm portfolio
variance is only mildly affected by news to the small-firm portfolio. Instead,
bad news to the large-firm portfolio has a dominant impact on small-firm
variances. This should not be surprising, given existing results in the liter-
ature. For example, Nelson (1990) and Glosten, Jagannathan and Runkle
(1993) demonstrate that bad news has a bigger impact on subsequent volatil-
ity than good news, and Conrad, Gultekin, and Kaul (1991) demonstrate
that shocks to large-firm returns affect future small-firm return volatility.
Putting these two results together (as our model does), we find that bad news
to large firms affects small-firm volatility. The advantage the ADC model
has over these other models is that it nests all these potential asymmetric
relationships and spillovers in one model.
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Consistent with Conrad, Gultekin, and Kaul (1991), panel 2 reveals that
the variance of the large-firm portfolio is unaffected by small-firm shocks. In
contrast, volatility of the large-firm portfolio is responsive to its own news,
especially its own bad news. Panel 3 indicates that there is also an interesting
asymmetric effect in the covariance which has not been documented before.
Specifically, the covariance between large- and small-firm returns is higher
following a negative shock to the large-firm portfolio, while it is almost
unaffected by shocks to the small-firm portfolio. Panel 4 indicates that these
asymmetries in the covariance are not driven entirely by the asymmetries in
variances, because, for example, positive small-firm shocks have a different
impact on correlations than negative small-firm shocks. Panel 4 also reveals
that shared negative shocks have much stronger impacts on correlations
than shared positive shocks.

Finally, to check for misspecification we apply our robust conditional
moment tests to the model and report the results in the final column of
Table 3. The only rejection observed is that the ADC model does not fully
capture the asymmetric relation between large-firm shocks and covariances.
In stark contrast to the other multivariate GARCH models we examined,
the ADC model is well-specified along all other dimensions examined. The
ADC model fits the data well.

5. Illustration of Economic Importance

Estimating the right time-varying covariance matrix is essential for asset
pricing, portfolio selection, and risk management. To illustrate the impor-
tance of the covariance matrix to these types of financial problems, we
applied our results to two problems.

First, consider the problem of calculating the optimal fully invested port-
folio holdings subject to a no-shorting constraint. This application is illus-
trative of the kinds of problems faced by portfolio managers when deriving
their optimal portfolio holdings. In order to avoid forecasting expected re-
turns, we assume here that the expected returns are zero, making the problem
equivalent to estimating the risk-minimizing portfolio weights. Define

_ ha — hio
hive —2hio + hooe

wy

Then it is easy to show that, assuming a mean-variance utility function, the
optimal portfolio holdings of the small-firm portfolio are

0 if w; <0

1 if w; > 1

and the optimal holdings of the large-firm portfolio are 1 — w;. As shown
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Table 5

Portfolio comparisons from the estimated models

Panel A: Optimal fully invested small-firm portfolio weights
VECH CCORR FARCH BEKK ADC

Averages 0.222 0.232 0.209 0.222 0.181

VECH 1.000

CCORR 0.977 1.000

FARCH 0.698 0.702 1.000

BEKK 0.796 0.721 0.361 1.000

ADC 0.571 0.542 0.121 0.623 1.000

Panel B: Optimal risk-minimizing large-firm hedge ratios
VECH CCORR FARCH BEKK ADC
Averages 0.666 0.692 0.639 0.640  0.753

VECH 1.000

CCORR 0.728 1.000

FARCH —-0.500  —0.553 1.000

BEKK 0.393 0.047 0.403 1.000

ADC —-0.010 —0.110 0.656 0.516 1.000

Panel A gives summary statistics for the optimal small-firm
portfolio weights in a fully invested, no-shorting portfolio. The
optimal large-firm weights are one minus the optimal small-firm
weights. The first row gives the average weight over the sample
period and the remaining rows give the correlation matrix of optimal
weights. Panel B gives summary statistics for the risk-minimizing
hedge ratio in a problem where the large-firm portfolio is used to
hedge against small-firm return volatility. A hedge ratio of 0.67
means that the investor would short $67 worth of the large-firm
portfolio to hedge against a long position of $100 in the small-firm
portfolio. As in panel A, the first row gives the average hedge ratios
and the remaining rows give the correlation matrix of optimal hedge
ratios.

in panel A of Table 5, all the models result in very similar average optimal
weights, with the averages ranging from 0.18 (ADC) to 0.22 (VECH and
BEKK). However, the correlations between these portfolio weights are low,
typically about 70%. So the optimal portfolio will depend on the covariance
model chosen, meaning that portfolio managers would have to be very
careful which covariance model they select, because the model matters.

Second, consider the problem of estimating a dynamic risk-minimizing
hedge ratio using multivariate GARCH models. Several applications of this
existin the literature. For example, Kroner and Claessens (1991) and Kroner
and Sultan (1993) use the CCORR model and Baillie and Myers (1991) use
the VECH model. To minimize the risk of a portfolio that is long $1 in
small-firm portfolio, an investor should short $8 of the large-firm portfolio,
where the “risk minimizing hedge ratio” g is

hio
i = s

hao
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The summary statistics of the estimated hedge ratios from the different
covariance models are given in panel B of Table 5. The average hedge ratio
is about 0.70 for all the models, but the correlations between the hedge ratios
are strikingly low. In fact, the correlation between the FARCH and CCORR
hedge ratios is —0.55. Clearly the choice of models will seriously affect the
estimated hedge ratios. Of importance, the formula for the optimal hedge
ratio is the same as that for the market g if the second asset is the market.
This suggests that any application that estimates time-varying 8s must also
pay careful attention to the model selection process.

6. Conclusion and Summary

Existing multivariate models allowing the covariance matrix to be time
varying generally impose strong restrictions on how past shocks can affect
the covariance matrix. Yet these restrictions are seldom compared and tested.
Furthermore, asymmetric/leverage effects have been found in variances, but
few studies have examined such effects in covariances, even though there
are good reasons to believe that they exist and have important implications
for portfolio management.

We filled these gaps by demonstrating the differences between several
popular multivariate GARCH models; introducing a set of robust condi-
tional moment tests to detect misspecification in the dynamics of the co-
variance matrix, with special emphasis on the asymmetric effects in the
covariances; and introducing a general dynamic covariance matrix model
which nests various existing models as special cases. More specifically, our
model nests the constant correlation model of Bollerslev (1990), the FARCH
model of Engle, Ng, and Rothschild (1990), the BEKK model of Engle and
Kroner (1995), and the VECH model of Bollerslev, Engle, and Wooldridge
(1988). We also introduced a generalization of the encompassing model
that allows for asymmetric effects in the variances and covariances. This
asymmetric dynamic covariance matrix model nests various asymmetric
extensions of the four existing models.

We apply the asymmetric dynamic covariance matrix model to weekly
returns from a large-firm portfolio and a small-firm portfolio to examine
the dynamic relation between large- and small-firm returns. We found that
all four existing models are misspecified, especially in the dynamics of the
covariance. Our results confirm the general conclusion of Conrad, Gultekin,
and Kaul (1991) in a more general setting. That is, large-firm returns can
affect the volatility of small-firm returns, but small-firm returns do not have
much effect on large-firm volatility. Moreover, we also show that there
are significant asymmetric effects in both the variances and covariances
which have not been documented before. In particular, bad news about
large firms can cause volatility in both small-firm returns and large-firm
returns. Furthermore, the conditional covariance between large-firm returns
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and small-firm returns tends to be higher following bad news about large
firms than good news. In addition, news about small firms has minimal
effect on the variances and covariance.

Perhaps the most important conclusion of this research is that the choice
of a multivariate volatility model can substantially affect the conclusions of
the analysis. This is especially important for portfolio selection, risk man-
agement, and asset pricing. For example, we showed that the correlations
between the risk-minimizing hedge ratios derived from various popular mul-
tivariate volatility models are surprisingly low, and sometimes negative.

Appendix

Proof of Proposition 1.
The VECH model: If p;; = 0 for all i # j, then the matrix R reduces to
an N x N identity matrix. Hence

H, = D,D; + ® 0 ©,,
or equivalently,
hiir = 6y forall i, and h;;; = ¢;;0;;; foralli # j.
With a; = a;; and b; = B;1; for all i, 6;; becomes
Oijr = wij + BiBi (i Hi—1) + ot (tje,—16,_yt;) foralli and j.

Substituting this expression for 6;;, back into the expressions for 4;;; and
hij:, we obtain the VECH model with the restriction that 8;; = 8, 8;:

hiir = wi; +/3,-2hm—1 +(x,.28,.2,_1 for all i, and
hijr = ¢ijwij + ¢ijBiBihij: + dijaiajei 15— foralli # j.

The CCORR model: If ¢;; = O for all i # j, then the matrix & becomes
a null matrix. Hence

H, = D/RD;,
or equivalently,
hiir = 6;j; foralli, and h;j; = p;j+/6iit+/0jj: forall i # j.
With ¢; = «;; and b; = B;1; for all i, 6;;; becomes
O:jc = wij + BiBi (i Hi—1tj) + oy (ie,—1€,_y1;) foralli and j.

Substituting this expression for 8;;; back into the expressions for /;;, and
recognizing that 6;;; = h;;; and 0;;, = h;;;, we obtain the constant correla-
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tion model:
hii = i + Brhii—1 +ofel_, foralli, and
hiji = pij/hiies/hjj;  foralli # j.

The BEKK model: If p;; = 0 and ¢;; = 1 for all i # j, then the matrix
R reduces to an N x N identity matrix and the matrix & reduces to a matrix
with zero diagonal elements and unit off-diagonal elements. Hence

H =D/D, + (' — 1)o@,
where ¢ is a vector of ones. Expressing D, and G, in terms of 6, we have
hiie = 6y = wij + b H,_1b; + aje,_e,_,a; foralli,and
hijr = 6ijy = w;j + biH,_1b; + aje,;_1¢,_,a; foralli # j.
In matrix notation, this is
H =Q+ A'e,_ye,_ A+ B'H,_|B,

where A = [al, ...,aN], B = [bl, ...,bN],and Q= [a),‘j].
The FARCH model: As before, if p;; = 0, ¢;; = 1 forall i # j, then

Ht = Q + A/Ef_]E;_lA + B/Ht_]B.

If, in addition, A = a(wA’) and B = B(wA’) then the expression for H,
can be rewritten as

H = o+ W[BW H_jw) + a(w'e,_1)*],
or equivalently,
hij; = o0ij + AiAjh, foralli
hp = wp 4 Bhpi—1 + O‘siz—l’
where

hy = wHw, ey =we, ando;=w;—iijwQuw. L]
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