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Stock Prices and Volume
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We undertake a comprebensive investigation of
price and volume co-movement using daily New
York Stock Exchange data from 1928 to 1987. We
adjust the data to take into account well-knoun
calendar effects and long-run trends. To describe
the process, we use a seminonparametric estimate
of the joint density of current price change and
volume conditional on past price changes and vol-
ume. Four empirical regularities are found: (i)
positive correlation between conditional volatility
and volume; (ii) large price movements are fol-
lowed by bigh volume; (iii) conditioning on lagged
volume substantially attenuates the ‘leverage”
effect; and (iv) after conditioning on lagged vol-
ume, there is a positive risk-return relation.

The recent history of the stock market has been char-
acterized by sharp downward price movements
accompanied by high volume and associated with
increased future volatility. On Black Monday II
(October 19, 1987), the S&P 500 composite index
plunged 22.9 percent on the second highest volume
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ever recorded (604 million shares). On the day after the crash of
1987, the S&P 500 index rose by 5.2 percent on the highest volume
ever recorded of 608 million shares. Two days after the crash on
October 21, the S&P 500 index rose 8.7 percent (the seventh highest
one-day increase in the period from 1928 to 1989) with the trading
of 450 million shares. In 1989, the 7 percent drop on October 13 was
accompanied by a 50 percent increase in volume and followed by
heavy trading on Monday, October 16, of two and a half times the
normal volume. These events of the late 1980s suggest strong inter-
relationships among the sign and magnitude of price movements, the
volatility of prices, and the trading volume.

Studies of volatility dynamics examine the relationship between
large price movements and increased volatility. For the (univariate)
S&P composite price index data, French, Schwert, and Stambaugh
(1987) employ the GARCH specification developed by Bollerslev
(1986, 1987). Engle and Bollerslev (1986) extend the GARCH model
to include a unit root in the variance evolution term to accommodate
the observed strong persistence in conditional variances. Nelson (1989,
1991) introduces an “exponential” GARCH model that overcomes
some problems with positivity restrictions and symmetry in the con-
ditional variance function associated with standard GARCH models.
Efforts to explore the determination of the risk premium for stocks
have employed a variety of ARCH-M specifications [see French,
Schwert, and Stambaugh (1987), Bollerslev, Engle, and Wooldridge
(1988), and Nelson (1989, 1991)]. Pagan and Hong (1991) and Harvey
(1991) use nonparametric techniques to study the risk premium. The
presence of ARCH-like variance shifts is thus well-documented, though
there is considerable disagreement about which variant of a para-
metric ARCH model is most appropriate to describe the price change
process.

In this study, we investigate the joint dynamics of price changes
and volume on the stock market. We use daily data on the S&P com-
posite index and total NYSE trading volume from 1928 to 1987, which
is a bivariate time series of 16,127 observations.

We use nonparametric methods throughout. The main reason for
choosing nonparametric methods is that we wish to avoid bias due
to a specification error. With parametric methods, there is always a
risk that specification error will seriously bias an estimate and thereby
lead to a spurious result. The best-known discussion of this point in
the econometrics literature is White (1980). An excellent illustration
of an instance where the use of nonparametric methods uncovered
a specification error that was responsible for an incorrect sign on an
important variable is Engle et al. (1986). With respect to financial
market data, Gallant, Hsieh, and Tauchen (1991) find that side lobes

200



Stock Prices and Volume

in the error density (which are ruled out in customary, parametric,
ARCH specifications) are clearly revealed in a nonparametric analysis
and are the apparent source of spurious findings of nonlinearity over
and above ARCH. Engle and Gonzales-Rivera (1991) analyze these
same data using an alternative nonparametric technique. They confirm
these departures from customary parametric specifications and per-
form Monte Carlo simulations to assess the consequences for para-
metric analysis.

Previous empirical work on the price and volume relationship has
focused primarily on the contemporaneous relationship between price
changes and volume. Transactions level, hourly, daily, weekly, and
monthly data on individual stocks, futures, and stock price indices
have been used to document a positive correlation between the abso-
lute value of stock price changes and volume [see Karpoff (1987) and
Tauchen and Pitts (1983) for summaries of this literature]. Foster and
Viswanathan (1990) use transactions level data to examine within-
day price-volume relations; Mulherin and Gerety (1988) use both
hourly and daily volume and returns data to document the relation-
ship between the magnitude of price changes and volume, as well
as patterns in volume by time of day and week for the period from
1900 to 1987. Lamoureux and Lastrapes (1991) enter volume directly
into the GARCH variance equation in their analysis of individual stock
returns data. Schwert (1989) uses monthly aggregates of daily data
and finds a positive relationship between estimated volatility and
current and lagged volume growth rates in linear distributed lag and
VAR models. With the exception of Mulherin and Gerety (1988), most
empirical studies using daily or within-day data examine relatively
short time periods of between 3 and 5 years.

Generally speaking, the empirical work on price-volume relations
tends to be very data-based and not guided by rigorous, equilibrium
models of market behavior. The models are more statistical than
economic in character, and typically neither the optimization prob-
lem facing agents nor the information structure is fully specified. The
intrinsic difficulties of specifying plausible, rigorous, and imple-
mentable models of volume and prices are the reasons for the informal
modeling approaches commonly used.

Recently, some interesting theoretical work investigated factors
such as heterogeneous agents and incomplete markets, which are
substantial complications of the familiar representative agent asset-
pricing models. For example, Admati and Pfleiderer (1988, 1989)
explore the implications for within-day and weekend volume and
price movements of a model comprised of informed traders and
liquidity traders. Huffman (1987) presents a capital growth model
with overlapping generations that yields a contemporaneous volume-
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price relationship. More recently, Huffman (1988) and Ketterer and
Marcet (1989) examine trading volume and welfare issues in various
economies comprised of heterogeneous infinitely lived agents facing
limited trading opportunities [also, see Andersen (1991)]. Existing
models, however, do not confront the data in its full complexity and
have not evolved sufficiently to guide the specification of an empirical
model of daily stock market data. For instance, there seems to be no
model with dynamically optimizing, heterogeneous agents that can
jointly account for major stylized facts—serially correlated volatility,
contemporaneous volume-volatility correlation, and excess kurtosis
of price changes—each of which we discuss below.

In this article, we undertake an empirical investigation of the
dynamic interrelationships among price and volume movements on
the stock market. Our work is motivated in part by the recent events
on the stock market, which suggest that more can be learned about
the market—and, in particular, about volatility—by studying prices
in conjunction with volume, instead of prices alone. It is also moti-
vated by an objective of providing a full set of stylized facts that
theoretical work will ultimately have to confront. Because of the
limitations of existing theory, the empirical work is not organized
around the specification and testing of a particular model or class of
models. Instead, the empirical effort is mainly data-based. We begin
with an informal graphical look at the data and then proceed ulti-
mately to the estimation and interpretation of a seminonparametric
(SNP) model of the conditional joint density of market price changes
and volume in Section 3.

The investigation has four objectives: (i) to analyze the relation-
ships between contemporaneous volume and volatility in an esti-
mation context that explicitly accounts for conditional heteroskedas-
ticity and other forms of conditional heterogeneity; (ii) to characterize
the intertemporal relationships among prices, volatility, and volume;
(iii) to examine the “leverage” effect, which is an asymmetry about
the vertical axis in a plot of the conditional variance of current price
change against past price change, and to examine the extent to which
conditioning on past volume reduces or increases the asymmetry; and -
(iv) to determine what, if any, relationship there is between the
conditional mean and variances of price changes.

These objectives relate to features of the conditional density of the
price change and volume data, and not to the signs and magnitudes
of specific parameters. The conditional density is the fundamental
statistical object of interest, as it embodies all of the information about
the probabilistic structure of the data. Hence, as noted above, we
employ a seminonparametric approach to estimate the density directly.
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We also use kernel-based methods and subperiod analysis to corrob-
orate major findings.

The remainder of the article is organized as follows. In Section 1,
we describe the data sources and the adjustments made to remove
systematic calendar and trend effects from the location and scale of
the price change and volume series. In Section 2, we review the
seminonparametric approach to modeling nonlinear time series and
undertake the estimation, which involves a specification search and
diagnostic checking procedures. In Section 3, we examine various
features of the fitted SNP density in order to address the basic research
goals described above. In Section 4, we summarize our findings.

1. Data Sources and Adjustments

The raw data consist of the daily closing value of the S&P composite
stock index and the daily volume of shares traded on the NYSE. Price
index data for the period from 1928 to 1985 were generously supplied
to us by Robert Stambaugh. We extended the price data through 1987.
The volume data is from the Standard & Poor’s Security Price Index
Record (various years). The Security Price Record appears to be the
only source of a long-time series on daily market volume.

The S&P composite price index is a value-weighted, arithmetic
index of prices of common stocks, most of which are traded on the
NYSE. In the period before March 1, 1957, the S&P composite index
was made up of 90 stocks. On March 1, 1957, the index was broadened
to include 500 stocks. In July 1976, Standard & Poor added a group
of financial stocks to the S&P 500 composite index. Some of these
financial stocks are traded over-the-counter, so that in recent years
the S&P 500 has included a few non-NYSE stocks.

The raw price index series, P, is differenced in the logs to create
the raw price change series, 100(log P, — log P,_,), and is plotted in
the top panel of Figure 1. There is a U-shaped pattern in the volatility
of the raw price change series: in the early 1930s and the late 1980s,
the volatility is very high, while in the middle part of the sample the
volatility is low. We do not expect to explain or model long-run shifts
in the volatility of price movements. We decided, therefore, to allow
for a quadratic trend in the variance of the raw price change series
in order to focus our modeling efforts on the short-run pattern of
conditional heteroskedasticity.

Many authors have noted systematic calendar effects in both the
mean and variance of price movements. Rozeff and Kinney (1976)
report a January seasonal in stock market index returns (i.e., mean
returns are higher in January). Keim (1983) refined this analysis of
the January seasonal by studying the magnitude of the seasonal for
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Figure 1

Time series of unadjusted and adjusted price movements

The top panel shows a time-series plot of the daily unadjusted price change series, 100(log P, —
log P,_,). The data are daily from 1928 to 1987, 16,127 observations. The bottom panel shows the
adjusted price change series Ap,. The adjustments remove calendar effects and long-term trend on
the basis of the regressions shown in Table 1. The adjusted series Ap, can reasonably be taken as
stationary, which is required for use of the SNP estimator. See Section 1 for a discussion of the
adjustments.

various size-based portfolios of stocks. Keim finds that most of the
seasonal is associated with the returns on small stocks in January.
Constantinides (1984) points out that tax-related trading might occur
around the turn of the year, but that some sort of irrationality on the
part of investors would be required to induce systematic shifts in the
mean of stock returns. Thus, we might expect to see a January-Decem-
ber seasonal in the volume series even in the absence of a mean effect
on prices. French (1980) notes a weekend effect in stock returns with
lower-than-average returns on Monday. French and Roll (1986) study
the variance of stock returns around weekends and exchange holi-
days, and document shifts in the variance associated with these non-
trading periods. Ariel (1988) has uncovered evidence of an intra-
month pattern of higher returns in the first half of the month. Glosten,
Jagannathan, and Runkle (1989) and Schwert (1990a) also find evi-
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dence of monthly and daily seasonals in means and standard devia-
tions of returns.

In order to adjust for these documented shifts in both the mean
and variance of the price and volume series, we perform a two-stage
adjustment process in which systematic effects are first removed from
the mean and then from the variance. We use the following set of
dummy and time-trend variables in the adjustment regressions to
capture these systematic effects:

1. Day-of-the-week dummies (one for each day, Tuesday through
Saturday).

2. Dummy variables for each number of nontrading days preceding
the current trading day (dummies for each of 1, 2, 3, and 4 nontrading
days since the preceding trading day). These “‘gap” variables capture
the effects of holidays and weekends. The distribution of these gaps
in the trading record are as follows:

* gap of one nontrading day: 1339
* gap of two nontrading days: 1873
 gap of three nontrading days: 223
* gap of four nontrading days: 5

3. Dummy variables for months of March, April, May, June, July,
August, September, October, and November.

4. Dummy variables for each week of December and January. These
variables are designed to accommodate the well-known ‘January”
effect in both the mean and variance of prices and volume.

5. Dummy variables for each year, 1941 to 1945.

6. t 12, time trend variables. (Note: these variables are not included
in the mean regressions for the price change.)

This list of variables is generally self-explanatory, though we should
elaborate on a few points concerning the “gap” variables in the sec-
ond group. As to frequency, there are more one-day gaps and fewer
two-day gaps than one might expect as a result of trading on Saturdays
for the years 1928 through mid-year 1949. As to encoding, if trading
occurred on the preceding day, then there is no gap in the trading
record and no dummy is included; there are 12,686 such days. The
Bank Holiday of 1933 is associated with a gap of 11 days over which
the increase in the raw S&P index is the largest close-to-close move-
ment in the entire data set. No dummy is included for this single 11-
day gap because doing so would, in effect, replace the largest upward
change in the price index with the unconditional mean of the price
changes, which in our view would not accurately reflect what tran-
spired over the Bank Holiday. Finally, in both the adjustments for the
mean and varjance of volume, the coefficients of the four gap variables
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are constrained to lie along a line. Without such constraints, the
adjustment process itself appears to create some very extreme and
implausible values in the adjusted volume process, particularly for
the five days in which gap = 4.

To perform the adjustment, we first regress 100(log P, — log P,_,)
or log(V,) (V,represents volume) on the set of adjustment variables:

w=xB+ u (mean equation).

Here w is the series to be adjusted and x contains the adjustment
regressors. The least squares residuals are taken from the mean equa-
tion to construct a variance equation:

log(u?) = x'y + ¢ (variance equation).

This regression is used to standardize the residuals from the mean
equation, and then a final linear transformation is performed to cal-
culate adjusted w:

W,y = a + b(a/exp(x'y/2)),

where a and b are chosen so that the sample means and variances of
w and w,y are the same. The linear transformation makes the units
of measurement of adjusted and unadjusted data the same, which
facilitates interpretation of our empirical results. In what follows, Ap,
denotes adjusted 100(log P, — log P, ,) and v,denotes adjusted log V..
Table 1 shows the estimated coefficients in the mean and variance
adjustment equations for the price change series. The patterns confirm
the well-known day-of-the-week and January effects: Monday has a
lower return than any other day of the week, which is seen by noting
that the coefficients of all other day-of-the-week dummies are positive.
Price changes are higher in the last week of December and the first
week of January. The effect of wartime seems to be confined to a
reduction in the variance.

The Ap, series is plotted in the bottom panel of Figure 1. The
adjustments make the series appear more homogeneous, thereby
allowing us to focus on the day-to-day dynamic structure under an
assumption of stationarity.

We do not regard the Ap, series as a market-returns series since the
S&P index is not adjusted for dividend payout. If dividend payout is
lumpy and the payout has an appreciable effect on the index (because
of groups of stocks going ex-dividend together), then the lumpy
dividends can create yet another possible systematic calendar effect.
In order to investigate the lumpiness of dividend payout, we obtained
daily data on the total dividend payout of the S&P 100 index in the
period 1979 to 1987. [These data are used in Harvey and Whaley
(1991), and we thank the authors for allowing us access to these data.]
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Table 1
Adjustment regressions for the differenced log price series
Location Variance
Coefficient SD Coefficient SD
Day of the week
Monday — - - -
Tuesday 0.115 0.065 0.349 0.136
Wednesday 0.167 0.066 0.294 0.137
Thursday 0.122 0.066 0.171 0.138
Friday 0.142 0.066 0.179 0.137
Saturday 0.220 0.071 —0.742 0.149
No. of days since the preceding trading day
GAP1 —-0.125 0.059 0.385 0.124
GAP2 -0.117 0.068 0.517 0.142
GAP3 —0.257 0.083 0.443 0.174
GAP4 0.439 0.519 0.617 1.078
Month or week
January 1-7 0.206 0.078 0.294 0.163
January 8-14 0.033 0.072 0.070 0.150
January 15-21 —0.003 0.072 -0.177 0.150
January 22-31 0.077 0.063 —=0.122 0.131
February — — — —
March 0.016 0.045 0.026 0.094
April 0.053 0.046 0.036 0.095
May —0.032 0.045 0.093 0.095
June 0.060 0.046 0.117 0.095
July 0.086 0.046 0.078 0.095
August 0.064 0.045 0.029 0.094
September 0.060 0.046 0.357 0.096
October 0.001 0.045 0.239 0.094
November 0.031 0.047 0.430 0.097
December 1-7 0.094 0.072 0.137 0.150
December 8-14 -0.078 0.072 0.013 0.150
December 15-21 0.016 0.072 —0.111 0.150
December 22-31 0.201 0.067 —0.183 0.140
Year
1941 —0.094 0.068 -0.528 0.141
1942 0.009 0.068 —0.338 0.141
1943 0.028 0.068 -0.586 0.141
1944 0.016 0.068 -0.907 0.142
1945 0.071 0.069 -0.372 0.145
Trend
Intercept —0.104 0.073 —0.160 0.159
(#/16,127) — — —8.678 0.270
(4/16,127)2 —_ —_ 7.112 0.260

The above regressions are used to filter the price change series to remove calendar effects and
long-term trend prior to analysis. The Location regression is the regression of the raw price change
series 100(log P, — log P,_,) on dummy variables for calendar effects. Denoting the residuals from
the Location regression by u, the Variance regression is the regression of /, = log #? on dummy
variables for calendar effects, a linear trend variable, and a quadratic trend variable. Denoting the
predictions from the Variance regression by i, the adjusted price change series used in the analysis
is Ap,= a + b[u,/exp(}/2)), where a and bare chosen so that Ap, has the same mean and variance
as 100(log P, — log P,_,). The data are daily from 1928 to 1987, 16,127 observations. The adjusted
series Ap, can reasonably be taken as stationary, which is required for use of the SNP estimator.
See Figure 1 for comparative plots of the raw and adjusted price change series and Section 1 for
a discussion of the adjustments.

207 |



' The Review of Financial Studies /v 5 n 2 1992

Unadjusted Log Volume

12

10

1930 1940 1950 1960 1970 1980

Adjusted Log Volume (v,

12

1930 1940 1950 1960 1970 1980

Figure 2
Time series of unadj d and adjusted log vol

The top panel shows a time-series plot of the daily unadjusted log volume series log V,. The data
are daily from 1928 to 1987, 16,127 observations. The bottom panel shows the adjusted series o,
The adjustments remove calendar effects and long-term trend on the basis of the regressions shown
in Table 2. The adjusted series v, can reasonably be taken as stationary, which is required for use
of the SNP estimator. See Section 1 for a discussion of the adjustments.

Our analysis, which is available upon request, indicates that dividends
are lumpy with payouts concentrated at certain times of each quarter.
In spite of the dividend lumpiness, the S&P index itself does not
show detectable movements in times of high dividend payouts. There-
fore, we do not regard the failure to adjust for dividends as an impor-
tant factor in modeling the daily S&P price index. Schwert (1990a)
also finds that volatility estimates are not influenced appreciably by
dividends.

The top panel of Figure 2 shows the unadjusted log volume series.
The series exhibits a clear trend in level as might be expected. We
experimented with transforming the volume series into a turnover
series by dividing the volume by measures of the number of outstand-
ing shares. However, plots revealed that the turnover series has a
U-shaped pattern with very high turnover in the late 1920s and the
late 1980s. The pattern suggests that division by the number of out-
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Table 2
Adjustment regressions for the log volume series
Location Variance
Coefficient SD Coefficient SD
Day of the week
Monday — — — —
Tuesday 0.035 0.022 0.292 0.110
Wednesday 0.065 0.022 0.263 0.113
Thursday 0.058 0.022 0.137 0.114
Friday 0.023 0.022 0.339 0.113
Saturday -0.776 0.025 0.547 0.127
No. of days since the preceding trading day
GAP1 —0.069 0.022 0.545 0.110
GAP2 —0.008 0.020 0.374 0.104
GAP3 0.053 0.026 0.204 0.134
GAP4 0.115 0.036 0.033 0.185
Month or week
January 1-7 0.040 0.029 —0.047 0.148
January 8-14 0.077 0.027 —0.074 0.136
January 15-21 0.021 0.027 -0.019 0.136
January 22-31 0.025 0.023 —-0.074 0.119
February — — — —
March —0.025 0.017 —0.047 0.085
April —0.010 0.017 —0.106 0.086
May —0.063 0.017 0.045 0.086
June —0.114 0.017 —0.053 0.086
July —0.134 0.017 —0.204 0.086
August —0.211 0.017 —0.059 0.086
September —0.067 0.017 —0.073 0.087
October —0.029 0.017 0.035 0.086
November 0.022 0.017 —0.064 0.088
December 1-7 0.021 0.027 —0.051 0.137
December 8-14 0.060 0.027 —0.051 0.137
December 15-21 0.055 0.027 -0.219 0.137
December 22-31 0.028 0.025 0.018 0.126
Year
1941 —-0.779 0.025 -0414 0.128
1942 -1.058 0.025 —0.436 0.128
1943 -0.266 0.025 —0.181 0.128
1944 -0.311 0.025 -0418 0.129
1945 0.080 0.026 —0.666 0.131
Trend
Intercept 7.809 0.026 -2.032 0.137
(#/16,127) -5.117 0.048 -3.651 0.244
(#/16,127)? 9.577 0.046 1.486 0.235

The above regressions are used to filter the log volume series to remove calendar effects and long-
term trend prior to analysis. The Location regression is the regression of the raw log volume series
log V, on dummy variables for calendar effects, a linear trend variable, and a quadratic trend variable.
Denoting the residuals from the Location regression by u, the Variance regression is the regression
of /, = log #? on dummy variables for calendar effects, a linear trend varjable, and a quadratic trend
variable. Denoting the predictions from the Variance regression by i, the adjusted log volume
series used in the analysis is v,= a + b[u,/exp(l /2)], where a and b are chosen so that v, has the
same mean and variance as log V,. The data are daily from 1928 to 1987, 16,127 observations. The
adjusted series », can reasonably be taken as stationary, which is required for use of the SNP
estimator. See Figure 2 for comparative plots of the raw and adjusted log volume series, and Section
1 for a discussion of the adjustments.
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standing shares is an inadequate detrending strategy. Thus, we decided
to include a quadratic trend in both the mean and variance equation
for volume along with the same dummy variables to account for cal-
endar and wartime effects as were used in adjusting the price change
series. As seen from Table 2, volume is lower on Monday and Saturday,
and there are pronounced seasonal patterns by month of the year,
with lower volume in the summer months. In all but the last of the
war years, the level of volume was much lower than normal. The
adjusted log volume series shown in the bottom panel of Figure 2
shows relatively homogeneous variation around a mean level.

It is important to note that our quadratic detrending of price vol-
atility and the volume series is best viewed as a band limited filter
that passes everything except extremely low-frequency behavior. We
certainly do not suggest that these trends can be extrapolated. Officer
(1973) and Schwert (1989) conclude that great depression is simply
an unusual event with two to three times higher volatility than any
other period since 1870. Schwert (1990b) suggests that the crash of
1987 is also characterized by unusually high volatility. An alternative
to detrending would be to introduce dummy variables for the depres-
sion and the 1987 crash period. But evidence in the data that there
has been a gradual increase in volatility since the early 1970s per-
suaded us that a U-shaped quadratic trend is a more reasonable pro-
cedure.

The adjustment procedures are designed to remove long-run trend
and those systematic calendar effects that are well documented. We
have taken care to make adjustments only for effects for which there
is statistical evidence in Tables 1 and 2, or for which there is evidence
in the previous work cited above. Figures 1 and 2 summarize the
adjustments and suggest that they do, in fact, make the series more
amenable to analysis with a stationary time-series model.

Note that the procedures treat the price change and volume vari-
ables in essentially the same way. Thus, inferences based on fitting
the dynamics of adjusted data will be very close to inferences that
would be obtained from fitting unadjusted data, but with parameters
on calendar dummies estimated jointly with everything else. In the
case of linear models, inferences would be exactly the same; in the
nonlinear case, the equivalence is only approximate. In view of the
scale of models required to characterize the nonlinear process, it is
computationally intractable to undertake such joint estimation, and
our two-step procedure is a computational compromise.

Appropriate procedures for handling regular calendar variation in
data have long been debated in the seasonality literature, which has
yet to come to a consensus. Recently, Sims (1991) and Hansen and
Sargent (1991) present strong cases for making seasonality adjust-
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ments using deterministic variables in a manner similar to our method
for handling calendar effects. Their arguments hinge on the recog-
nition that models are only approximations. One does not want the
approximation error to be dominated by the contribution from the
component attributable to the calendar effects, so one removes this
component by making adjustments.

Our first use of the adjusted data is to examine the contemporaneous
price-volume relationship. Figure 3 summarizes this relationship.
The figure presents a scatterplot of adjusted price changes versus
standardized volume as well as boxplots of the distribution of Ap, for
various volume ranges. The scatterplot shows that, for the most part,
large price movements are associated with unusually high volume.
This is true even around the crash of 1987, where volume is affected
by breakdowns in the trading process and reporting difficulties. The
boxplots demonstrate that the dispersion of the distribution of Ap,
(the height of the box is the interquartile range) increases uniformly
as the volume increases. The patterns in the figure are consistent with
existing findings on the contemporaneous positive correlation between
the magnitude of price movements and volume. We now proceed to
a conditional analysis of the adjusted data.

2. Conditional Density Estimation

We use the nonparametric estimation strategy proposed by Gallant
and Tauchen (1989, 1992). Their SNP approach, which is explained
below, has the advantage of giving reasonably smooth density esti-
mates even in high dimensions. It is a series expansion whose leading
term can be chosen to be a particularly successful parametric model,
and whose higher-order terms accommodate deviations from the para-
metric model. We use the kernel method and subperiod analysis to
corroborate SNP estimates.

2.1 Seminonparametric (SNP) estimators

The method is based on the notion that a Hermite expansion can be
used as a general-purpose nonparametric estimator of a density func-
tion. Letting z denote an M-vector, the particular Hermite expansion
employed has the form »(2) o [P(2)]?¢(2), where P(z) denotes a
multivariate polynomial of degree K, and ¢(z) denotes the density
function of the (multivariate) Gaussian distribution with mean zero
and the identity matrix as its variance-covariance matrix. The constant
of proportionality is the divisor [ [P(2)]?¢(2) dz, which makes h(z)
integrate to unity. Because of this division, the density is a homo-
geneous function of the coefficients of the polynomial P(z), and these
coefficients can only be determined to within a scalar multiple. To
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Figure 3

Dataplots of the cont price-vol relationship

The left panel is a scatterplot of standardized adjusted log volume, denoted as v; = (v, — 7)/a,,
against Ap,, which is also expressed in units of unconditional standard deviation. One standard
deviation of v, equals 0.427. One standard deviation of Ap, equals 1.15. The right panel presents a
different view of the same data using a set of boxplots for various volume classes, labeled A through
H. The volume classes are in increasing order of standardized log volume. A, v; < —3; B, —3.0
<p!<=150C, —15 =< v/ < —0.5; D, —0.5 = v{ < 0.0; E, 0.0 < v| < 0.5; F, 0.5 < v} < 1.5; G,
1.5 =< v/ < 3.0; H, v = 3.0. The center line in the boxplot is the median Ap, for a given volume
class, the height is the interquartile range, the “whiskers” represent a 99% interval, and the dots
show outlying points.

achieve a unique representation, the constant term of the polynomial
part is put to unity.

The location-scale shift y = Rz + u, where R is an upper triangular
matrix and u is an M-vector, followed by a change of variables, leads
to a parameterization that is easy to interpret: f{y|60) « {P[R™'(y —
wW{$[R(y — w)]/|det(R)|}. Because {¢[R™'(y — w)]/|det(R) |} is
the density function of the M-dimensional, multivariate Gaussian dis-
tribution with mean u and variance-covariance matrix £ = RR’, and
because the leading term of the polynomial part equals unity, the
leading term of the entire expansion is the multivariate Gaussian
density function; denote it by 7,(y|u, Z). When K, is put to zero,
one gets n,(y|r, ) exactly. When K, is positive, one gets a Gaussian
density whose shape is modified because of multiplication by a poly-
nomial in the normalized error z = R~'(y — w). The shape modifi-
cations thus achieved are rich enough to accurately approximate den-
sities from a large class that includes multimodal densities, densities
with fat ¢-like tails, densities with tails that are thinner than Gaussian,
and skewed densities.

The parameters 6 of f(y|6) are made up of the coefficients of the
polynomial P(2) plus p and R and are estimated by maximum like-
lihood. A procedure that is equivalent to maximum likelihood, but
more stable numerically, is to estimate § in a sample of size »n by
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minimizing s,(6) = (—=1/n) 22, In[f(,|0)]. If the number of param-
eters p, grows with the sample size #», then the true density, and
various features of it such as derivatives and moments, are estimated
consistently. Because the method is parametric yet has nonparametric
properties, it is termed seminonparametric to suggest that it lies half-
way between parametric and nonparametric procedures.

This basic approach is adapted to the estimation of the conditional
density of a multiple time series that has a Markovian structure as
follows. By a Markovian structure, one means that the conditional
density of the M-vector y, given the entire past y,_;, y,_,, . . . depends
only on L lags from the past. For notational convenience, we collect
these lags together in a single vector denoted as x,_,, which has length
M- L. As above, a density is obtained by a location-scale shift y, = Rz,
+ u, off a sequence of normalized errors {z,}. Here u, is a linear
function of x, ., specifically u, = b, + Bx,_,, where b, is M x 1 and
Bis M x M-I, making the leading term of the expansion n,(y|u,,
Z), which is a Gaussian vector autoregression or Gaussian VAR. In
time-series analysis, the z,are usually referred to as linear innovations.
In order to permit the innovations to be conditionally heterogeneous,
the coefficients of the polynomial P(z) are, themselves, polynomials
of degree K, in x,_,. This polynomial is denoted as P(z, x). When K,
= 0, the {z,} are homogeneous, as the conditional density of z, does
not depend upon x,_,. When K, > 0, the {z,} are conditionally het-
erogeneous. The tuning parameter K, controls the extent to which
the model deviates from normality, while K, controls the extent to
which these deviations vary with the history of the process.

To keep K, small when the data exhibit marked conditional het-
eroskedasticity, the leading term of the expansion can be put to a
Gaussian ARCH rather than a Gaussian VAR. This is done by letting
R be a linear function of the absolute values of (the elements of) L,
of the lagged y,, that have been centered and scaled to have mean
zero and identity variance-covariance matrix. This differs from the
classical ARCH (Engle, 1982), which has Z, depending on a linear
function of squared lagged residuals; the SNP version of ARCH is
more akin to the suggestions of Nelson (1989, 1991) and Davidian
and Carroll (1987). The SNP specification is =, = R, R/, with vech(R,)
= P, + P,abs(x*,), where P, and P, are coefficient matrices of dimen-
sion M-(M + 1)/2 x 1 and (M- (M + 1)/2) X M-L, respectively,
x ¥ is centered and scaled x,_,, and abs(x *,) is the element-wise
absolute value of x *,. The form of the conditional density becomes
SOlx, 0) x [P(z, x)Pn,(y|p., Z.), where z = R;'(y — p,) and 0
denotes the coefficients of the polynomial P(z, x) and the Gaussian
ARCH 7,,(y|p., Z,) collected together. The parameters are estimated
by minimizing s,(0) = (—=1/n) 2, In[ f(y,| x,—,, 0)].

213



! The Review of Financial Studies /v 5 n 2 1992

We distinguish between the total number of lags under consider-
ation, which is Z, the number of lags in the x part of the polynomial
P(z, x), which we denote by L,, and the number of lags in Z,, which
is L,. The vector x has length M- L, where L = max(L,, L,).

Large values of M can generate a large number of interactions (cross-
product terms) for even modest settings of degree K; similarly, for
M- L,and K,. Accordingly, there are two additional tuning parameters,
I, and I, to represent filtering out of these high-order interactions.
I,= 0 means no interactions are suppressed, [, = 1 means the highest-
order interactions are suppressed—namely, those of degree exceed-
ing K, — 1. In general, a positive I, means all interactions of order
exceeding K, — I, are suppressed; similarly for K, — L.

To illustrate, for the bivariate price volume data (M = 2), the pre-
ferred specification turns out to entail K, = 4 and Z, = 1. The poly-
nomial P(z, x) thus takes the form

P(z, x) = 2 a(\, N, 0)202°,
A,A2

where the a(\,, \;, x) are the coefficients of the polynomial in z €
%2, and the sum is over all pairs of nonnegative integers (A, X\,) such
that A, + A\, < 4, excluding the pairs (1, 3), (2, 2), and (3, 1), which
are quartic interactions suppressed by I, = 1. In addition, it turns out
that L, = 16 and L, = 4, so the ARCH part depends on Ap and v back
to lag 16 and the polynomial coefficient a(A,, A;, x) back to lag 4. It
also turns out that K, = 2 and I, = 1. The a(\,, \,, x) are thus quadratic
functions of the elements of x, but all cross-products are suppressed
since these are quadratic interactions.

In summary, L, and L, determine the location-scale shift y = Rz,
+ u, and hence determine the nature of the leading term of the
expansion. The number of lags in the location shift u, is the overall
lag length L which is the maximum of L, and Z,. The number of lags
in the scale shift R, is L,. The number of lags that go into the x part
of the polynomial P(z, x) is L,. The parameters K, and K, determine
the degree of P(z, x) and hence the nature of the innovation process
{z,}. I, and I, determine filters that suppress interactions when set to
positive values.

Putting certain of the tuning parameters to zero implies sharp
restrictions on the process {y,}, the more interesting of which can be
seen in Table 3. The FORTRAN program that we use for estimation and
simulation, together with examples and a User’s Guide in PostScript,
is available from two sources: (1) ftp anonymous at ccvrl.cc.ncsu.edu
(128.109.212.20) in directory pub/arg/snp; and (2) the Carnegie Mel-
lon Statlib mail server (send the one-line e-mail message ‘‘send snp
from general” to statlib@lib.stat.cmu.edu).
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Table 3

Restrictions implied by setting SNP tuning parameters to zero

Parameter setting Characterization of {y,}
L,=0,L,=0,K,=0, K,=0 iid Gaussian

L,=0,L,>0,K=0,K.=0 Gaussian VAR

L,=0,1,>0,K.>0, K,=0 non-Gaussian VAR, homogeneous innovations
L,>0,L,=0,K,=0, K,=0 Gaussian ARCH

L>0,L,>0,K,>0, K,=0 non-Gaussian ARCH, homogeneous innovations

2.2 Model selection

We use the model selection strategy suggested by Gallant, Hsieh, and
Tauchen (1991) and Gallant, Hansen, and Tauchen (1990). The
Schwarz criterion [Schwarz (1978), Potscher (1989)] is used to move
along an upward expansion path until an adequate model is deter-
mined. The Schwarz-preferred model (i.e., the model that does best
under the Schwarz criterion) is then subjected to a battery of speci-
fication tests; these tests can indicate that further expansion of the
model is necessary. Previous experience indicates that, for data from
financial markets, this selection procedure will inevitably select mod-
els with the longest serial dependence being in the ARCH part (i.e.,
L, < L,), and so models with L, exceeding L, are excluded a priori.

Specification tests are conducted for each fit from scaled residuals
{#,}, which are calculated as follows. By computing analytically the
moments of the estimated conditional density, the estimated condi-
tional mean &(y|x,_,) and variance Var(y|x,_,) are obtained at each
%-1= Y1, ..., ¥=1) in the sample. Using these, a scaled residual
is computed as #, = [Var(ylx,_l)]—l/z[y, - & (y|x,_,)], where
[Var(y|x,,)]"/* denotes the inverse of the Cholesky factor of
[Var(y|x,._,)].

We conduct diagnostic tests for predictability in both the scaled
residuals and the squares of the scaled residuals. As just indicated,
residuals and scale factors are straightforward to compute from the
fitted conditional density. Also, the diagnostics are directly inter-
pretable. Predictability of the scaled residuals would suggest inade-
quacies in the conditional mean estimate implied by the fitted density,
and thus such tests are termed mean tests. Similarly, predictability of
the squared scaled residuals would suggest inadequacies in the
implied estimate of the conditional variance, and thus such tests are
termed variance tests. For both mean and variance, we conduct two
types of tests for predictability: one of which is sensitive to short-
term misspecification, while the other is sensitive to long-term mis-
specification.

For the conditional mean, the short-term diagnostic test is a test
for the significance of a regression of scaled residuals on linear, qua-
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dratic, and cubic terms in lagged values of the elements of the series.
The long-term test is a test for the significance of a regression of
scaled residuals on annual dummies to check for a failure to capture
long-term trends. For the conditional variance, the tests are the same
with the squares of the scaled residuals as the dependent variable in
these regressions. Though our interest is in short-term dynamics, we
conduct the long-term tests simply to get a feel for the very low-
frequency behavior of the fitted model. For the univariate price change
series, four univariate regressions are run: long-term mean, long-term
variance, short-term mean, and short-term variance. Twenty lags are
used in the short-term regressions. In each univariate regression, the
test statistic is the F-test of the joint hypothesis that all regression
coefficients other than the intercept term are zero. For the bivariate
price change and volume series, four bivariate regressions are run:
long-term mean, long-term variance, short-term mean, and short-term
variance. Ten lags are used in the short-term regressions. In each
bivariate regression, the test statistic is the Wilks test of the joint
hypothesis that all regression coefficients other than the two intercept
terms are zero. It should be noted that, because of the “Durbin effects”
of prefitting discussed in Newey (1985) and Tauchen (1985), the p
values could be somewhat inaccurate, even asymptotically. For each
of the specifications considered, the settings of the tuning parameters
L,L,K, L, K, and I, the number of parameters p, that they imply,
the value of the minimized objective function s,(f), Schwarz’s cri-
terion, and the battery of diagnostic tests are reported in Table 4 for
the univariate price change series y, = Ap, and in Table 5 for the
bivariate price change and volume series y, = (Ap,, v,). All reported
values are comparable, as the same number of leading observations
(27) were set aside to provide the initial lags in every fit. The net
sample size is 16,100 observations.

First consider Table 4. The Schwarz criterion is computed as
s, (0) + 3(ps/m)In(n) with small values of the criterion preferred.
The crlterlon rewards good fits as represented by small s, (6) but uses
the term 3(p,/n)ln(n) to penalize good fits arrived at by means of
excessively rich parameterizations. The criterion is conservative in
that it selects sparser parameterizations than the Akaike information
criterion, which uses the penalty term p,/# in place of 3(p,/n)In(n).
Schwarz is also conservative in the sense that it is at the high end of
the permissible range of penalty terms in certain model-selection
settings (Potscher, 1989). Of the models in Table 4, the Schwarz-
preferred model has L, =16, L,=2,K,=4,,=0,K.,=1,and I, =
0 with p, = 34. The short-term variance diagnostic indicates that there
is short-term conditional heterogeneity of some sort that is not
accounted for by the Schwarz-preferred model but is adequately
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Comparison of the range of Ap, with fitted standard deviations

The top panel displays the range of the adjusted Ap, series expressed in units of standard deviations.
One standard deviation corresponds to a 1.15% change in price. The range was computed over
successive 20-day periods. The bottom panel shows the average fitted conditional standard deviation
computed from the fitted SNP model: ¢, = =12, \/Var(Ap,_, | APi—i—116) Ur—i-1.16)/20.

approximated if the lag on the polynomial part of the model is moved
from L, = 2 to L, = 6, thus increasing p, to 58 (278 observations per
parameter). The long-term variance diagnostic indicates that there is
heterogeneity of some sort associated with long-term trends in vari-
ance that are not removed by the adjustments described previously
nor adequately approximated by any of the SNP models. We return
to this point below. Similar considerations applied to Table 5 have
L=16,L,=4,K,=4,I,=1,K,=2,and I, = 1 with p, = 368 (88
observations per parameter) as the Schwarz-preferred model for the
bivariate price and volume process. The short-term diagnostics do
not suggest movement away from the Schwarz-preferred model.
Both the Schwarz-preferred univariate and bivariate-fitted models
fail the regression-based diagnostic for long-term variance shifts. This
suggests that our leading ARCH-like term may be insufficient to cap-
ture the degree of persistence in variance found in the price data. It
may also be the case that the rejections are caused by very small but
statistically significant departures found with our extremely large data-
sets. Figure 4 compares the monthly range of the price change data
with monthly averages of our estimated conditional standard devia-
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tions computed from the bivariate fit. Our fitted standard deviations
display an extremely high degree of persistence over several years,
which is characteristic of the data. Hence, the omitted heterogeneity
detected by the long-term variance diagnostics is probably very slight
and should not affect our examination of the short-term price and
volume dynamics.

2.3 Subperiod estimation
We refit the SNP density within three subperiods to examine the
stability of certain findings. The three subperiods are:

January 4, 1928, to January 5, 1946 5375 observations,
January 17, 1946, to August 5, 1966 5375 observations,
August 8, 1966, to December 31, 1987 5377 observations.

As seen from Figure 1, the first and last subperiods are relatively
volatile, containing the crashes of 1929 and 1987, respectively, while
the middle subperiod is relatively quiescent.

We used the Schwarz criterion to determine the appropriate SNP
specification to estimate within each subperiod. Because of the smaller
sample size within a subperiod, one expects a priori the appropriate
model to be no larger, and most likely smaller, than the overall model.
Under the stationarity assumption, the population quantity that
5,(8) estimates in each subperiod is constant and is the same pop-
ulation quantity that is estimated in the complete sample [Gallant
(1987), chap. 7]. Thus, for each subperiod we use the values shown
under the column heading “Obj.” in Tables 4 and 5 as our subperiod
estimate of s,(6) when computing the Schwarz criterion. This also
insures that specifications will be constant across subperiods, which
is desirable to ensure comparability.

For the univariate Ap, series, this procedure selects the same SNP
specification that is used in the complete sample analysis. For the
bivariate (Ap, v,) series, the subperiod specification is L, = 12, L, =
4, K,=4,1,=1, K, = 1, and I, = 0, which implies p, = 232. The
parameterization of a nonparametric estimator that is based on a series
expansion is dependent on the sample size with rules of the form p
= n=, for some «a € (0, 1), being common (Gallant and Souza, 1991).
Thus, a tighter parameterization within a subperiod, as with the bivar-
iate specification, is appropriate. The univariate and bivariate speci-
fications were then fitted to each of the three subperiods and the
results used in the subsequent section for the purpose of corrobo-
ration and sensitivity analysis. For the univariate price change process,
the values of s, were 1.25970 for the full sample and 1.22630, 1.26230,
and 1.27217 for the subperiods. For the bivariate price change and
volume process, they were 1.82598 for the full sample and 1.70842,
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1.81653, and 1.83578 for the subperiods. These values are stable and
suggest that our subperiod model selection strategy is reasonable.

Empirical Findings

The introduction raises a number of issues concerning the properties
of the price change series and the relationship between the price
change series and volume. Some issues pertain to the predictability
of price changes, the nature of the relationship between price vola-
tility and volume, and the shape characteristics of the probability
density of Ap,. Others concern asymmetry of the conditional variance
function (the leverage effect) and the relationship between the risk
premium and conditional price volatility.

The SNP estimate of the one-step-ahead, bivariate, conditional den-
sity f(Ap, v, | Api_1.16, V,—146) €mbodies the sample information on
these issues. Because the fitted conditional density is a function of
34 variables, it is difficult to describe directly. Our reporting strategy
is to examine features of the density—marginals, low-order moments,
and conditional moment functions—and to interpret these features
in view of the economic issues raised before. Such a reporting strategy
is naturally graphically oriented.

3.1 The conditional density at the mean
Figure 5 shows the bivariate conditional density of (Ap, v,) given
that all lags in the conditioning set are put to their unconditional
means, which is denoted as f(Ap, v, | Ap,_1..6 = Ap, v,_,.6 = D). The
surface plot in the left-hand panel suggests that over most of its
support the fitted density is quite smooth. There is some roughness
as indicated in the contour plot in the right-hand panel. (By rough-
ness we mean oscillations in the fitted density that occur when the
SNP estimator attempts to fit small clumps of isolated data points.)
In this plot, we highlight roughness by choosing contours associated
with very low density values. From this plot, the roughness is seen
to be well out in the tails. All told, the SNP density estimation pro-
cedure achieves a high degree of smoothing of the empirical distri-
bution of price change and volume. We should, however, remain alert
to the roughness in the tails, as it could heavily influence features of
the density that depend strongly on tail behavior.

The marginal conditional density of Ap, given that all lags in the
conditioning set are put to their unconditional means is computed as

pr(Apt | Api—1a6 = ZZ, V146 = D)
= ff(APn U, | Apr_ya6 = A_P, Va6 = D) dv,.
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Figure 5

Surface and contour plots of the fitted conditional density

The left panel displays a surface plot of the fitted bivariate conditional density of (Ap,, v,) with all
conditioning arguments set to the unconditional means. The right-hand panel shows a contour
plot of the same surface in which the heights represented by the contours have been chosen to
highlight small irregularities in extreme tails of the fitted density.

The density is slightly skewed to the left (skewness = —0.57). It
assumes the classic shape for financial data—peaked near zero and
thick in the extreme tails relative to the Gaussian density. The kurtosis
for this density is 4.14, versus 11.22 for the unconditional kurtosis of
the {Ap,} series. Thus, conditioning on past prices and volume removes
much, but not all, of the excess kurtosis.

3.2 Contemporaneous conditional price-volume relationships
The contemporaneous relationships between price change and vol-
ume are revealed by looking at the conditional mean and variances
of Ap, given v, along slices of the bivariate (Ap,, v,) density.

Figure 6 shows the first two moments of Ap, conditional on v,, with
all lagged values of Ap,and v, set to their unconditional means. These
are the mean and variance of a univariate density obtained by slicing
the bivariate density shown in Figure S along a line through (0, v)
parallel to the Ap, axis. The horizontal axis is in standardized units
using the moments of the marginal conditional density of v, £,(v, |
AP,—116 = Ap, v,_1.6 = D). The range of the horizontal axis extends
for three standard deviations on either side of the mean. Outside that
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Figure 6

Contempora price-v relationship .

Dashed line, contemporaneous conditional mean: u,,(v) = &(p,|v, = v, Ap, .. = Bp, Ve = D);
solid line, contemporaneous conditional variance: ¢3,(») = Var(Ap,|v, = v, Ap,_ 116 = AP, V16 =
7). The units of the horizontal axis are conditional standard deviations, VVar(v,|Ap,— 116 = AP, U116
= D) = 0.124, of v, so one unit corresponds to a 12.4% volume movement.

range, the moment functions become oscillatory. We determined that
the estimated moments of Ap, given such large v, were adversely
affected by the roughness seen in the extreme tails in Figure 5 and
were therefore unreliable.

Interestingly, Figure 6 shows that the direction of the daily change
in the stock market is unrelated to contemporaneous volume. The
market is as likely to fall or rise on heavy volume as it is on light
volume, at least over the range of the data in which we can reliably
estimate the contemporaneous conditional moment functions.

On the other hand, volatility is related to contemporaneous volume.
Days with high volume are associated with high price volatility. The
contemporaneous conditional variance function for Ap, shown in Fig-
ure 6 is a nonparametric conditional analogue of the function shown
in Figure 1 of Tauchen and Pitts (1983) for Treasury bill futures. Their
estimate was obtained from a fitted lognormal-normal parametric mix-
ing model that did not take account of conditional heteroskedasticity.
Still, the Tauchen-Pitts plot possesses the same convex shape as the
variance function in Figure 6.

3.3 The conditional moment structure of Ap,

We now examine those features of the density related to the condi-
tional mean and variance properties of Ap, given past Ap,. We are

223



(The Review of Financial Studies /v 5 n 2 1992

101 LY

Koy BP) %% P
30
0 :':"_‘_‘ :.--—_-_ ’-'T‘._-_“?_g- = S 20

10
—104 0

-20 20

8p (Standard Deviation Units)
10 40
M, (®P) 6%, (Bp)

30
0 20
10
-10 v + 0

-20 -10 0 10 20

8p (Standard Deviation Units)
Figure 7

Effects of lagged price movements on Ap,

The top panel shows the relationship between Ap, and Ap,, implicit in the SNP density estimated
from the bivariate price change and volume series. The dashed line with evenly spaced dashes is
the conditional mean function: p,,(8p) = &, | Ap,—y = 8P, Ap,—346 = AP, V1.6 = D); the solid line
is the conditional variance function: 63,(6p) = Var(Ap, | Ap,—, = 8p, Ap,_246 = AP, V_1.16 = D). One
unit along the horizontal axis is the unconditional standard deviation of Ap,_,, VVar(Ap,_,) = 1.15,
which corresponds to a 1.15% price movement. In the top panel, the broken lines are the conditional
mean and variance functions as above but with different conditioning sets. Those with the longer
dash are conditional on Ap,_,.c = Ap + \/Var(Ap,), v,_..c = ¥ + \/Var(v); those with the shorter
dash are conditional on Ap,_,.s = Bp — \/Var(Ap,), v,_,. = ¥ — \/Var(v,). The bottom panel shows
the relationship between Ap, and Ap,_, implicit in the SNP density estimated from the univariate
price change series. The dashed line is the conditional mean function: u,,(8,) = &, | Ap,—, = 0p,
Ap,—216 = Ap); the solid line is the conditional variance function: ¢3,(3p) = Var(Ap, | Ap,-, = &p,
Ap,_,.6 = Ap). One unit along the horizontal axis is the unconditional standard deviation of Ap,_,,
VVar(Ap,_,) = 1.15, which corresponds to a 1.15% price movement.
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mainly interested in the symmetry of the conditional variance func-
tion, as this relates to the leverage effect discussed in the introduction.
In view of our previous findings regarding the contemporaneous vol-
ume-volatility relationship, we are also interested in understanding
how lagged volume modifies the conditional variance function.

The top panel of Figure 7 shows the conditional mean and variance
of Ap, as a function of Ap,_,, expressed in standardized units for three
dlﬂFerent condmomng sets: {Ap,_,16 = AP, U,_1.16 = D}, {AP,_ 216 = AD

V Var(Ap,j, Vim1a6= 0 — VVar(v)}, and {Ap, 6= Ap +V Var(Apj ,
Ui = 0 + \/Var(v, }. The bottom panel of Figure 7 shows the
conditional mean and variance of Ap,as a function of Ap,_,,  expressed
in standardized umts for the conditioning set {Ap,_,,s = Ap}. Since
s, = 0 and a,, = 1.15, the range along the horizontal axis of the top
panel, and of the bottom panel, corresponds to Ap,_, over an interval
slightly wider than —15 percent to 15 percent.

The conditional mean functions shown in Figure 7 are generally
quite flat and thereby reveal very little dependence of Ap, on Ap,_,.
Though the slope is a bit steeper in the bottom panel, it still suggests
that a 15 percent increase in the market is followed on average by
onlyabouta 2.5 percent increase. This weak dependence is consistent
with a linear analysis: the first-order autocorrelation of the adjusted
and unadjusted series are .129 and .065, respectively. A low level of
autocorrelation is to be expected in a value-weighted index such as
the S&P composite index. For example, the weekly return on the
CRSP value-weighted index computed by McCulloch and Rossi (1991)
has a first-order autocorrelation of .089 over the period from 1963 to
1987; we might expect the autocorrelation coefficient of the S&P index
to be higher due to the thinner trading in the period 1928 to 1964
[see Lo and MacKinlay (1988) for a discussion of the effects of non-
synchronous trading]. Finally, the top panel suggests a mild inter-
action between volume and this limited short-term predictability, at
least in the neighborhood of the origin. This is consistent with Camp-
bell, Grossman, and Wang (1991) who report evidence that, for the
1962-1987 period, the positive autocorrelation becomes stronger when
the previous day’s volume is high.

The conditional variance functions shown in the top panel of Figure
7 clearly display the sort of conditional heteroskedasticity found in
many ARCH applications. As above, the conditional variance functions
are shown for three conditioning sets: {Ap,_,.s = Ap, U,_146 = D},
{Ap: 216 = Ap — \/Var(Ap), v, 1.6 = D — \/Var(v,)}, and {Ap,_ .6 =
Ap +\/Var(Ap), v, 1,6 = U+ \/Var()}. Even though the fitted SNP
model does not impose symmetry on the conditional variance func-
tion as the traditional ARCH and GARCH models do, the estimated
functions are symmetric. The effect of conditioning on either {Ap,_, ¢
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=Ap — VVar@Ap,), vi1as = o — V/Var(v)} or {Api_si6 = Ap +
\V/Var(Apy), vp11s = D + \/Var(v,)} rather than {Ap, .15 = AP, V16
= 7} is to increase variance over all; symmetry is not affected.

In order to insure that these findings are indeed representative of
the data and not an artifact of the SNP approach, we used kernel
methods [Robinson (1983)] to estimate the conditional variance and
mean functions (plots not shown). The kernel-based functions were
examined for Ap,_, from —5 SD through +5 SD. Beyond that range,
the data are exceedingly sparse and the method of local averaging
used by the kernel estimator gives estimates of the conditional moment
functions that are so variable as to be of little use. The kernel-based
conditional mean function plots as a horizontal line, as does the SNP.
The kernel-based conditional variance function agrees with the SNP
function from about —2 SD through +2 SD, and then turns up sharply
at —5 SD and again at +5 SD; these upturns are radical by comparison
with the SNP function. Nonetheless, the kernel-based conditional
variance function is symmetric.

The evidence on symmetry of the conditional variance function is
interesting in view of the findings of Nelson (1989, 1991), Pagan and
Schwert (1990), and others who find evidence of asymmetry in the
conditional variance function.

This asymmetry in the variance function has been dubbed the lev-
erage effect after early work by Black (1976) and Christie (1982), in
which changes in the equity value of a firm affect the riskiness of the
firm’s equity. However, tests of the leverage hypothesis by French,
Schwert, and Stambaugh (1987) and by Schwert (1989, 1990b) sug-
gest that financial leverage could not be responsible for asymmetries
of the magnitude reported in the literature (cf. Nelson, 1989, 1991).
Nonetheless, common parlance is leverage effect in reference to the
asymmetry.

The chief difference between our estimation and that of these other
articles is that we model a joint price and volume process, while the
other studies examine a marginal price process. This difference sug-
gests that introducing volume into the analysis is responsible for
producing the symmetry seen in the top panel of Figure 7.

We can confirm this conjecture. When we fit the univariate price
change series {Ap,} alone, we also uncover evidence of asymmetry.
The fact that we can reproduce the findings of others using only the
price data is seen in the bottom panel of Figure 7. Analogously to
the top panel of Figure 7, the bottom panel of Figure 7 shows the
conditional mean and variance of Ap, as a function of Ap,_, computed
from the preferred SNP fit to the univariate price change process {Ap;}.
(This estimation is summarized in the discussion of Table 4.) The
conditional variance function is higher on the left than on the right,
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Volatility scatterplot

A scatterplot of |Ap,| versus Ap,_,. Both axes are measured in units of unconditional standard
deviation of Ap, \/Var(Ap,) = 1.15; one standard deviation of Ap, equals 1.15. The dashed box
shows trimming at five standard deviations. The box illustrates the trimming strategy utilized for
computing Table 6; points outside the box are excluded in a regression with cutoff point c.

which is consistent with previous findings on leverage. The kernel-
based estimate corroborates this finding. It is roughly as above: the
kernel-based conditional variance function agrees with the SNP esti-
mate over about —2 SD through +2 SD of Ap,_, and then shoots up
sharply on both sides. The asymmetry takes the form of shooting up
on the left at about —5 SD and on the right at about +6 SD or +7 SD.

To examine the robustness of these findings across subperiods, we
repeated this analysis for the SNP fits described in Section 2.3. That
is, for the three bivariate fits, we regenerated the plots (conditioned
on {Ap,_,16 = Ap, v,_1,6 = D}) shown in the top panel of Figure 7,
and for the three univariate fits, the plots shown in the bottom panel
of Figure 7. All plots (not shown) except one show an attenuated
asymmetry and are fairly similar to the top panel of Figure 7. The
exception was the univariate fit to the middle subperiod, which showed
slightly more asymmetry than the bottom panel of Figure 7.

Figure 8 helps reconcile this disparate evidence on the character-
istics of the conditional variance function that is obtained from the
bivariate and univariate estimations. Figure 8 is a scatterplot of |Ap,|
versus Ap,_,, which is the cloud of points that the various models are
attempting to fit. Overall, the cloud appears to be asymmetric and
shows a leverage effect, in the sense of being oriented toward the
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northwest instead of toward the vertical. This visual interpretation,
though, also appears to be heavily influenced by a few extreme events,
as the central part of the cloud appears more symmetric.

In order to refine these visual impressions, we fit

[Ap,| =B, + B:1Ap,—,| + ﬁz[Apr—1I(Apr—1 < 0)] + u,

to the data in Figure 8 by least squares at various levels of trimming.
This regression passes a V-shaped line through the point cloud shown
in Figure 8. The parameter 8, is the asymmetry coefficient: the more
negative is 3,, the steeper is the slope on the left half of the V. The
trimming is along both the horizontal and vertical axes of Figure 8.
For example, trimming at 2 SD implies that observations with either
|Ap,|/1.15338 > 2, or |Ap,_,|/1.15338 > 2, or both are excluded
from the regression. In these computations and the regressions, Ap,
and Ap,_, are centered about their mean which is 0.016338. The
dashed box in Figure 8 shows the trimming at 5 SD.

In order to be sure that findings from these regressions are also
features of the fitted SNP model, we fit the same regressions to a
simulated realization from the bivariate SNP fit. The 27 actual obser-
vations from January 4 to February 3, 1928, were used as the initial
conditions of the simulation, and the realization was run out to the
same length as the original data. Methods for simulating from an SNP
density are described in Gallant and Tauchen (1992).

We also repeated the analysis for three subperiods obtained by
dividing the data in thirds. As noted in Section 2.3, the first and last
periods are relatively volatile, containing the crashes of 1929 and
1987, respectively, while the middle period is relatively quiescent.
The asymmetry coefficients for all regressions are shown in Table 6.
In each data set—full, simulated, and subperiod—16 initial obser-
vations were set aside for lags and not used. The trimming strategy
could potentially reduce variation in the independent variable, mak-
ing it difficult to precisely estimate the asymmetry coefficients. The
standard errors reported in Table 6 relate to this concern; they are
indicators of the relative precision of the asymmetry coefficient due
to the variability of the right-hand side variable.

The main conclusion from Table 6 is that asymmetry of the uni-
variate conditional variance function is a feature of the tail area of
the data. Asymmetry sets in somewhere between 2 SD and 3 SD out
from the center of the point cloud shown in Figure 8 and is not found
in the central portion. The standard errors are remarkably stable,
which indicates that the results are not just due to adding progres-
sively more extreme observations along the horizontal axis. The
regressions on the simulated data indicate that this finding is a feature
of the SNP fit as well. The subperiod analysis indicates that asymmetry
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Table 6
Asymmetry coefficients

Cutoff ¢ in SDs of Ap,
(Ap, Ap,-,) is included if both coordinates are less than ¢

1/2 1 2 3 4 5 e}

Adjusted data, January 4, 1928 to December 31, 1987

Asymmetry coeff. —-0.008 —0.006 —0.052 —0.070 —0.092 —0.095 —0.093

SE 0.016 0.011 0.010 0.010 0.010 0.011 0.011

Sample size 4,140 9,855 14,640 15,689 15,959 16,049 16,111
Simulated data, January 4, 1928 to December 31, 1987

Asymmetry coeff. 0.003 —0.013 —0.042 —0.053 —0.059 —0.058 —0.062

SE 0.017 0.012 0.010 0.010 0.010 0.010 0.011

Sample size 3,621 8,933 14,149 15,618 15,973 16,058 16,111
Adjusted data, January 4, 1928 to January 5, 1946

Asymmetry coeff. 0.020 —0.014 —0.048 —0.059 —0.071 —0.083 —0.066

SE 0.028 0.020 0.018 0.018 0.019 0.019 0.019

Sample size 1,387 3,119 4,681 5,138 5,269 5,317 5,359
Adjusted data, January 17, 1946 to August 5, 1966

Asymmetry coeff. -0.034 —0.019 -0.083 -0.114 —0.156 —0.145 —0.160

SE 0.027 0.019 0.017 0.018 0.018 0.018 0.019

Sample size 1,529 3,539 5,035 5,254 5,324 5,350 5,359
Adjusted data, August 8, 1966 to December 31, 1987

Asymmetry coeff. —0.012 0.015 —0.027 —0.041 —0.053 —0.057 —0.064

SE 0.030 0.020 0.017 0.017 0.018 0.018 0.018

Sample size 1,214 3,182 4,906 5,269 5,334 5,349 5,361

The table shows the dependence of the asymmetry of the conditional variance function on outlying
observations. The table reports the coefficient 8, in the regression |Ap,| = B, + B,|Ap.—,| +
B,[Ap.— I(Ap,—, < 0)] + u, fitted to subregions of the point cloud shown in Figure 8; the subregion
within the box in Figure 8 corresponds to a cutoff of 5 SDs of Ap,. The regression passes a V-shaped
line through the point cloud in Figure 8; the more negative is 8,, the steeper is the slope on the
left half of the V.

is much more pronounced in the middle, quiescent period than in
the more volatile first and third periods. To examine the role of
volume we fit

[Ap.] =By + BilAp—y| + (a0 + a0, AP, I(Ap,—, < 0) + .
This is the same V-shaped regression as above, except that the asym-
metry coefficient is now a linear function of volume:

B, =a, + ayv,_;.
As above, the equation is estimated by least squares; the estimated
values of «, and a, will be different in each subperiod. Table 7 shows
the asymmetry coefficients evaluated at volumes

v,_; = 8.32857 + 0.42745-1, i=—-2,—-10,1,2,

for each of the data sets described above—full, simulated, and sub-
period.

The most striking finding from Table 7 is the interaction between
volume and the asymmetry coefficient. Conditional on mean volume,
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Table 7
Asy try coefficients for various values of volume

Volume, in SDs from the mean

-2 -1 0 1 2

Adjusted data, January 4, 1928 to December 31, 1987

Asymmetry coeff. 0.046 —0.008 —0.061 —0.115 —0.168

SE 0.020 0.015 0.011 0.011 0.015
Simulated data, January 4, 1928 to December 31, 1987

Asymmetry coeff. —0.025 —0.041 —0.057 —0.073 —0.089

SE 0.019 0.013 0.011 0.014 0.020
Adjusted data, January 4, 1928 to January 5, 1946

Asymmetry coeff. 0.116 0.043 —0.029 —0.102 —0.174

SE 0.038 0.028 0.020 0.021 0.029
Adjusted data, January 17, 1946 to August 5, 1966

Asymmetry coeff. 0.032 —0.042 —0.116 —0.190 —0.264

SE 0.039 0.028 0.020 0.019 0.026
Adjusted data, August 8, 1966 to December 31, 1987

Asymmetry coeff. 0.030 —0.004 —0.038 —0.073 —0.107

SE 0.030 0.023 0.019 0.019 0.023

The table shows the dependence of the asymmetry of the conditional variance function volume.
Reported is the coefficient 8, = a, + a,v,_, at v,_, = 8.32857 + 0.42745-ifor i= -2, —1, 0, 1, 2,
where a, and «, are from the regression |Ap,| = B, + B8,|Ap,-,| + [a; + a,0,,)[Ap, . 1(Ap,, < 0)]
+ u, fitted to the point cloud shown in Figure 8. The regression passes a V-shaped line through
the point cloud in Figure 8, holding v,_, fixed; the more negative is 8,, the steeper is the slope on
the left half of the V.

the asymmetry is rather mild in the full sample, the simulated sample,
and in the first and third subperiods. On the other hand, conditional
on volume being 2 SD above its mean, the asymmetry coefficient is
considerably more negative across all data sets. In other words, large
price changes accompanied by high volume can be expected to have
an asymmetric effect on subsequent volatility. Large price changes on
modest volume, however, can be expected to have a much more
symmetric effect on volatility. While large price changes are normally
associated with higher volume, Figure 3 shows that there are still
numerous instances over the 1928-1987 period where the market
took large swings on average volume.

A second finding from Table 7 is the diminished magnitude of the
asymmetry coefficient at all volume classes obtained using the sim-
ulated data from the SNP density. This attenuation is in accordance
with the contrasts between top and bottom panels of Figure 7. The
explanation is that observations corresponding to large price changes
appear more extreme when considered relative to the marginal dis-
tribution of the price change series alone than when considered
relative to the bivariate price change and volume distribution. This
is perhaps apparent from Figure 3, where outlying data points do not
appear so extreme relative to the main bivariate cloud. Because asym-
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Figure 9

95% sup-norm confidence band about the bivariate SNP estimate of the conditional vari-
ance of Ap, given Ap,_, _

The thick curve is conditional variance function: ¢%,(8p) = var(Ap, | Ap.—, = 8D, AP_216 = BD, V1116
= 7). One unit along the horizontal axis is the standard deviation of Ap,_,, VVar(ap,-) = 1.15,
which corresponds to a 1.15% price movement. The confidence bands are 95% sup-norm bands
over the specified region, obtained by repeating the SNP estimation over 500 simulated data sets,
each of length 16,127.

metry is a tail phenomenon, it is thereby less evident in fits to the
bivariate data set where the influence of outlying observations is
reduced. This view of estimated asymmetry as a tail-area phenomenon
is bolstered by the fact that the finding of asymmetry can be sensitive
to specification. It disappears, for instance, after introducing addi-
tional variables such as nominal interest rates [see Glosten, Jagan-
nathan, and Runkle (1989) and Gallant and Tauchen (1992)], or 1987
crash dummies [French (1990)].

The precision of our estimate of the conditional variance function
can be assessed from the 95 percent, sup-norm confidence band on
the bivariate SNP estimate of the conditional variance function shown
in Figure 9. The band is approximately =2 Var(Ap,) = *£2(1.15%)>
units about the conditional variance function. Over the interval shown
on the horizontal axis, the band appears tight relative to the curvature
of the conditional variance function, which suggests that the estimate
is precise.

The band is constructed by simulating 500 independent realizations
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Figure 10
Effects of lagged price mov s on vol

Dashed line, conditional mean function: u,(6p) = &(v, | Ap,_, = 8p, AP,_216 = Ap, U116 = D); solid

line, conditional variance function: 62(8p) = Var(v, | Ap,_, = 6p, AP,_2.6 = AP, Vi_ya = D). One
unit along the horizontal axis is the standard deviation of Ap,_,, VVar(Ap,_,; = 1.15, which cor-
responds to a 1.15% price movement.

from the bivariate SNP fit using the 27 actual observations from January
4 to February 3, 1928, as the initial conditions, and running each
realization out to the same length as the original data. The bivariate
SNP model is refit to each of these realizations, and the conditional
variance function of each refit is computed. In these refits, we use
our preferred specification; we do not conduct a specification search.
The reason is that the fitting process itself smooths the data so there
is a tendency for a realization simulated from a fit to be more like a
stationary, damped process than the original data. This biases a spec-
ification search in a refit toward a more parsimonious specification.
A 95 percent bootstrapped, sup-norm confidence band is computed
by finding a band around the conditional variance function shown in
the top panel of Figure 7 that is just wide enough to contain 95 percent
of the conditional variance functions computed from the refits.

3.4 Dynamic price-volume relationships

We examine the effect that price volatility has on volume in Figure
10. The figure displays the conditional mean and variance functions
of v, as a function of Ap,_,, in standardized units. The figure suggests
that large price changes lead to increases in both the mean and
variability of the volume. Both functions are fairly symmetric, indi-
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cating that market declines have the same effect on subsequent vol-
ume as market increases. Interestingly, a simple scatterplot (not
shown) of v,against Ap,_, also indicates that high v, is associated with
large movements in either direction in Ap,_,. Though a scatterplot is
useful for confirmation, it does not properly account for all of the
conditional heterogeneity in the data. It is thereby not useful for
forecasting or formal inference.

One can examine the relationship in the other direction by looking
at the effect that lagged volume has on current price changes and
volatility. Plots against lagged volume of the conditional mean func-
tion, ”'Ap(V) = 8P, | vy =V, AP 146 = E: U—zn6 = D), and ﬂe
conditional variance function ¢3,(») = Var(v, | v,-, =, Ap,_116 = AP,
U,—16 = D) (not shown) indicate that abnormally high and low vol-
umes are associated with slightly increased future price volatility (a
tenth of the movement shown in Figure 7) when Ap = 0, while the
conditional mean of price change is constant across a very wide range
of lagged volume levels. This finding is in agreement with the plots
of the conditional variance function in the top panel of Figure 7,
which suggested that movements in lagged volume, coupled with a
similar movement in lagged price, increases volatility.

3.5 The risk premium and conditional price volatility

The final feature of the density we examine is the relationship between
the conditional mean and variance of Ap,. Motivating this effort is
recent empirical work aimed at measuring the relationship between
risk premiums on financial assets and the conditional second moments
of returns. Bollerslev, Engle, and Wooldridge (1988), French, Schwert,
and Stambaugh (1987), and Nelson (1989, 1991) use ARCH-in-mean
specifications to relate risk premiums to conditional second moments.
Much of this effort is directed toward measurement of a hypothesized
monotone increasing relationship between the risk premium on the
market return and its own conditional variance.

The existence of such a relationship, though, has been the subject
of debate on both empirical grounds (Pagan and Hong, 1991) and
theoretical grounds (Backus and Gregory, 1988). This debate is per-
haps not surprising given that, in general, equilibrium asset-pricing
models relate the conditional means of asset returns to generalized
notions of a marginal rate of substitution (Hansen and Jagannathan,
1991), and not directly to their own internal second-moment struc-
ture. Under special assumptions (Merton, 1973), there will be a direct
link between the risk premium and the conditional variance. Backus
and Gregory (1988) and Tauchen and Hussey (1991) study the
reduced-form relationships between the risk premium and the con-
ditional variance that emerge from more general asset-pricing models.
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They find that under the familiar CRR (power) utility function, the
direction of the relationship between the risk premium and condi-
tional variance can go either way, as it is sensitive to assumptions
regarding the stochastic properties of the consumption endowment.
At the same time, Tauchen and Hussey (1991) find that the relation-
ship is monotone and increasing when the law of motion for the
consumption endowment is calibrated in a realistic manner from time
series on annual consumption data. Kandel and Stambaugh (1990)
find that the relationship is negative for one-quarter returns but pos-
itive for five-year returns.

This discussion makes clear that the characteristics of the relation-
ship between the risk premium and conditional variance have not
been fully determined, either theoretically or empirically. More evi-
dence is warranted.

The evidence from our estimated conditional densities is sum-
marized in Figure 11. The figure consists of two scatterplots of the
pairs (conditional mean of price change, conditional standard devi-
ation) computed from the fitted conditional densities, each evaluated
atevery sample point. The top panel of Figure 11 shows the scatterplot
for the conditional moments derived from the univariate fit, while
the bottom panel shows the scatterplot for the moments from the
bivariate fit. The dashed curve is a smoothed estimate of the regression
function obtained using Cleveland’s (1979) locally weighted, robust,
regression procedure. For the univariate fit, the curve shows a slight
downward slope. However, the curve is not monotone decreasing and
appears to be influenced by several points in the 4 to 6 o range. The
negative slope is similar to the findings of Pagan and Hong (1991)
and Nelson (1989, 1991). In contrast to the results from the univariate
fit, the bivariate fit shows an increasing relationship between the
conditional standard deviation and the mean; the slope of the curve
at ¢ = 2.0 is 0.0563. The finding of an increasing relationship is
consistent with the French, Schwert, and Stambaugh (1987) finding
regarding the relationship between predictable volatility and the con-
ditional mean.

When we divide the data into three equal subperiods and use the
complete sample fits to compute conditional moments, the monotone
increasing risk premium for the bivariate fit holds up in the middle
and last subperiods (plots not shown). In the middle, “quiet” period
of the data, the difference between the univariate and bivariate fits is
most apparent. In the first period, the curves are much flatter in both
the univariate and bivariate plots and do not deviate appreciably from
horizontal lines.

We also repeated the subperiod analysis using the within-subperiod
fits described in Section 2.3 instead of the complete sample fits as
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Figure 11

Conditional means versus conditional variances

Both panels plot fitted conditional means versus fitted conditional variances. The top panel uses
the univariate fitted SNP to compute pairs of fitted conditional means and variances for each
timepoint in the data: i, = &(Ap, | Ap,_,.) versus ¢, = \/Var(Ap, | Ap,_1.¢)- The bottom panel uses
the bivariate fitted SNP model to compute conditional means and variances: g, = &(Ap, | Ap,— 1.6
V116) Versus ¢, = \/Var(Ap, | Ap,_.6, Ui-1m6)- The dotted line in both panels represents a non-
parametric estimate of the regression function relating 4, to d,.

above. The univariate fit is somewhat unstable: decreasing in the first
subperiod, increasing in the second, and flat in the third. The bivariate
fit is decreasing in the first subperiod, and increasing in the other two
subperiods. All told, our findings suggest, with the possible exception
of the subperiod containing the Great Depression, that after condi-
tioning on lagged volume there is a positive relationship between
the risk premium and the conditional variance of the return.

Two caveats are in order regarding this discussion of the risk pre-
mium. First, the mean price change is not expressed as a return in
excess of the return on a risk-free asset, which is correct theoretically
and also nets out inflation. Although using excess returns will not
change the shape of the risk premium function, it may alter the
magnitude of the premium. Second, we should note that our measure
of return is the nominal, daily, percentage, capital gain on the S&P
Composite Index. Thus, it excludes the dividend component of the
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total return. The data required to make these adjustments on a daily
basis are unavailable over the long time period of our sample. Still,
one can plausibly argue that, on a daily basis, the capital gain com-
ponent dominates other components. Nelson (1991) presents some
empirical evidence on the extent to which the capital gain over-
whelmingly dominates. Thus, we believe that our findings from Figure
11 are robust with respect to these adjustments, if they could be made.

Summary and Conclusion

The main objective has been to investigate the characteristics of price
and volume movements on the stock market. Motivating this effort
were the recent events on the stock market, together with a desire to
provide a comprehensive set of empirical regularities that economic
models of financial trading will ultimately need to confront. We orga-
nized the effort around the tasks of estimating and interpreting the
conditional one-step-ahead density of joint price change and volume
process. For a stationary process, the one-step-ahead density is a time-
invariant population statistic that subsumes all probabilistic infor-
mation about the process. In particular, issues concerning predict-
ability, volatility, and other conditional moment relationships can be
addressed by examining the conditional density. Indeed, such issues
seem more naturally thought of in terms of features of the population
conditional density, and not in terms of the signs and magnitudes of
specific parameters.

The raw S&P price change and NYSE aggregate volume data display
systematic calendar and trend effects in both mean and variance, and
thus are not stationary. Prior to estimation, we undertook an extensive
effort to remove these systematic effects. This effort resulted in series
on adjusted logarithmic price changes and adjusted log volume that
appear to be reasonably modeled as jointly stationary. All subsequent
statements concerning the price changes and volume pertain to these
adjusted series.

The SNP estimation technique entails fitting a series expansion to
the bivariate conditional density. The leading term of the expansion
is a VAR model with an ARCH-like error process; higher-order terms
accommodate departures from that model. There is substantial evi-
dence that the higher-order terms are needed to capture all of the
complex structure of the data. These complexities include, among
other things, the complicated structure of the bivariate conditional
variance function, the thick-tailed error density characteristic of finan-
cial price change data, the nonlinear interactions between volume
and prices, and the temporal dependence of the volume series.
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Examination of the fitted conditional density reveals four major
findings regarding the interactions between stock prices and volume.

4.1 Contemporaneous volume-volatility correlation

The daily trading volume is positively and nonlinearly related to the
magnitude of the daily price change. This association is a character-
istic of both the unconditional distribution of price changes and
volume and the conditional distribution given past price changes and
volume constant.

The finding of an unconditional volume-volatility relationship is
consistent with many other studies [see Tauchen and Pitts (1983),
Karpoff (1987)], though it was obtained with a rather different data
set. We use a very long time series on changes in a marketwide index
and overall volume, while other studies almost exclusively examine
price changes and volume for individual financial assets.

The finding of a conditional volume-volatility relationship is more
interesting. It means that the volume-volatility association is still
observable after taking account of nonnormalities, stochastic volatil-
ity, and other forms of conditional heterogeneity. The finding extends
other recent work on volume and volatility. Using daily individual
security data (1981-1983), Lamoureux and Lastrapes (1991) find a
positive conditional volume-volatility relationship in models with
Gaussian errors and GARCH-type volatility specifications. Using
monthly measures (1885-1987), Schwert (1989) finds a positive rela-
tionship in linear Koyck distributed lag regression of estimated vol-
atility on current and lagged volume growth.

4.2 Large price movements associated with higher subsequent
volume

Price changes lead to volume movements. The effect is fairly sym-
metric, with large price declines having nearly the same impact on
subsequent volume as large price increases.

4.3 Volume-leverage interaction

If volume is excluded from the analysis, then the conditional variance
function of the price change given the lagged price change is found
to be symmetric over most of the range of the data, but asymmetric
in the extreme tails (outermost 10 percent of the data). This finding
emerges from the SNP fit of the conditional density, from kernel-
based estimates of the conditional variance, and from elementary
locally linear fits to the data cloud. In addition, it holds up across
each of three equal-size partitions of the 1928-1987 sample period.
Overall, the finding suggests that extreme tail behavior accounts for
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previous findings of a leverage effect using parametric models fitted
to univariate price data.

When volume is introduced into the analysis, it interacts with the
asymmetry in interesting ways. The asymmetric response of volatility
is found to be mainly a feature of large price movements accompanied
by high volume. It is much less a feature of price movements of the
same magnitude on average volume. In addition, estimates of the
conditional variance function (either SNP or kernel-based) show
attenuated asymmetry at all levels of volume. Attenuation occurs
because extreme events appear less outlying relative to the bivariate
distribution than do the same events relative to the univariate distri-
bution of price changes alone. With the relative influence of outlying
events reduced, the estimators thereby detect less asymmetry. Alto-
gether, the manner in which volume interacts with asymmetry is
consistent with the latter being a tail phenomenon.

4.4 Positive conditional risk-return relation after conditioning
on lagged volume
For bivariate price-volume estimation, there is evidence for a positive
association between the conditional mean and the conditional vari-
ance of daily stock returns. The finding is useful in view of the fact
that equilibrium asset-pricing theory is silent on the manner in which
the conditional first two moments of the market return co-vary in
response to shocks to the economy. As we discussed above, in some
special models the conditional mean and variance are positively
related, which is consistent with the intuitive notion that stocks should
command a higher return in periods of high volatility. In general,
however, the direction of the relationship is indeterminate, as it is
sensitive to the specification of the dynamics of the consumption
endowment [Backus and Gregory (1988), Tauchen and Hussey (1991)].
The finding of a positive conditional mean-variance relationship
is also interesting in view of other empirical work on this issue. As
we note above, some studies using univariate price data find a negative
relationship between the conditional mean and variance [Pagan and
Hong (1991), Nelson (1989, 1991)]. On the other hand, French,
Schwert, and Stambaugh (1987) find evidence for a positive relation-
ship between the risk premium and predictable volatility. Using con-
ditional moments from our univariate estimation, we find a negative
relationship. With volume incorporated into the analysis, we find a
positive relationship between the conditional mean and variance.
In closing, we note that there are models that can account for
various subsets of the known characteristics of financial prices and
volume, but no single model seems capable of explaining all of them
jointly. For instance, familiar representative agent asset-pricing mod-
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els can produce persistent volatility and leptokurtic price change
densities, but are silent on the contemporaneous relationship between
price and volume as well as price-volume dynamics. For the effect
of volume on the risk-return relation, representative agent models
suggest that volume should be incorporated into the information sets,
but fail to explain why volume might affect volatility. On the other
hand, the random mixing model of Clark (1973) and its extensions
[Tauchen and Pitts (1983), Harris (1986)] can exhibit persistent vol-
atility and accommodate the observed contemporaneous and dynamic
price-volume relationship, but have no direct bearing on the atten-
uation of leverage effects or the risk-return relation. Furthermore, as
we noted in the introduction, these mixing models are closer to being
statistical models than economic models. An interesting theoretical
challenge is to develop a complete equilibrium model that can jointly
account for all of the above-discussed characteristics.
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