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Markov Switching in GARCH Processes and
Mean-Reverting Stock-Market Volatility

Michael J. DUEKER

Federal Reserve Bank of St. Louis, St. Louis, MO 63166

This article introduces four models of conditional heteroscedasticity that contain Markov-switching
parameters to examine their multiperiod stock-market volatility forecasts as predictions of options-
implied volatilities. The volatility model that best predicts the behavior of the options-implied
volatilities allows the Student-t degrees-of-freedom parameter to switch such that the conditional
variance and kurtosis are subject to discrete shifts. The half-life of the most leptokurtic state is
estimated to be a week, so expected market volatility reverts to near-normal levels fairly quickly

following a spike.

KEY WORDS: Asset-price volatility; Conditional heteroscedasticity; Kurtosis.

Volatility clustering is a well-documented feature of fi-
nancial rates of return: Price changes that are large in mag-
nitude tend to occur in bunches rather than with equal
spacing. A natural question is how long financial mar-
kets will remain volatile because volatility forecasts are
central to calculating optimal hedging ratios and options
prices. Indeed we can study the behavior of options-
implied stock-market volatilities to find stylized facts that
parametric volatility models should aim to capture. Two
stylized facts that conventional volatility models, notably
generalized autoregressive conditional heteroscedasticity
[GARCH, Bollerslev (1986)], find hard to reconcile are that
(1) conditional volatility can increase substantially in a short
amount of time at the onset of a turbulent period and (2) the
rate of mean reversion in stock-market volatility appears to
vary positively and nonlinearly with the level of volatil-
ity. In other words, stock-market volatility does not remain
persistently two to three times above its normal level in the
same way it can persist at 30-40% above normal.

Hamilton and Susmel (1994) and Lamoureux and Las-
trapes (1993) highlighted the forecasting difficulties of
conventional GARCH models by showing that they can
provide worse multiperiod volatility forecasts than constant-
variance models. In particular, multiperiod GARCH fore-
casts of the volatility are too high in a period of above-
normal volatility. Friedman and Laibson (1989) addressed
the forecasting issue by not allowing the conditional vari-
ance in a GARCH model to respond proportionately to
“large” and “small” shocks. In this way, the conditional
variance is restrained from increasing to a level from which
volatility forecasts would be undesirably high. One draw-
back of this approach is that in such a model the condi-
tional volatility might understate the true variance by not
responding sufficiently to large shocks and thereby never
be pressed to display much mean reversion. Thus, such
“threshold”” models do not necessarily address the two styl-
ized facts listed previously—sharp upward jumps in volatil-
ity, followed by fairly rapid reversion to near-normal lev-
els. This article endeavors to craft a volatility model that
can address these two stylized facts from within the class
of GARCH models with Markov-switching parameters.
Markov-switching parameters ought to enable the volatil-
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ity to experience discrete shifts and discrete changes in the
persistence parameters.

Partly in response to Lamoureux and Lastrapes (1990),
who observed that structural breaks in the variance could
account for the high persistence in the estimated conditional
variance, Hamilton and Susmel (1994) and Cai (1994) intro-
duced Markov-switching parameters to autoregressive con-
ditional heteroscedasticity (ARCH) models, and I extend the
approach to GARCH models because the latter are more
flexible and widely used. Section 1 presents tractable meth-
ods of estimating GARCH models with Markov-switching
parameters. Section 2 describes four specifications that
are estimated and provides in-sample and out-of-sample
goodness-of-fit test results. Section 3 uses the estimated
models to generate multiperiod forecasts of stock-market
volatility and compares the forecasts with options-implied
volatilities to see which of the GARCH/Markov-switching
models best explains the two stylized facts described pre-
viously.

GARCH/MARKOV-SWITCHING
VOLATILITY MODELS

Each of the volatility-model specifications will assume
a student-¢ error distribution with n; df in the dependent
variable y:

1.

1)

gs ~ student-t (mean = 0,ny, k), ny > 2. In all of the
models, the conditional mean, ., is allowed to switch ac-
cording to a Markov process governed by a state variable,

Yt = Ht + €,

Se: e = St + /,th(l - St), S; € {0, 1} Vt,
Pr(S; = 0[S;,.1 = 0) = p
PI'(St = 1|St_1 = 1) = q. (2)

The unconditional probability of S; = 0 equals (1 —q)/(2 —
p — q). The variance of ¢, is denoted ¢? and is a func-

tion of n; and h; in all of the models considered such that
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o2 = f(ne, ht), where the specific function f varies across
the models. In all cases, however, h is assumed to be a
GARCH(I, 1) process with Markov-switching parameters
also governed by S so that a general form for A is

ht(Sta St—la B SO) = ’y(St) + a(St—1)5t2—1
+ B8(St-1)he-1(St-1,.-.,80). ()

Note that the presence of lagged h on the right side of (3)
causes the GARCH variable to be a function of the entire
history of the state variable. If h were an ARCH(p) process,
then h would depend only on the p most recent values of the
state variable, as in the work of Cai (1994) and Hamilton
and Susmel (1994). Here I discuss how methods described
by Kim (1994) can be applied to make estimation feasible
for GARCH processes subject to Markov switching.
Clearly it is not practical to examine all of the possible
sequences of past values of the state variable when evaluat-
ing the likelihood function for a sample of more than 1,000
observations because the number of cases to consider ex-
ceeds 1,000 by the time ¢ = 10. Kim (1994) addressed this
problem by introducing a collapsing procedure that greatly
facilitates evaluation of the likelihood function at the cost of
introducing a degree of approximation that does not appear
to distort the calculated likelihood by much. The collaps-
ing procedure, when applied to a GARCH process, calls for
treating the conditional dispersion, h, as a function of at
most the most recent M values of the state variable S. For
the filtering to be accurate, Kim noted that, when A is p-
order autoregressive, then M should be at least p + 1. In the
GARCH(I, 1) case, p = 1, so we would have to keep track
of M? or four cases, based on the two most recent values
of a binary state variable. Thus, h; is treated as a function
of only S; and S,_: h{" =k, (S; =4, 81 = j).
Denoting ¢; as the information available through time ¢,
I keep the number of cases to four by integrating out S;_;
before plugging lagged h into the GARCH equation:

1
h =3 Pr(Seer = ISt = i, o) h. 4)
j=0
This method of collapsing of hﬁi’j ) onto hgi) at every ob-
servation gives us a tractable GARCH formula, which is
approximately equal to the exact GARCH equation from
Equation (3):

R =y (8, = i) + a (Semy = 7)(e)))?

+ B (See1 = )R (5)

Note that the collapsing procedure integrates out the first
lag of the state variable, S;_;, from the GARCH function,
hs, at the right point in the filtering process to prevent the
conditional density from becoming a function of a growing
number of past values of the state variable.

From this general framework, I choose specifications that
differ according to the parameters that switch and the re-
lationship between the GARCH process, h, and the vari-
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ance o2. In several specifications, the GARCH processes
are functions of lagged values of the state variable but not
the contemporaneous value, S;. For these, I treat h; as a
function of only S;_;, so I only need to keep track of two
cases: h¥) = h (S,_; = j). Furthermore, after integrating
out S;_;1, I am left with a scalar in the collapsing process:

by = Pr(Si—1 = 0|p)h{” + Pr(S,_1 = 1| )hY.  (6)

A tractable GARCH equation is then an even simpler ver-
sion of Equation (5):

B =+ a (i1 = 5)(e))? + B (Si-t = Dhe-r. ()

Another feature of this GARCH/Markov-switching
framework is that the state variable implies a connection
between the mean stock return and the variance and pos-
sibly kurtosis. If the mean stock return is lower in the
high-volatility state, then the model can explain negatively
skewed distributions, both unconditional and conditional on
available information. The student-¢ distributions have zero
skewness only when conditional on particular values of the
state variables, which are unobservable.

2. FOUR SPECIFICATIONS AND
ESTIMATION RESULTS

The first specification is a GARCH analog to Cai’s (1994)
ARCH model with Markov switching in -y. The variance is
assumed to follow a GARCH process so that o2 = h; and
the only parameter in h; subject to Markov switching is ~.
This type of switching is tantamount to allowing shifts in
the unconditional variance because the unconditional vari-
ance of the ordinary, constant-parameter GARCH(1, 1) pro-
cess is 7v/(1 — o — (). For this model, the GARCH variance
takes the form

K = (S, = i) + a(e?)))? + BrY, (8)

with constant o and (5. We denote this model as the
GARCH-UV model for GARCH with switching in the un-
conditional variance. In practice, we parameterize -y(S;) as
g(St)v, where g (S = 1) is normalized to unity.

The second specification is a GARCH analog to Hamilton
and Susmel’s (1994) ARCH model with Markov switching
in a normalization factor g, where the variance o2 = g;h;.
In this case, the GARCH Equation (5) takes the form

hﬁj) =7+ g (5?—)1)2 + [ﬁlt—l’ ©)

(St—1=17)
where v and 8 are constant and g (S = 1) is normalized
to unity. I denote this model as the GARCH-NF model for
GARCH with switching in the normalization factor, g. Note
that in the GARCH-NF model the GARCH process in Equa-
tion (9) is not a function of S;, so estimation is somewhat
simplified.

The third specification is a Markov-switching analog to
Hansen (1994), in which the variance follows a GARCH
process (o7 = h;) and the student-t degrees-of-freedom pa-
rameter is allowed to switch. Hansen (1994) introduced a
model in which the student-t degrees-of-freedom parame-
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ter, n., is allowed to vary over time as a probit-type func-
tion of variables dated up to time ¢t — 1. Because Hansen’s
(1994) specification is not conducive to multiperiod fore-
casting, however, I chose to make n; follow a Markov pro-
cess governed by Si: ny = nS; + np(1 — S;). Although
n; does not enter the GARCH Equation (7) in this specifi-
cation, the GARCH process is still a function of the state
variable because state-switching in the mean implies that ¢
is a function of the state variable:

hg]) ")"i‘a( () ) —|—ﬂiLt_1. (10)

Because the kurtosis of a student-t random variable equals
3(nt — 2)/(n; — 4) and is uniquely determined by n;, we
call this the GARCH-K model for GARCH with switching
in the conditional kurtosis.

The fourth specification is similar to the GARCH-K
model except the variance is assumed to be

0't2 = htnt/(nt - 2) (11)

rather than o? = h,. In this model, the GARCH process
h: scales the variance of ¢, for a given value of the shape
parameter n;. Here it is convenient to define v; = 1/n; so
that (1 — 2v;) = ((ny — 2)/n¢) and the GARCH Equation
(7) becomes

W) =y +a(l - 200) (D)2 + Bher. (12)

I denote this specification as the GARCH-DF model for
GARCH with switching in the degrees-of-freedom param-
eter. As in the GARCH-NF and GARCH-K models, A is a
function of S;_1, but not S;, in the GARCH-DF model. The
GARCH-DF model shares two features with the GARCH-
NF model: The variance is subject to discrete shifts, and the
lagged squared residuals are endogenously downweighted
in states in which o2 /h is large. With the GARCH-K model,
the GARCH-DF model shares the feature of time-varying
conditional kurtosis so that conditional fourth moments are
not assumed to be constant.

I also report results on the usual GARCH(1, 1) model
with Markov switching in the mean and a model of switch-
ing ARCH with a leverage effect (SWARCH-L), as in the
work of Hamilton and Susmel (1994). The SWARCH-L
model has switching in a normalizing factor in the vari-
ance: o = g;hy, where h; follows an ARCH(2) process
with a leverage effect:

(e +8D2y)

h(j)k) — - g’ 2
t g (St—l — ]) t 1)
(k) \2 13
TR ) 09
where Dt({)l is a dummy variable that equals 1 when

€ (St—1 = j)i—1 < 0. The leverage effect posits that neg-
ative stock returns increase debt-to-equity ratios, making
firms riskier initially. Hence the leverage-effect parameter
6 is expected to have a positive sign.

The log-likelihood function for the GARCH-DF model,
for example, is

Journal of Business & Economic Statistics, January 1997

In L = InT(5(n” + 1)) — nT(.5n)

- .5ln(7rn§i)h§j)) - .5(n£i) +1)

x In (1+ h(g, m), (14)

where ¢ € {0,1} corresponds with S; € {0,1},5 € {0,1}
corresponds with S;_; € {0,1}, and T" is the gamma func-
tion. The function maximized is the log of the expected
likelihood or

1
Z In (ZZ Pr(S, = i, 51 =j|sot_1)L§"’j>) (15)

=0 j=0
as in the work of Hamilton (1990).

Estimation Results

The four GARCH/Markov-switching volatility models,
the usual GARCH(1, 1) model, and the SWARCH-L model
are applied to daily percentage changes in the S&P 500 in-
dex from January 6, 1982, to December 31, 1991. Observa-
tions from the post-1991 period are reserved for evaluation
of the out-of-sample fit.

Some interpretation of the parameter estimates in Table
1 follows. The GARCH-DF model shows switching in the
student-t degrees-of-freedom parameter between the values
of 2.64 and 8.28. This implies that conditional fourth mo-
ments do not exist in one state, whereas the conditional kur-
tosis is 3(n —2)/(n—4) = 4.4 in the other state. The weight
given to lagged squared residuals in the GARCH process
is shown to be a(1 — 2v(S;—1)) in Equation (12), and this
weight shifts with the state variable between .009 and .027.
In this way, shocks drawn from the low degree-of-freedom
state do not affect the persistent GARCH dispersion process
proportionately. Most importantly, shifts in the degrees-of-
freedom parameter bring potentially large discrete shifts in
the variance. A shift out of the low degree-of-freedom state
causes the variance to decrease by about 68%, holding the

dispersion constant:
nh
nh—2 _
( . )_ @
nl—2

The unconditional probability of being in the low degree-of-
freedom state is about 10% with a half-life of five trading
days. The unconditional value for the degrees-of-freedom
parameter is about 6.8. The GARCH-DF model also sug-
gests that stock returns are negatively skewed because the
mean stock return is below normal in the high-volatility
state when S; = 0. In fact, all of the models find negative
skewness except the conventional GARCH model.

The GARCH-NF model finds an estimate of the variance
inflation factor g (S = 0) = 12.59 with a large standard
error. The effective sample from which to estimate this pa-
rameter is small because the unconditional probability of
S; = 0 is only about 1%.

The factor g (S = 0) raises -y by a significant multiple of
5.7 in the GARCH-UV model, but the unconditional prob-




Dueker: Markov Switching in GARCH Processes

29

Table 1. GARCH/Markov-Switching Models Applied to Daily Percentage Changes in S&P 500 Index

Parameter GARCH-DF GARCH-NF GARCH-UV GARCH-K GARCH SWARCH-L
Log-likelihood —3294.3 —3294.1 —3292.7 —3295.3 —3301.0 —3311.5
u (St =0) .0107 —1.333 —.0971 .0158 .0542 .0366
(.1431) (1.487) (.1287) (.0219) (.1287) (.0884)

p(St=1) .0619 .0576 .0636 .0803 .0556 .0585
(.0207) (.0164) (.0169) (.0224) (.0890) (.0168)

v (St =0) .3787 .1478 1762 .0931 .1860 .1833
(.0480) (.0209) (.0090) (.0323) (.0195) (.0198)

v (S =1) .1208 1478 1762 .2393 .1860 6= .041
(.0272) (.0209) (.0090) (.0270) (.0195) (.025)

¥ .0105 .0109 .0124 .0233 .0228 6912
(.0035) (.0038) (.0033) (.0066) (.0064) (.0372)

«a .0360 .0334 .0138 .0328 .0344 ay = 1.3E-4
(.0076) (.0060) (.0046) (.0074) (.0077) (.0083)

B .9466 .9537 .9554 9307 .9394 ap = .0192
(.0102) (.0082) (.0090) (.0323) (.0121) (.0139)

g (St =0) n.a. 12.59 5.703 n.a. n.a. 3.782
(6.414) (1.882) n.a. n.a. (.4780)

g (St =1) n.a. 1 1 n.a. n.a. 1
P .8544 7479 .9602 .9978 9144 .9849
(.0961) (.1644) (.0173) (.0021) (.0076)

q .9842 .9980 9950 .9986 .9420 9977
(.0148) (.0017) (.0018) (.0013) (.0012)

NOTE: Standard errors are in parentheses.

ability of being in that state is only 11%. The state with
g (S =1) is extremely persistent with ¢ = .995.

The GARCH-K model estimates that the degrees-of-
freedom parameter switches between 10.7 and 4.2, with an
unconditional value of about 6. Both states are highly per-
sistent with nearly identical transition probabilities. Two
states for the mean stock return are better defined in the
GARCH-K model than in the conventional GARCH model
with switching in the mean. Table 1 shows that in the usual
GARCH(1, 1) model the mean stock return, p, is virtually
identical in both states. Hence the two states are not well
identified and the calculation of standard errors for the tran-
sition probabilities failed.

Using daily data, the weights attached to lagged squared
residuals are not significant in the SWARCH-L model, with
the borderline exception of the leverage-effect parameter, 6.
The normalizing factor, g, is estimated to raise the vari-
ance by a multiple of 3.78 in the high-volatility state,
which has unconditional probability .13. The high degree
of persistence of both states suggests that low- and high-
volatility states constitute regimes, as opposed to short-
lasting episodes. The GARCH-DF model, on the other hand,
finds relatively short-lasting low-degree-of-freedom states.

If we were certain that significant state-switching oc-
curred in the mean, then likelihood ratio tests of state-
switching in the degrees-of-freedom parameters and g
would be appropriate. But, the GARCH model suggests that
switching in the mean cannot be taken for granted, so like-
lihood ratio tests cannot assume that the transition proba-
bilities are identified under the null of no state switching
in v or g. Hansen (1992) discussed simulation methods to
derive critical values for such likelihood ratio tests with
nonstandard distributions. The critical values are compu-
tationally burdensome to calculate, however, so I do not
pursue that strategy here. Instead, I follow Vlaar and Palm

(1993) by using a goodness-of-fit test that is valid for data
that are not identically distributed. I perform the test over
the in-sample period (1982-1991) and an out-of-sample pe-
riod (1992—-September 1994). I divide the observations into
100 groups based on the probability of observing a value
smaller than the actual residual. If the model’s time-varying
density function fits the data well, these probabilities should
be uniformly distributed between 0 and 1. Following Vlaar
and Palm (1993),

T
n; = Z I,
t=1
where

(i—1) .
<
oo < FFEn0) < 155

=0 otherwise.

Iit = 1 lf

(16)

The expected value of the cumulative density function, F,
is taken across the states that might have held at each time.
The goodness-of-fit test statistic equals 100/7T E}g‘;(ni -
T/100)? and is distributed xZ, under the null.

Table 2 provides results from the goodness-of-fit tests.
Only the GARCH-DF model is not rejected on an in-sample
basis, with a .57 probability value. All six models are re-
jected out of sample, however.

To examine the source of failure in models other than
GARCH-DF in the goodness-of-fit test, Figures 1 and 2
plot the distribution of the in-sample observations across
the 100 groups. Figure 1 shows that the GARCH-DF obser-
vations are roughly uniformly distributed across the groups,
whereas the GARCH-NF observations have a hump-shaped
distribution in Figure 2. Too many GARCH-NF residu-
als are near the center of the cumulative density, which
implies that the model’s conditional densities are overly
peaked—that is, are too leptokurtic. By not allowing the
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Table 2. Chi-squared Goodness-of-fit Tests for GARCH/Markov-
Switching Models: In-Sample Period: 1982—1991, Out-of-Sample:
1992—September 1994

Model In-sample Out-of-sample
GARCH-DF 96.65 152.1
(:577) (4.8E-4)
GARCH-NF 193.7 208.1
(.000) (.000)
GARCH-UV 136.6 188.4
(.007) (.000)
GARCH-K 2354 294.3
(.000) (.000)
GARCH 140.0 228.4
(.004) (.000)
SWARCH-L 231.0 307.9
(.000) (.000)

NOTE: Probability values are in parentheses.

conditional kurtosis to change, the GARCH-NF model ap-
parently fits a constant conditional kurtosis that is too high.
If time-varying kurtosis is an important feature of stock
returns, then it worth studying the distribution of the ob-
servations in the GARCH-K model also. Figure 3 shows
that the GARCH-K model also provides conditional den-
sities that are too leptokurtic on average, despite its provi-
sion for time-varying kurtosis. The reason might be that the
GARCH-K model has a very persistent state in which fourth
moments do not exist because ¢ = .9986. It is possible that
the GARCH-K model overstates the persistence of periods
of fat-tailed stock-returns distributions: They might be bet-
ter described as episodes than regimes, as the GARCH-DF
model suggests.

3. PREDICTING OPTIONS-IMPLIED VOLATILITIES

As an economic test of the GARCH/Markov-switching
models, I use them to predict the next day’s opening level of
the volatility index (VIX) market compiled by the Chicago

40

10 20 30 40 50 60 70 80 90

100

Figure 1. Distribution of GARCH-DF Residuals Into 100 Groups
Based on Cumulative Density Function.
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10 20 30 40 50 60 70 80 90

100

Figure 2. Distribution of GARCH-NF Residuals Into 100 Groups
Based on Cumulative Density Function.

Board Options Exchange. The VIX is derived from an
options-pricing model and is not a direct observation of
market expectations. Nevertheless, many financial-market
participants are interested in options-implied volatilities
in their own right. The VIX attempts to represent, as
closely as possible, the implied volatility on a hypothet-
ical at-the-money option on the Standard & Poor (S&P)
100 with 30 calendar days (22 trading days) to expira-
tion. Details on the construction of the VIX from near-
the-money options prices were given by Whaley (1993).
The implied volatility on an option reflects beliefs about
average volatility over the life of the option. Thus, the con-
stant 22-day horizon of the VIX implies that we must use
the GARCH/Markov-switching volatility models to create

45

40+

35+

30

254

10 20 30 40 50 60 70 80 90

100

Figure 3. Distribution of GARCH-K Residuals Into 100 Groups Based
on Cumulative Density Function.
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multiperiod forecasts of volatility for all periods between
one and 22 days ahead. In other words, to predict the VIX
well, the GARCH/Markov-switching models need to pro-
vide good multiperiod forecasts for a full range from 1 to
22 trading days ahead.

Daily data on the VIX were available from 1986-1992.
Because the VIX data are based on the S&P 100 and the
stock-market data are S&P 500 returns, the mean of the
VIX index is slightly higher than the average volatility fore-
cast from the GARCH models. The broader S&P 500 index
is somewhat less volatile than the S&P 100. For this rea-
son, I normalize each volatility measure with its 1986-1992
sample mean. Hence a value of 1.5 means that volatility is
expected to be one-and-a-half times its normal level in the
coming month. Details on the construction of multiperiod
forecasts from the GARCH/Markov-switching models are
in the Appendix.

I use a minimum-forecast-error variance criterion to mea-
sure the closeness of the model-implied and options-implied
monthly volatilities. If I denote the options-implied volatil-
ity as VIX and the monthly average. of the model-predicted
volatilities as &, then the criterion is

> (6 - VIX,).

t=1

M|~

Note that 7; for a Wednesday, for example, is calculated us-
ing information available through Tuesday, whereas VIX; is
the data from Wednesday’s opening quotes. In this sense, I
am using the GARCH/Markov-switching models to predict
the options-implied volatilities.

Table 3 shows that only the GARCH-DF and GARCH-K
models predict the options-implied volatility index better
than the conventional GARCH model and the GARCH-DF
model achieves a notable 14% reduction in the forecast-
error variance.

Figures 4-6 depict the 22-day average volatility forecasts
for all the models and the VIX volatility in the aftermath
of the October 1987 stock-market crash. As described by
Schwert (1990), for several days after October 19, 1987,
options markets became very thin and the options writ-
ten contained extremely large risk premia—that is, implied

Table 3. Predicting Options-Implied Volatility Index With GARCH/
Markov-Switching Models: 1986—1992

Model Forecast-error variance

GARCH-DF .0365
(.86)

GARCH-NF .0548
(1.33)

GARCH-UV .0589
(1.43)

GARCH-K .0399
(.97)

GARCH .0413
(1.00)

SWARCH-L .0956
(2.31)

NOTE: Size of forecast-error variance relative to GARCH model in parentheses.
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VIX

relative to their 1986-92 means
H

Forecasted 30-day average volatilities

J

Oct 12, 87

T T T
Nov 9, 87 Dec 8, 87 Jan 7,88

Figure 4. VIX Options-implied and 3 Model-Implied Volatilities, Au-
tumn 1987.

volatilities. Figures 4-6 show that the VIX reached about
eight times its normal level immediately following the crash
but returned to less than two times normal by the end of
October 1987. The GARCH-DF model best predicts the
VIX throughout November and early December 1987. The
switch to n (S; = 0) = 2.64 led to a downweighting, from
.027 to .009, of the lagged squared residuals in the per-
sistent GARCH process. Furthermore, the conditional vari-
ance temporarily shifted discretely upward for as long as
n (S; = 0) was expected to persist.

The volatility implied by the GARCH-K model in Fig-
ure 4, in contrast, overpredicts the VIX for about six weeks,
beginning at the end of October 1987. The variance in the

o

VIX

relative to their 1986-92 means

Forecasted 30-day average volatilities

T 1 1
Oct 12, 87 Nov 9, 87 Dec 8, 87 Jan 7, 88

Figure 5. VIX Options-Implied and 2 Model-Implied Volatilities, Au-
tumn 1987.
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Figure 6. VIX Options-Implied and Model-Implied Volatilities With
SWARCH, Autumn 1987.

1 1
Nov 9, 87 Jan7,88

GARCH-K model is a GARCH process, so it displays the
same overpersistence that characterizes the conventional
GARCH model, shown in Figure 6. In fact, the forecasts
from the conventional GARCH model and the GARCH-K
model look very similar. The GARCH-NF model in Figure
1, on the other hand, underpredicts volatility following the
crash. The GARCH-NF model quickly switched to the state
in which g (S; = 1) = 12.59, so the squared residuals were
given little weight in the GARCH process and h did not
increase much. The variance 0? = g;h; did increase with
g = 12.59, but the increase was never projected to last long
with p = .75. Consequently, the forecasted average volatil-
ity for the month never increased to more than three times

-
2
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relative to their 1986-92 means

Forecasted 30-day average volatilities

0.5
Sep 28, 89

T T T
Oct 26, 89 Nov 24, 89 Dec 22, 89

Figure 7. VIX Options-Implied and 3 Model-Implied Volatilities, Au-
tumn 1989.
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Forecasted 30-day average volatilities
relative to their 1986-92 means
&

0.5
Sep 28, 89

T T T
Oct 26, 89 Nov 24, 89 Dec 22, 89

Figure 8. VIX Options-Implied and 2 Model-implied Volatilities, Au-
tumn 1989.

the normal level in the GARCH-NF model. In Figure 5,
the GARCH-UYV model badly underpredicts the VIX in late
October 1987 but does fairly well in November and Decem-
ber 1987. The GARCH-UV model estimates a constant and
relatively low weight, «, on the lagged squared residuals in
the GARCH process, so the conditional variance never in-
creases to more than three times normal, in contrast to the
spike in the VIX. In this sense, the GARCH-UV does not
necessarily describe the rate of mean reversion in stock-
market volatility well because it does not capture the initial
volatility spike. In Figure 6, the SWARCH-L model shows
a good deal of persistence but does not put enough weight
on lagged squared residuals to lift the conditional variance

-
o
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relative to their 1986-92 means

Forecasted 30-day average volatilities
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Figure 9. VIX Options-Implied and Model-Implied Volatilities With
SWARCH, Autumn 1989.
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to the levels necessary to match the spike in the VIX index
either.

Figures 7-9 focus on a milder volatility spike in Octo-
ber 1989, when the VIX peaked at about 2.5 times its nor-
mal level. Again, the GARCH-DF tends to split through the
middle of oscillations of the VIX index better than the other
model-implied volatilities, although the improvement is less
marked than in Figures 4-6. The same general patterns hold
in Figures 7-9 as in Figures 4-6, with the GARCH-K and
GARCH models tending to overpredict volatility and the
GARCH-UV and SWARCH-L models showing persistence
but failing to yield sufficiently dramatic initial increases in
volatility.

4. CONCLUSIONS

This article introduces a tractable framework for adding
Markov-switching parameters to conditional-variance mod-
els. Four different specifications of Markov-switching
volatility models are estimated, and the addition of Markov-
switching parameters is found to have a variety of effects
on the behavior of the conditional volatility, relative to the
model without switching. The specification found to predict
options-implied expectations of stock-market volatility best
is the one in which the student-¢ degrees-of-freedom param-
eter switches so as to induce substantial discrete shifts in
the conditional variance. This model allows for two sources
of mean reversion in the wake of large shocks that are not
available in a standard model: A switch out of the fat-tailed
state is estimated to induce a 68% decrease in volatility
for a given level of dispersion, and the weight given to
the most recent shock decreases by two-thirds when the
fat-tailed state pertains, thereby reducing the influence and
persistence of large shocks.

Another novel feature of this model is that it relates stock
returns to the degree of leptokurtosis in the conditional-
returns distribution. Traditional models, in contrast, assume
constant conditional kurtosis and relate expected returns to
the conditional variance. The point estimates support the
hypothesis that stock returns are generally lower in the
more fat-tailed state.

I also draw economically relevant comparisons between
the behaviors of options-implied volatilities and the condi-
tional variances from the volatility models studied. Because
options-implied volatilities serve as useful proxies for mar-
ket expectations of volatility, it is interesting to observe that
the conditional variance from one of the switching-in-the-
variance models reverts to normal about as quickly as the
options-implied volatility following large shocks, such as
the stock-market crash of October 1987. The conventional
volatility model, in contrast, has a conditional variance that
remains above normal with considerably greater persis-
tence. Thus, Markov switching in the variance is shown
to add a realistic degree of mean reversion to the condi-
tional variance. In addition, the description of time-varying
stock-return skewness and kurtosis provided by these mod-
els could prove useful in analyzing options prices on the
S&P 500 index.

An interesting extension would be to model the transition
probabilities of the Markov process as time-varying func-
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tions of conditioning variables to test whether transitions
into and out of fat-tailed states could be better predicted
using more information.
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APPENDIX: ON MULTIPERIOD
VOLATILITY FORECASTS

Forecasts of the volatility m periods ahead are based on
the well-known relationship between GARCH models and
autoregressive moving average (ARMA) representations of
the squared disturbances. A GARCH(1, 1) process,

hy =y +ael_; + Bhi_1, (A.1)

implies that the squared residuals obey an ARMA(1, 1) pro-
cess,

Ef =v+(a+ ﬂ)sf_l - ,8(8?_1 —hy—1) + (ef —hy), (A2)

where €2 — h; is a mean zero error that is uncorrelated
with past information. In forecasting the squared residuals
m periods ahead with the GARCH-DF model, for example,
I define H; = €2(1 — 2v;). In this case H has an ARMA(1,
1) representation,

Hy =7+ (a+B)He—1 — B(He—1 — he—1) + (H; — hy),
(A3)
where
Ei|Hp1|Hy) = hoyr = v+ aHy + Bhy. (A4)

Because the sample size is large, longer-range forecasts can
be built from the asymptotic forecasting equation for first-
order autoregressive processes so that, for m > 1,

EiHiym|Hi] = (@+B)™ hi

_ m—1 Y
+[1-(a+p) ]——————1_a_ﬁ. (A.5)
It remains to integrate out the unobserved states:
1 1
Eielim =) > Pr(Sitm =1,5: = jlet)
=0 j=0
. 1
X Et{Ht—}-mlSt = J] T o (A.6)
1- 2vt+m

where H; (S; = j) = (89))2(1 - 2vt(j)). The expected av-
erage variance over the next 22 trading days is then taken
as

1 02

2
o} = BO) mz=:1 Eteitm-

(A.7)
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Similar forecasts are drawn for the other models with H
defined such that H; = €2/g; in the GARCH-NF model and
H; = ¢ — v; in the GARCH-UV model.

For the SWARCH-L model, the multiperiod forecasts are
derived by recursive substitution as in the work of Hamilton
and Susmel (1994).

[Received June 1994. Revised September 1995.]
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