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We present and study a Minority Game based model of a financial market where adaptive agents
– the speculators – interact with deterministic agents – called producers. Speculators trade only
if they detect predictable patterns which grant them a positive gain. Indeed the average number
of active speculators grows with the amount of information that producers inject into the market.
Transitions between equilibrium and out of equilibrium behavior are observed when the relative
number of speculators to the complexity of information or to the number of producers are changed.
When the system is out of equilibrium, stylized facts arise, such as fat tailed distribution of returns
and volatility clustering. Without speculators, the price follows a random walk; this implies that
stylized facts arise because of the presence of speculators. Furthermore, if speculators abandon price
taking behavior, stylized facts disappear.

I. INTRODUCTION

Physicists’ interest for Economy and more specifically
financial markets has exploded in last two years. An
important part of the research is the analysis of finan-
cial data [1–3], which has led to the characterization of
some empirical statistical regularities, known as “styl-
ized facts”. Consequently a lot of work have attempted
to build models of markets that reproduce these proper-
ties in order to understand their cause. A very promising
way is to consider agents based models [4,5]. However,
in spite of interesting results obtained so far by numer-
ical simulations, most of these models are too complex
and not well suitable to an analytic approach that could
explain the origin of their complex behavior.

A different strand of literature, originated by the in-
troduction of the Minority Game (MG) [6], has instead
focused on highly simplified toy models of financial mar-
kets∗. On one hand, variants of this model have been
shown to reproduce quite accurately the stylized facts of
financial markets [8–11]. On the other, there are analytic
approaches for this model which provide exact results for
the limit of infinitely many agents [12–16]. These ap-
proaches give a coherent picture of the collective prop-
erties and allow one to investigate in detail a number of
issues on the behavior of complex systems of interacting
agents, such as the role of market impact [13,15] and the
interplay between different types of agents in a market
[16].

Our aim is to present what we believe to be the sim-
plest MG giving rise to a quite complex and rich behav-
ior. In different regions of its phase space, the model de-

∗See [7] for a large collection of commented references about
the MG.

scribes markets with gaussian statistics and short ranged
correlation, markets with fat tailed retuns and long range
correlations and even market crashes. In addition, it is
possible to obtain exact analytical results [17] along the
lines of refs. [12,13].

The first key ingredient of the model is the interplay
between two types of traders. The first type, called pro-
ducers in ref. [18,16], are traders who use the market
for exchanging goods; Their trading decisions originate
from outside opportunities related to the economic activ-
ity and not on the market dynamics itself. These traders
have a predictable behavior with respect to a news arrival
process and hence they inject information into the mar-
ket. They represent the underlying economic activity, so
they could also be called “fundamentalists”: in the ab-
sence of other types of agents market prices would follow
a random walk, which we could call the fundamentals.

The other type of traders are speculators. They are
adaptive agents with bounded rationality. They study
the relationship between the news arrivals and market re-
actions in order to anticipate market movements. Their
aim is to gain from market fluctuations. On one hand
they provide liquidity for producers, on the other they
color the white noise process produced by the latter and
by the news arrival process. Therefore they are respon-
sible for the emergence of stylized facts.

The second key ingredient of the model is that we al-
low the speculators for the possibility of not trading if
the market does not contain sufficiently profitable arbi-
trage opportunities for them. In the language of Physics,
this makes the model grand canonical. Such models have
been studied in refs. [8,9] and more recently in ref. [11],
where a fundamental mechanism for long-range correla-
tion of the volatility was proposed. However, the pro-
posed grand canonical mechanism in refs [8,11] does not
account for the risky nature of markets, by contrast to
that we propose here, whereas the one found in ref [9] is
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in essence the one we consider here †.
These two features – the interplay between produc-

ers and speculators and the possibility of not trading for
speculators – have been introduced in ref. [16], though
their consequences have not been fully exploted. In ad-
dition, the grand canonical mechanism proposed here is
different and leads to qualitatively different results.

II. THE MODEL

We consider a set of agents who interact repeatedly
in a market. In each period t = 1, 2, . . ., each agent i
chooses an action ai(t), which is a real number. To fix
ideas one may think that ai(t) > 0 means that agent i
wants to buy ai(t)$ of an asset whereas ai(t) < 0 implies
that he wants to sell.

A. Market mechanism and information

Following ref. [10], we leave details at this level un-
specified, and directly define the excess demand A(t) =∑N

i=1 ai(t) and the payoffs of agents:

gi(t) = −aiA(t) (1)

These payoffs are such that those agents who are in “mi-
nority” (aiA(t) < 0) are rewarded. This captures the
fact that when there are a lot of buyers, sellers may sell
at a higher price.

Following Refs. [8,5,19,20], we define a price dynamics
in terms of the excess demand, as

log p(t + 1) = log p(t) + r(t) = log p(t) +
A(t)

λ
(2)

where r(t) is the return at time t and λ is related to
the market depth. The market is also characterized by a
news arrival process which is modeled by an integer µ(t)
which is drawn randomly [21,22] and independently in
each period from the integers 1, . . . , P . µ(t) labels the
“state of the world” which encodes all relevant economic
information.

B. Producers

The first type of traders – the producers – behave in
a deterministic way with respect to µ(t). This means
that if i is a producer, ai(t) is a function of µ(t) only,

†Note however that it is not motivated by the risky nature
of markets. In particular, we do not have to introduce utility
functions.

i.e. ai(t) = σ
µ(t)
i . For each agent i and state µ we draw

randomly σµ
i from a fixed distribution. We shall take the

bimodal distribution σµ
i = ±1 with equal probability, in

what follows‡

Let Np be the number of producers and we introduce
the reduced number np = Np/P for convenience.

C. Speculators

The second type of traders – the speculators – are adap-
tive. They are assigned a number S +1 of trading strate-
gies: When speculator i uses strategy s = 0, 1, . . . , S,

then his action is ai(t) = σ
µ(t)
s,i . For strategies s > 0 –

called active –, σµ
s,i is again drawn randomly and indepen-

dently for each s, i and µ from the bimodal distribution.
For s = 0, instead, σµ

0,i = 0 for all µ.
In other words, producers can be regarded as specula-

tors with just one active trading strategy and speculators
can decide not to trade if they resort to their 0-strategy.
At odd with producers, speculators have an additional
degree of freedom, which is the choice of the strategy
si(t) they will play at time t. In order to take this de-
cision, each speculator i keeps track of the performance
of each of his trading strategy s by assigning a score Ui,s

to it. The strategy si(t) which agent i follows at time
t, is that with the highest score. His action will then be

ai(t) = σ
µ(t)
i,si(t)

. The scores are updated according to

Ui,s(t + 1) = Ui,s − a
µ(t)
i,s A(t) + ǫδsi(t),0. (3)

This means that active strategies s > 0 are “rewarded”
by the (virtual) gain they would have given to agent i if
they had been played§. The s = 0 strategy is instead
rewarded by a constant amount ǫ > 0. This implies that
an agent is willing to use a trading strategy only if it gives
an average gain larger than ǫ. One can interpret ǫ > 0 as
modeling either a risk-free asset which ensures a constant
gain – the bank interest rate – or more simply a risk-
premium for not trading. The latter may reflects agent’s
risk aversion to trading in a risky market. Note that with
ǫ < 0 and large enough, one recovers the standard MG
because all agents use active strategies.

There are Ns speculators and we find it convenient to
introduce the reduced number ns = Ns/P . Note that

‡Any distribution with zero average and unit variance leads
to exactly the same results in the limit N → ∞.
§This is true only if A(t) would not have changed if i had

actually played strategy s instead of si(t) (which is why we
speak of virtual gain). In other words, we are assuming that
agents neglect their market impact and behave as price takers.
This is by no means an innocent assumption as shown in refs.
[12,13,15] (see later).
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ns = 1/α where α is the control parameter used in refs.
[24,12,13].

III. RESULTS

We performed extensive numerical simulations of the
market model. For P ≫ 1 all (intensive) quantities in
the stationary state only depend on the parameters ns,
np [24,23,12,16] and ǫ. All simulations were performed
with S = 2. As usual no qualitative change is expected
for S > 2 [13].

Before passing to the discussion of results, let us men-
tion that the model can be solved along the lines of ref.
[13]. An account of this solution will be presented in a
forthcoming publication [17].

A. Market’s ecology

The interplay between the two types of agents is shown
in Fig. 1 for ǫ = −∞ (no 0-strategies): keeping the
number of speculators fixed and increasing the number
of producers, the market predictability

H =
1

P

P∑

µ=1

〈A|µ〉2 (4)

increases∗∗ (left panel). When speculators are added
again to the market (right panel) they exploit predictabil-
ity and hence reduce it.
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∗∗Here 〈A|µ〉 is the average of A(t) conditional on µ(t) = µ.
If this quantity is non-zero, then the market is statistically
predictable. H measures predictability and is related to neg-
ative entropy.

FIG. 1. Np Producers are added to a standard MG
(P = 64, N = 200, S = 2) where the outcome is unpre-
dictable (H = 0): information content, or negative entropy,
increases with Np. Then, while Np is kept fixed at 200, addi-
tional speculators are added; they finally remove completely
the information put by producers (average over 100 realiza-
tions). The continuous lines are analytical results from the
exact solution.

The same behavior applies for ǫ > 0. For a fixed (re-
duced) number np of producers, H decreases as the num-
ber of speculators increases (see Fig. 2). As in the stan-
dard MG [23,12], there is a phase transition separating
a symmetric phase (H = 0), for ns > n∗

s(np), and an
asymmetric phase (H > 0). The main difference is that
in the symmetric phase many speculators refrain from
playing: The number of active speculators nact

s saturates
to a finite value as the number of speculators increases.
The behavior of nact

s is characterized by a cusp at n∗
s (see

Fig. 2) which becomes more pronounced as ǫ → 0+.
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FIG. 2. Predictability per agent H/(Np + Ns) (lines) and
number of active speculators nact

s (symbols) as a function of ns

for np = 1 and some values of ǫ and P . The phase transition
point n∗

s where H → 0 and nact
s shows a cusp, does not depend

on ǫ. For ns > n∗
s , nact

s has a discontinuous behavior as ǫ → 0.
Indeed nact

s increases linearly with ns for ǫ ≤ 0 whereas it
saturates to a finite value for ǫ > 0.

In the symmetric phase ns > n∗
s, the market is kept

marginally efficient in a dynamic way, that is, the market
is efficient in the long run (i.e. H = 0), while locally in
time, it may be not efficient. Consequently, a fraction
of speculators alternate periods of activity, in which he
trades, and inactivity, in which he just watches the mar-
ket, waiting for more favorable times. The level nact

s of
activity of speculators is just barely sufficient to exploit
the information injected into the market by producers,
thus making the market efficient. Fig. 3 shows that the
number nact

s of active speculators vanishes in the absence
of producers and it increases as nact

s ∼ √
np as the num-

ber of producers increases: this is also the quantity of
information put into the market by the producers and
asserts the validity of the proposed fundamental grand-
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canonical mechanism.
The phase diagram of the symmetric phase with re-

spect to ns, np and ǫ is quite complex, hence will be
studied in details in a forthcoming publication, but let
us discuss roughly its structure. At fixed ns,

Again, the behavior for ǫ ≤ 0 is quite different: The
activity does not vanish with np but it rather remains
finite even with np = 0.
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FIG. 3. Number of active speculators nact
s as a function of

the number of producers np for P = 4, ns = 62.5 and several
values of ǫ.

B. Market crashes

Finally we remark that fig. 2 shows that the fluctua-
tions of nact

s around its average diverge with ns. This
is due to the fact that as ns increases the stationary
state which agents reach becomes more and more un-
stable. A snapshot of the dynamics deep in the sym-
metric phase is reported in fig. 4. The market repeat-
edly undergoes catastrophic events, i.e. crashes: Just
after a crash, all speculators refrain from trading and
nact

s ≃ 0. This leaves the arbitrage opportunities created
by producers unexploited. Then speculators gradually
gain confidence and start trading again. The volume of
speculation reaches a constant average value, but fluctu-
ations of nact

s gradually increase. This process reaches a
point when a large number of speculators start rushing
into the market all at once. This causes violent shocks
to the market which causes discontinuities in the price,
i.e. crashes††. The market crash drives speculators away
from the market and the dynamics starts anew. The fre-
quency of crashes increases with ns and it decreases with
ǫ.

In spite of its simplicity, the model provides a quite re-
alistic picture of such a complex phenomenon as a market
crash.

††Given the symmetry of the model, positive jumps in p(t)
are as likely as negative ones.
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FIG. 4. Snapshot of the dynamics for ns = 300, np = 10
(P = 32) and ǫ = 0.01. The price p(t) (top) and speculators
contribution to the volume Pnact

s (bottom) is shown.

IV. STYLIZED FACTS

A. Volatility and volume clustering

Volatility clustering is a very well known stylized fact.
It is known that the volatility has algebraically decaying
auto-correlation, and accordingly that the returns activ-
ity is clustered in time, which is an easy pattern to detect
with naked eyes.

Fig. 5 illustrates this phenomenon for the present
model (we define the volatility at time t as σ(t) = |A(t)|).
The deeper one goes in the symmetric phase – i.e. the
larger ns – the more high volatility regions appear clus-
tered. Indeed market crashes occur more and more fre-
quently as ns increases.
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FIG. 5. Return and number of speculators in the market
versus time. The volatility is clustered, as is the volume
(P = 16, S = 2, Ns = 501, Np = 1001, ǫ = 0.01)

The volatility auto-correlation is known to be alge-
braically decaying, typically as τ−0.3 in real financial
markets [2]. Volatility auto-correlation is known to be
related to volume correlation [2].

Figure 6 shows that the long ranged correlation of
volatility occurs also in the present model, with an ex-
ponent that can be close to that of real markets: it de-
pends quantitatively on the parameters ns, np and ǫ of
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the model, and exponents ranging from 0.09 up to 0.6
have already been observed, so that the let us only men-
tion that this behavior is not universal, and can disappear
if the parameters are extremal. A systematic quantita-
tive study of this behavior in the whole phase space of
the model, appears quite demanding and will be pursued
elsewhere.

Note furthermore that the same behavior (with an ex-
ponent −0.65) was also found recently in the MG with
evolving capitals [10]. This suggests that volatility clus-
tering is a generic feature of financial markets and not an
universal one, as also suggested recently in ref. [11].
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FIG. 6. Autocorrelation of the absolute returns (P = 16,
S = 2, Ns = 501, Np = 1000, ǫ = 0.01). The straight line as
a −0.21 slope

B. Return and volume histograms

In real market, the probability distribution function
(pdf) of returns is known to have fat tails with exponent
-4 on average [1]. Figure 7 shows that the MG presented
here can reproduce fat tail behavior. Note however that
the value of the exponent depends on the parameters ns,
np and ǫ. For instance, the exponent of the tails decreases
as ns increases at fixed np, i.e. the tails become fatter
and fatter as the number of prospective speculators in-
creases while the gain opportunities remain fixed‡‡. The
volume was also found to have a power-law tail distribu-
tion. Figure 7 shows typical returns histogram; param-
eter have been adjusted in order to obtain an exponent
close to that of real markets [1].

‡‡We postpone the detailed study of this point to a forth-
coming publication
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FIG. 7. Cumulative function of the returns R divided by
the return R (circles: positive returns, x: negative returns)
(P = 16, S = 2, Ns = 1001, Np = 1200, ǫ = 0.01); the
continuous line has a slope of −3.8, close to the one observed
in financial markets.

V. CONCLUSION

The modified MG presented here is able to reproduce
qualitatively a whole range of stylized facts. Most impor-
tantly, its quite rich behavior can be studied analytically
[17] along the lines of refs. [12,13]. At odds with the
standard MG, speculators in this model market are ex-
tremely sensitive to the number of producers, and behave
sensibly.

All the features discussed in the model crucially de-
pends on the fact that agents neglect their market im-
pact, i.e. behave as price takers. As soon as agents
start to account even approximately for their market im-
pact, as in refs. [13,15], the situation changes dramati-
cally. In particular: i) the phase transition disappears,
ii) the dynamics converges to one of exponentially many
states where each speculator either plays one and the
same strategy at all times, or he doesn’t play at all, iii)
volatility clustering and fat tailed distribution of returns
disappear. The latter means, in particular, that all the
stylized facts about financial markets crucially depends
on the fact that agents behave as price takers.

These conclusions – strictly speaking– only hold in
the highly simplified world described by our model. In
real markets things are of course much more complex:
agents trade at different frequencies, over different shares
and with a large number of instruments such as deriva-
tives; their importance varies greatly, from big invest-
ment funds and banks to small gamblers. Will the simpli-
fied picture, which results from our simple model, survive
even when all these issues have been taken into account?

Partial positive answers have already been derived in
recent work where, for example, the existence of a phase
transition has been shown to persist when different types
of agents are present [16], when agents have different
weights [10] and when they trade at different frequencies
[25]. Here we showed that a phase transition still persists
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when agents are allowed not to trade. At any rate, the
present work opens a route to the understanding of how
complex phenomena – such as volatility auto-correlation,
fat tails in the pdf of returns and market crashes – may
arise in financial markets. This route may not be unique,
but it is definitely worth of investigation.

We acknowledge interesting discussions with Neil F.
Johnson. This work has been supported in part by the
Swiss National Funds for Scientific Research.
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