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Abstract
The fluctuations of the Standard & Poor 500 exhibit scaling behaviour,

follow a power law distribution and have a fractal temporal signature
suggesting that this is an example of a self-organized critical phenomenon.

1 Introduction

1.1 What Is Self-Organized Criticality?

Science in general is the study of various aspects of the outside world. To better
understand a system a mathematical model is constructed encapsulating the
salient features of the system. This model can then be tested to see how well
it fits the reality. If the model is a good one it can aid understanding and
prediction of events. A large class of such models involve dynamical systems.
That is, those that are time dependent. Ideally these can be modelled by a set
of deterministic equations. Assuming knowledge of all variables, we plug them
into our equations and make definite predictions. Unfortunately, either we do
not know everything or the equations are very difficult to solve, as in the case of
the Navier-Stokes equations for turbulence, or both. This leads us to consider
the statistical behaviour of the system — is such and such an outcome more
or less likely than another. In any case, there may exist stationary states that,
deterministically or statistically, do not change if left alone. We can consider
which stationary state a system will end up in given where it started. If the
system is perturbed from such a state then it will either return to it or evolve
into another state. That is the stationary state can be either an attractor or a
repellor for the dynamics respectively.

A critical state of a system is one on the edge of what could be considered as
uniformity and chaos [1]. In a uniform state a local perturbation does not affect
anything outside its locality; predictions can be made far into the future with
the accuracy not time dependent. In a chaotic state the accuracy of predictions
falls off exponentially with time. In a critical state local perturbations can
propagate throughout the entire system. The probability of a fluctuation of
certain size falling off only algebraically with the size. This leads to “1/f” noise,
the distribution of the lifespan of an event is proportional to f~?, 3 near to unity.
This can be thought of as the result of a superposition of cycles of all durations



— as opposed to, say, a uniform sine wave or a chaotic spectrum. A critical state
also shows a similar power law distribution for the size of events. This is closely
related to an underlying fractal geometry. In statistical terms this suggests that
the normal (Gaussian) distribution is not an adequate model for criticality. In
the Gaussian case the probability of large events falls off exponentially. Instead
the Lévy distribution may be proposed. This distribution is leptokurtic, ie. the
kurtosis is positive ! where the kurtosis is given by

square of second moment
-3+

fourth moment

That is the tails of the distribution are fatter than for the normal.

Since the critical state is on a knife-edge it would seem that some fine-tuning
in the laboratory would be required to achieve this state. This is indeed the case
for a ferromagnetic material, eg. iron. Below a certain temperature (the Curie
point) the material is magnetic, all of the domains have the same direction.
Above the Curie point the material is non-magnetic, the domains’ alignments
are random. At the Curie point the material is in a critical state. Domains
with the same direction lie on fractal sets and the effect of a small perturbation
(eg. a weak external magnetic field) can alter the macroscopic properties of the
material when it has cooled. Other examples of fine-tuning to a critical state
are phase transitions. In all cases the critical states are not just qualitatively
the same but mathematically identical — depending only on the dimension and
symmetries of the system. This is the principle of universality.

The point of self-organized criticality (SOC) is that certain systems actually
evolve towards this critical state without any fine-tuning [2]. The critical state
is an attractor for the dynamics. I outline some examples of this below.

1.2 Fractal Curves

The concept of fractals [3] is closely tied in with the idea of a fractional dimen-
sion. To understand this more clearly we review an elementary feature of the
concept of dimension.

A straight line has dimension one. For any positive integer N it can be de-
composed into N non-overlapping segments. Each of these segments is 7(IV) =
1/N smaller than the whole (assuming finiteness). This is the similarity ratio. A
plane has dimension two. For every perfect square N it can be decomposed into
N nonoverlapping rectangles with a similarity ratio »(N) = 1/4/N. Generalis-
ing, for N'/P a positive integer a D-dimensional hyperplane can be decomposed
into N parts with a similarity ratio r(N) = 1/N*/P. Thus

D = —log N/logr(N).

Now consider a von Koch curve, this is a continuous, nonrectifiable curve
with no well-defined length. Its construction is outlined in figure 1. It is pos-

IThe population moments are assumed to be infinite but it is possible to give an alternative
definition



J\/; N =5, r=1/4, d=log5/log

N =6, r=1/4, d=1log6/log4

N=17r=1/4, d=1log7/log4

I _ N=8, r=1/4, d=1log8/logd =1.5

Figure 1: Nonrectifiable self-similar curves can be obtained as follows. Step
1: Choose any the drawings on the above. Step 2: Replace each of its IV legs
by a curve deduced from the whole drawing through a similarity of ratio 1/4.
One is left with a curve made up of N? legs of length (1/4)2. Step 3: Replace
each leg by a curve obtained from the whole drawing through similarity of ratio
(1/4)%2. The desired self-similar curve is approached by an infinite sequence of
these steps.

sible to calculate the dimension of these curves using the method above. The
dimensions turn out to be fractional, between 1 and 2.

Contrary to previous belief that such objects existed only in mathematicians’
heads Mandelbrot [4] proposed that such curves occur naturally. In order to
apply these ideas to natural curves, such as coastlines, frontiers etc., Mandelbrot
developed a rough sketch of statistical self-similarity and stated that under wide
conditions L(G) ~ G'~P. Here the length, L, is measured by constructing a
polygon of side G with each vertice on the coastline. Applying this to data
collected by L. F. Richardson Mandelbrot found that for various coastlines and
frontiers there is a strong linear relationship between log G and log L(G) that
leads to L(G) = MG'~P where M is a positive constant and D > 1.

In conclusion geographical curves are random self-similar structures of frac-
tional dimension. I use this idea later in showing that the temporal profile of
the stock market is random self-similar of dimension 1.47.



1.3 Earthquakes

The Gutenberg-Richter law for earthquakes is an example of a power law. Specif-
ically the number of earthquakes, N, of size m is proportional to m~", with
1.25 < 7 < 1.5 depending on the location. This has been linked by Mandelbrot
to the self-similar sets on which earthquakes occur. Bak and Tang [5] propose
that this power law is a result of the earth being in a self-organized critical state.
The fractal geometric distribution and earthquake dynamics are manifestations
of SOC. They use a simple model of the earth’s crust and show that it evolves
to a critical state with a power law.

The model is as follows. The earth’s crust is represented by a two-dim-
ensional (2D) array of particles on a square lattice. Each particle is subject to
a force. When this exceeds a critical value (the pinning force at the fault) the
particle slips. The system is represented by the force at time ¢ at each point
z(i,7). When z(i, j) exceeds some critical value z, the strain is released at (i, j)
and transferred to its neighbours

2(i,5) = (i, j) — 4
2(i+1,5) — z(i+£1,5)+
2(i,j£1) = 2(,7£1)+

Force is conserved except at the boundary. Starting with no force, z = 0, the
tectonic force is represented by

2(i,§) = 2(i,5) +1

at a random position. The force is applied until a slip occurs, z > z., somewhere.
The force is transferred to neighbours, if the force at a neighbouring site now
exceeds the critical value then further slips occur, and so on. Such a sequence of
slips caused by unit increase in the tectonic force is called an ‘earthquake’. When
the earthquake has stopped the force is reapplied (the tectonic force operates on
a geological time scale much greater than the lifetime of an earthquake). At first
there are only small propagations triggered by the force. But the system evolves
to a state where earthquakes of all sizes occur. The total number of particles
that slip is a measure of the energy, E, of the earthquake with distribution
D(E) = E™", 7 = 1.0. When extended to three dimensions 7 ~ 1.35 — closer
to the observed values.

The exponents differ between models, depending on the set up and the defini-
tion of energy, but the concept of universality suggests that ‘the power depends
only on geometric and topological features such as the spatial dimension’. As
a conclusion they contrast these results with the claim that earthquakes are
chaotic phenomenon with few degrees of freedom. The criticality observed here
is fundamentally different in that there are an infinity of degrees of freedom.
Earthquakes exhibit power law behaviour indicative of a critical state and a
simple model of earthquakes self-organizes to a critical state with the same
macroscopic behaviour. In summary, the earth’s crust is in a self-organized
critical state. These ideas can help to construct better models of earthquakes.



1.4 Theoretical Sand Piles

In 1987, Per Bak [6] and others proposed that certain extended, dissipative,
dynamical systems naturally evolve into a critical state. The characteristics of
this critical state is presence of 1/ f noise and a scale invariant (fractal) structure.
The motivation for this is that 1/f noise has been observed in many disparate
systems: light from quasars, intensity of sunspots, the current through resistors,
the sand flow in an hour glass, the flow of rivers and stock exchange prices. Given
the prevalence of 1/ f noise and of fractals in nature some underlying mechanism
needs to be proposed.

To show that SOC is a genuine phenomenon Bak, Tang and Wisenfeld
showed that a simple model of a sand pile self-organizes to a critical state.
The sand pile model in two dimensions is as follows. Construct an N x N grid
and let the height of sand at each point be h(x,y), put the height difference
z(x,y) to be

z(z,y) = 2h(z,y) — Mz + 1,y) — h(z,y + 1).

Sand is added at a random position (z,y) to give

z2(z,y—1) — z(z,y—1)—1
z(z,y) — 2(z,y) +2

When the height difference at a point z(x,y) exceeds some critical value z. then
one grain of sand tumbles in the x and y directions, i.e.

Z(Z’,y) — Z(.’L’,y)—4
z(z,yx1l) — z(z,yx1)+1
2ztly) — zzxl,y)+1

(This may not be a very realistic model of a sand-pile but is to be empha-
sised that it is the behaviour of non-linear diffusion dynamics in which we are
interested, not sand piles per se.)

An avalanche is the movement of two or more grains of sand, caused by
the random addition of a single grain. No sand is added while the avalanche
progresses. The size, s, of the avalanche is the total number of grains that move
and the length, ¢, is the number of time steps, typically ¢t < s. At first only small
avalanches occur. After a while the sand pile is sloped such that the addition of
a single grain can cause avalanches of all sizes — from two grains to an avalanche
comparable to the size of the system. The sand pile has self-organized into the
critical state.

When the simulation is performed with closed boundary conditions,

2(0,y) = 2(z,0) =2(N + 1,y) = z(z, N+ 1) =0,

starting either from a flat surface or from a nonequilibrium state then the system
evolves toward the critical state. In the critical state the distribution D(s)



follows a power law, specifically when N = 50,
D(s)~s™ ", 7= 1.0.

For a three dimensional (3D), 20x 20 x 20, array one finds 7 &~ 1.37. Furthermore
the distribution of times also follows a power law

where a &~ 0.43 for the 2D case and a ~ 0.97 for the 3D case. That is, there is
a “1/f” spectrum. These results are robust in that if certain bonds are remove
between sites (up to 25%) then a power law distribution still holds.

With open boundary conditions at x = N, y = N the tumbling equations
at the edges become

Z(Nay) — Z(Ilf,y)—S
z(x,N) +— z(z,N)—3
2(N,N) +— 2(N,N)-2

The sand flow f(t) falling off the edge of the box is monitored and a power law
is again observed, for a 75 x 75 system,

S(t)~ fP, B~0.95.

They also note that the clusters formed during an avalanche (ie. its domain) are
fractal.

This leads to the conclusion that 1/f noise is not noise at all but ‘reflects the
generic dynamics of extended dynamical systems’. Furthermore they conclude
that ‘1/f noise is intimately related to the underlying spatial organisation’. Ad-
mittedly there is no direct connection between this toy model of turbulence and,
for example, the Navier-Stokes equation for turbulence, but there is a ‘one-one
connection for the phenomenology used to describe the two situations’. Thus,
it can be seen that a model having just the same dimension and symmetries
as a real life system can evolve toward a critical state without any fine tuning.
Invoking the concept of universality the exponents obtained from such models
as this can be taken at face value and compared to the real life data.

1.5 Real Sand Piles

In order to see whether or not real sand piles actually evolve to the critical
state Glenn A. Held and colleagues [7] designed an experiment to test the pre-
dictions. A system was set up whereby sand was dropped, one grain at a time
onto a balance. Sometimes the addition of a grain would cause an avalanche
and no sand was added during avalanches. Over 350 000 grains of sand were
dropped onto a 4cm circular plate. After the sand pile had reached a certain size
avalanches of all sizes were observed, in line with the prediction that the sand
pile self-organizes to a critical state. When a larger sand pile, with a diameter



of 8c¢m, was used only large avalanches were observed. This was not understood
at the time but Per Bak states that since only the sand falling off the pile was
measured the smaller avalanches were not detected.

A more intricate experiment was set up by Jens Feder and Torstein Jgssang
[8]. Rice was confined to a space between two glass plates and added at a slow
rate (about twenty grains per minute) at the upper corner. Various spacings
of the plates and various slow feed rates were used. Experiments were done
on systems ranging from a few centimetres to a few metres, each lasting 42
hours. Frames were taken every 15 seconds from a high-res (2000x 500) monitor.
Once the pile had achieved a stationary state monitoring began. The size of
an avalanche was defined to be the total downward movement between frames
(proportional to the energy dissipated). The surface profile was fractal with
features of all sizes. The distributions of the energy E scaled by the length L all
lay on the same straight line (for E/L > 10) on a log-log plot. This indicated
a power law for a real-life situation. The critical state is highly robust in that
the rice pile evolved to the critical state regardless of size, thickness and feeding
rate.

The critical state is not an equilibrium state since energy is not conserved
but statistically speaking it is stationary. There is no characteristic energy
and the distribution of energy is not changing with time. The critical state
is an attractor for the dynamics of the system. Returning to sand piles the
experiments show that if the system is perturbed by drying/wetting the sand
or by changing boundary conditions the system reverts to the critical state.
In view of the stock market, if it does exhibit SOC, then we can argue that
although most aggregate fluctuations have no aggregate cause (see below) there
are individual events and big players whose actions can perturb the system. In
analogy to the above the system will then revert to the stationary (ie. critical)
state.

1.6 A Model Economy

In economic theory the cause of aggregate fluctuations is an ill-explained phe-
nomenon. It is unlikely that they are caused by, for example, most households
consuming more or less at the same time, or most producers finding it opportune
to produce more or less at the same time. Another possible source of an aggre-
gate shock that might cause an aggregate fluctuation is changes in government
policy that affect the budgets of the majority of the economic units at the same
time. This has been much challenged though. By the law of large numbers one
would expect that random shocks cancel out on average. To create an aggregate
fluctuation would require a large number of independent events occurring simul-
taneously to have the same sign, the probability of this decreasing exponentially
with the square of the size of the event by the central limit theorem.

Bak et al [9] proposed a simplified model for a chain of interlinked producers
and consumers. In this lattice model each intermediate producer receives a
demand for goods and either supplies these from stock on hand or orders from
the two nearest producers further down the chain. At the top of the lattice



are final consumers and at the base are initial producers (who work with raw
materials). With some basic assumptions concerning storage and production
costs this is a model for studying production and inventory dynamics. If the
producers are arranged on a “large” square lattice then a random consumer
order can cause an ‘avalanche’ that involves that involves all levels of the lattice
(ie. from consumer to initial producers). The size of an avalanche is considered
to be the number of intermediate producers that are stimulated by a single
order.

The initial state of the economy at the beginning of some period ¢ is described
by the inventory holdings z; ;(t) for each unit (3,). s;;(t) is the number of
sales by unit (4, j) in period ¢t and y; ;(t) the number of units output in the same
period. Then

zij(t+1) =z ;(t) + yi; () — si;(t).

Also optimal production scheduling implies that output is a function of initial
inventories and orders received

Yi,i (t) = y(2i;(t), 54,5(t))

where y(z, s) is a prescribed function based on the assumptions of costing. This
gives
i (t+1) = ' (w;,;(t), 51,5(t))

where 2'(z, s) is defined according to y(z,s). The orders received by each unit
with ¢ > 1 are given by

1
56,4 (8) = 5 (i-1,5(8) + yi-1,5-1(2))
and the orders received by the first row, sy ;(t) are random exogenous shocks
(ie. consumer orders). The aggregate demand for goods in a period ¢ is

Nt = 51,00

and aggregate production is
Y(t) = yi;(t)
2%

Assuming independent exogenous shocks, put p the probability that sq_;(¢) is one
and 1 — p the probability that it is zero. L is made large with p varying as L™,
% < v < 1. The mean number of final goods orders per period, N (t), is p(L)L
which grows as L'~7. The random variable N(t) = N(t)/L'~" has a constant
mean and as L increases N converges in distribution to a constant. Thus there
is ‘no aggregate variability in the exogenous flow of final goods orders’. That is
the random orders cancel each other out.



The authors then go on to show that despite this there are aggregate shocks
in the production. Denoting the size of an avalanche caused by an order at the
j site by Y;(t) then

N(t)

Y(t) =3 Y.
j=1

Using the work of Dhar and Ramaswamy they then show that

Pr(Yj >y) ~y '/

for large y. ‘Large avalanches are much more likely in this model than in the
case of a Gaussian law.” This is highly indicative of SOC and summarises what
I feel to be the underlying philosophy ...

‘...aggregate fluctuations in production continue to occur in the
large economy limit, even though aggregate exogenous shocks cease
to exist.’

1.7 Cotton Prices

In 1963, Mandelbrot [10] proposed that a generalisation of the Gaussian random
variable was required to model variations in price y(¢) for certain commodities.
Bachelier had proposed that successive differences are independent, normally
distributed, random variables with zero mean and variance increasing with the
differencing interval, 0y = y(t+T) — y(t) ~ N(0,aT), a some constant. Since
the standard deviation of dy is proportional to the price Mandelbrot chose to
consider instead Iny(t+7T) — Iny(¢). Histograms of price changes are unimodal
and of Gaussian type but have many outliers. For this reason Mandelbrot
chose to use a family of probability laws known as stable Paretian, described by
Paul Lévy, of which the Gaussian is a limiting case. In his paper Mandelbrot
describes these stable Paretian distributions using statistical methods above the
level presented here.

Although ignored by economists at the time Mandelbrot proposed a new
way of looking at such data which is the basis of the philosophy of SOC. One
common approach is to account a posteriori for very large fluctuations and
eliminate these before any stochastic analysis. Obviously this will make the
data more Gaussian. Mandelbrot states that this is unnecessary and there need
not be any observable discontinuity between the ‘outliers’ and the rest of the
distribution.

Mandelbrot studied cotton prices and plotted frequency of price changes
on a log-log plot. The daily price changes for 1900-05 and 1944-58 and the
monthly price changes for 1880-1940 all illustrated the same behaviour. The
log of the frequency was directly proportional to the change in the log of price.
Each case had the same constant of proportionality. Although Mandelbrot
interpreted these results as indicative of a Lévy distribution, it is a simple
matter to extract a power law from his analysis. This power law emphasises the
continuous transition from small changes to large changes.



Although this is not the limit of Mandelbrot’s analysis the features that
suggest SOC are that large events can be accounted for by the same dynamics
as small events and the power law that this leads to.

1.8 An Economic Index

Rosario N. Mantegna and Eugene Stanley [11] observed that scaling behaviour
occurs in systems that exhibit SOC and turbulence. They investigated scaling
behaviour in economic systems, particularly financial markets which are subject
to precise rules. They showed that the S&P 500 is non-Gaussian and follows a
Lévy stable process, as did Mandelbrot for cotton prices. Denoting the succes-
sive variations as 0y = y(t) —y(t—dt) with §t logarithmically equally spaced from
1min to 1000min, a semi-log plot shows that dy is distributed leptokurtically.
The data for 6t = 1 follow a Lévy stable distribution for all but large variations.

To investigate scaling behaviour they use the ‘probability of return’ P(0)
since the central part fits a Lévy stable distribution and methods involving
mainly the wings prove difficult. The data are fitted by plotting P(0) versus 6t
on a log-log plot. This gives a slope of —0.72 £ 0.025, indicating non-normal
scaling behaviour (since slope # —0.5). Using this exponent the data was scaled

according to
Z

Zs= (5t)1/a

where the scaling factor @ = 1.40 & 0.05 is obtained from the slope under the
assumption that the distribution is Lévy for the central part. The scaled data
collapse on the §t = 1 case. They conclude that the Lévy distribution describes
the dynamics of P(Z) well over three orders of magnitude. They observe that
the price differences would converge to a normal for a time interval of the order
of one month. They also show that « is roughly constant over the period of
analysis, 1984 to 1989. In summary, the data follow a Lévy distribution which
converges towards a normal distribution as dt increases. The index also exhibits
scaling behaviour. Given the initial comment this is indicative of the S&P 500
being in a critical state and if so one for which no external parameters can be
fine-tuned.

1.9 The Stock Market

The stock market can be thought of as an extended dynamical system. It is not
in equilibrium since there is a continual input caused by traders’ actions. It is
dissipative in that individual actions can have a knock on effect throughout the
system. So it is possible that it could naturally evolve to a self-organized critical
state. Further evidence for this is the success of modelling an economic index as
geometric Brownian motion with drift — a model with fractal properties. The
studies outlined above also give weight to this idea. In 1995, E. Stanley and
Michael Salinger showed that company growth rate depends only on the size
of a company and not, as economists had previously maintained, on the type
of technology used for production. It would seem that economists are rather
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conservative in their views and a new way of looking at the subject could lead
to further developments. In analogy to the model economy of Section 1.6 the
stock market is an area where there are many interlinked units (traders) each of
which can affect closely associated units. There is a hierarchy of players, traders,
derivatives dealers, financial institutions, banks and governments throughout
which shocks may propagate. The stock market has all the ingredients for a
study of SOC.

2 Some Statistical Analysis

2.1 Technical Aspects

The data used for the analysis here are from one of the largest financial markets
in the world: The New York Stock Exchange. I study the daily closing prices
of the S&P 500 from October 15" 1931 to June 10*" 1993. Data were obtained
from www.statlib.cmu/edu, a statistical library and analysed using personal
C++ programs and the spreadsheet package Excel. It has been shown [12] that
overnight price differences do not affect this kind of analysis. The analysis will
involve an attempt to model the time series, an investigation of the frequency
distribution, the existence of scaling behaviour and associated power laws and
the temporal profile of the index.

2.2 Statistical Analysis
2.2.1 Time Series Plots

From the database I denote the value of the index as y(t), this is a random
process and for any fixed time ¢ has mean y; and variance v;. The value of the
index is plotted in a time series on page 15.

The features to note are

e The mean is exponentially rising, 7z o< e®?.

e The variance is increasing with ¢ and is proportional to the mean.

These factors cause the period 1931 to 1953 to appear relatively featureless.
During this period there was a recession and a world war. In a standard time
series analysis these factors would be accounnted for separately. However it
is in the nature of my analysis to include all data as is. For a more detailed
discussion of the possible effects of the war on the analysis see the conclusion.

Tt is a standard technique to consider the first differences of the series, dy =
y(t) — y(t—0a), as proposed by Bachelier and adopted by Mantegna & Stanley.
This time series is shown on page 16, the features to note here are

e The mean is constant at zero.

e The variance is increasing with time.
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As we can see although the mean is zero the increasing variance still gives
weight to the later values. This leads us to speculate as a model for y(t) geo-
metric Brownian motion with drift [13]

t+oW, — 2ot
y(t) = yoet T TN E
Where g is the drift, which accounts for the general upward trend, o is the
volatility and W; is such that Wy, = 0 and W; is normally distributed with
mean 0 and variance t.2 This can be rearranged to give

1
Iny(t) = Inye + pt + oW, — Eazt.

That is, Iny(t) is normally distributed with mean Inyg + pt and variance ot. In
view of this we illustrate Iny(¢) on a time series plot. This is on page 17, we
observe

e The mean is rising linearly

Iny(t) =Iny + pt
where Inyo = 1.882 and g = 0.0009618 (correlation coefficient (r) is 0.97).
e The variance is constant.
e Cycles of orders three, five and twenty years are apparent.

e Features are visible across the whole time span.

Again we take the first differences, this time of the logged values. Page 18
shows the time series of Z(&) = lny(t) — lny(¢—&). We note

e The mean is zero.

e The variance is constant, Var = od& = 0.0005320. This enables us to
calculate the volatility, ¢ = 0.0001330.

e This series is stationary.

e Features such as the economic turbulence of the 1930s and ‘Black Monday’
are seen in proportion.

This is now essentially just Bachelier’s model adapted for an exponentially
rising mean. This is known as the log-normal model. In the following I investi-
gate firstly if this indeed normal. Since we are interested in the fluctuations in
the index we take Z(&) as our starting point and assemble seven datasets with
& ranging from 1 to 64 days in logarithmically equally spaced intervals. This
gives datasets with from 16384 down to 256 values and a reasonable span over
which to observe scaling behaviour.

2Also W4 — W. and W}, — W, are independent for a < b < ¢ < d.
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2.2.2 Probability Distribution Of Z(&)

First we plot the probability distribution of Z(d&) for all values of &, this is
shown on page 19.3

We observe that the distributions are approximately bell-shaped but highly
peaked with mean, median and mode not significantly non-zero and standard
deviation increasing with &.*

For comparison, the probability distribution of Z(&) is plotted for each &
alongside the theoretical normal distribution with the same mean and standard
deviation. This is shown on pages 20 and 21. This shows that the distributions
are more peaked centrally than for the normal model — this is due to the
presence of outliers which are most apparent for the larger values of 6t. It
is possible that the distributions could be Lévy but the statistics involved is
beyond the level here. The kurtosis of the distributions ranges from 5 to 22,
generally decreasing as the 0t increases in line with the predictions that the
distribution tends to a normal (zero kurtosis) as the time interval increases.

2.2.3 Scaling Behaviour

To begin with we restrict ourselves to looking at the ‘probability of return’ P(0),
where

P(0) =Pr(Z =0) =Pr(lny(t) —Iny(t — &) = 0) = Pr(dy = 0)

is the probability that the index remains unchanged after a period &. This is
plotted against & on page 22. We find that

In P(0) = —1.403 — 0.3479log, &, r = 0.98
which can be rearranged to give
P(0) = 0.24598 0-5019,

A scaling power law behaviour is observed over 1% orders of magnitude. The
exponent of approximately 0.5 is indicative of normal scaling.

We now extend this to look for scaling behaviour over the whole range of Z,
although we restrict ourselves to the case & = 1 for simplicity since this is the
largest dataset. Following Mandlebrot’s analysis of cotton prices we calculate
the frequency of the fractional change. That is we look at how many times the
index changed by 0-5%, 5-10% etc. and plot this on a log-log graph. This is
shown on 23. Putting

ot
)
and N(FE) the number of events of size E we find that

In N(E) = 0.2128 — 0.8563In E, 7 = 0.88

30nly the range —2.0 < Z < 2.0 is shown although there are outliers.
4To be precise sd = 0.0015 + 0.013 log, &, = 0.96
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which rearranges to
N(E) = 1.237E™%8%63,

That is to say that, in an analogue of the Gutenberg-Richter law, the number
of index movements of size E is proportional to the size of the movement raised
to some power. This is the key feature of SOC. There is no characteristic
fluctuation sixe, there is a smooth transition from small events to large ones.

As a final note we confirm the fractal (scale-less) nature of the process y(t)
by considering it to be a path (a temporal profile) and calculate the total path
length, L(dt), given by

214 /5
L&) = > |y(t) —y(t—&)|.
i=1
On page 24 is plotted log, L(&) against log, &. We find
log, L(&) = 13.18 — 0.4691 log, &, r = 1.0
which can be rearranged to
L(&,) — 213.18&_—0.4691.

Total length increases as we ‘zoom in’, that is L(d&) — oo as & — oo. Hence
the fractal dimension of the temporal profile of y(t) is 1.47, this is higher than
most coastlines (eg. Britain’s coast has a fractal dimension of 1.25) and is about
the same as the Koch curve with N = 8, r = 1/4. This suggests that there are
cycles of many orders, seasonal, annual, three yearly, five yearly, twenty yearly
and longer as well as further intermediate cycles.
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3 Conclusion

The variations of the S&P 500 exhibit scaling behaviour over the range 1 day
to 64 days. The scaling behaviour exhibited by the probability of return sug-
gests normal behaviour but the frequency distributions are non-Gaussian. A
x-squared test could be implemented to see whether or not the distributions are
significantly non-Gaussian or the data could be modelled to a Lévy distribution.
The temporal profile of the index has a fractal dimension of 1.47 indicating that
this is a highly non-smooth process. The frequency of percentage changes fol-
lows a power law spectrum with a smooth transition from large to small events.
In summary, the S&P 500 is in a critical state, indeed a self-organized critical
state since there cannot be any fine-tuning involved.

Firstly this tells us that the basic model of geometric Brownian motion with
drift may need to be modified to allow the W; term to follow a non-Gaussian
distribution such as a Lévy distribution. This model leads us to consider large
fluctuations as not necessarily having specific large causes. At this point it is
worth discussing certain incidents in the history of the stock market.

From the time series plots we can see that the period 1943 to 1953 has less
fluctuations than other periods. There is a general drift upwards and a slight
peak at the end of the war but otherwise this part of the plot is very smooth.
Also, immediately apparent on the plot of first differences of the logged index,
is the ‘Black Monday’ crash of October 1987. Another incident (not part of
this analysis) is the collapse of the Eastasian tiger economies recently. I draw
analogies between these three events and their counterparts on a sand pile.

The war can be considered to be an external factor affecting the system.
Much like wetting the sand pile the economy slows down and less avalanches/
fluctuations occur and are generally smaller in size. At the time of Black Monday
it was apparent to some that prices were artificially high and that there would
soon be a crash (James Goldsmith for instance withdrew completely from the
market). In the sand pile model someone standing underneath a cliff that has
been building up and looks unstable would similarly get out. In the case of the
collapse of the Eastasian economies this was caused by George Soros, and others,
‘pummeling the currencies’ (as one newspaper put it). This can be thought of
as an individual dropping a lot of sand at one point until it collapses. The point
of the analogy is that the system is perturbed by an external agent but returns
to a critical state (with a different slope/exponent in the power law) because
this is an attractor for the dynamics.

This also highlights a flaw in attempting to model systems where the indi-
vidual units have free will. In most cases this makes no difference but in the case
of James Goldsmith/the person under the cliff, their observations of the system
can affect the system and actually alter cause a catastrophe. It does not appear
that this is successfully incorporated into the model at present. This is where
we can return to looking at the local dynamics. Although the theory states that
in general it is not possible to predict catastrophes (only their frequency) we
can consider the situation locally. If the slope of the sand pile at a particular
point is greater or less than the slope in general then we can get out of the way
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(cash in our options) or dump more sand on (invest) respectively. We are then
more likely to avoid catastrophe(cut our losses or make a profit). How we can
quantify the slope of the sand pile in terms of the financial market is therefore
worth investigating. One idea would be to calculate the fractional dimension
of the temporal profile as a function of time and consider its correlogram. In
short, more work needs to be done before we make money from this.
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