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1. Introduction

Until a decade ago the focus of most macro econometric and financial time series modeling centered around

the conditional first moments, with any temporal dependencies in the higher order moments treated as a nuisance.

The increased importance played by risk and uncertainty considerations in modern economic theory, however, have

necessitated the development of new econometric time series techniques that allow for the modeling of time varying

variances and covariances. Given the apparent lack of any structural dynamic economic theory explaining the

variation in higher order moments, particularly instrumental in this development has been the AutoRegressive

Conditional Heteroskedastic (ARCH) class of models introduced by Engle (1982). Parallel to the success of standard

linear time series models, arising from the use of the conditional versus the unconditional mean, the key insight

offered by the ARCH model lies in the distinction between theconditional and theunconditional second order

moments. While the unconditional covariance matrix for the variables of interest may be time invariant, the

conditional variances and covariances often depend non-trivially on the past states of the world. Understanding the

exact nature of this temporal dependence is crucially important for many issues in macroeconomics and finance, such

as irreversible investments, option pricing, the term structure of interest rates, and general dynamic asset pricing

relationships. Also, from the perspective of econometric inference, the loss in asymptotic efficiency from neglected

heteroskedasticity may be arbitrarily large, and when evaluating economic forecasts, a much more accurate estimate

of the forecast error uncertainty is generally available by conditioning on the current information set.

1.1. Definitions

Let {εt(θ)} denote a discrete time stochastic process with conditional mean and variance functions

parameterized by the finite dimensional vectorθ∈Θ⊆ Rm, whereθ0 denotes the true value. For notational simplicity

we shall initially assume thatεt(θ) is a scalar, with the obvious extensions to a multivariate framework treated in

section 6. Also, let Et-1( ) denote the mathematical expectation conditional on the past of the process along with any

other information available at time t-1.

The {εt(θ0)} process is then defined to follow an ARCH model if the conditional mean equals zero,

(1.1) Et-1(εt(θ0)) = 0 t = 1, 2, ... ,
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but the conditional variance,

(1.2) σ t
2(θ0) ≡ Vart-1(εt(θ0)) = Et-1(ε t

2(θ0)), t = 1, 2, ... ,

depends non-trivially on the sigma-field generated by the past observations; i.e., {εt-1(θ0),

εt-2(θ0),... }. When obvious from the context, the explicit dependence on the parameters,θ, will be suppressed for

notational convenience. Also, in the multivariate case the corresponding time varying conditional covariance matrix

will be denoted byΩt.

In much of the subsequent discussion we shall focus directly on the {εt} process, but the same ideas extend

directly to the situation in which {εt} corresponds to the innovations from some more elaborate econometric model.

In particular, let {yt(θ0)} denote the stochastic process of interest with conditional mean

(1.3) µt(θ0) ≡ Et-1(yt) t = 1, 2, ... .

Note, by the timing convention bothµt(θ0) andσt
2(θ0) are measurable with respect to the time t-1 information set.

Define the {εt(θ0)} process by,

(1.4) εt(θ0) ≡ yt - µt(θ0) t = 1, 2, ... .

The conditional variances for {εt} then equals the conditional variance for the {yt} process. Since very few economic

and financial time series have a constant conditional mean of zero, most of the empirical applications of the ARCH

methodology actually fall within this framework.

Returning to the definitions in equations (1.1) and (1.2), it follows that the standardized process,

(1.5) zt(θ0) ≡ εt(θ0)σ t
2(θ0)

-1/2 t = 1, 2, ... ,

will have conditional mean zero, and a time invariant conditional variance of unity. This observation forms the basis

for most of the inference procedures that underlie the applications of ARCH type models.

If the conditional distribution for zt is furthermore assumed to be time invariant with a finite fourth moment,

it follows by Jensen’s inequality that,
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E(ε t
4) = E(zt

4)E(σ t
4) ≥ E(zt

4)E(σt
2)2 = E(zt

4)E(ε t
2)2,

where the equality holds true for a constant conditional variance only. Given a normal distribution for the

standardized innovations in equation (1.5), the unconditional distribution forεt is therefore leptokurtic.

The setup in equations (1.1) through (1.4) is extremely general and does not lend itself directly to empirical

implementation without first imposing any further restrictions on the temporal dependencies in the conditional mean

and variance functions. Below we shall discuss some of the most practical and popular such ARCH formulations for

the conditional variance. While the first empirical applications of the ARCH class of models were concerned with

modeling inflationary uncertainty, the methodology have subsequently found especially wide use in capturing the

temporal dependencies in asset returns. For a recent survey of this extensive empirical literature we refer to

Bollerslev, Chou and Kroner (1992).

1.2. Empirical Regularities of Asset Returns

Even in the univariate case, the array of functional forms permitted by equation (1.2) is vast, and infinitely

larger than can be accommodated by any parametric family of ARCH models. Clearly, to have any hope of selecting

an appropriate ARCH model, we must have a good idea of what empirical regularities the model should capture.

Thus, a brief discussion of some of the important regularities for asset returns volatility follows.

i. Thick Tails

Asset returns tend to be leptokurtic. The documentation of this empirical regularity by Mandelbrot (1963),

Fama (1965) and others led to a large literature on modelling stock returns as i.i.d. draws from thick-tailed

distributions; see e.g., Mandelbrot (1963), Fama (1963, 1965), Clark (1973), and Blattberg and Gonedes (1974).

ii. Volatility Clustering

As Mandelbrot (1963) wrote:

". . . large changes tend to be followed by large changes, of either sign, and small changes tend to be
followed by small changes . . . ."

This volatility clustering phenomenon is immediately apparent when asset returns are plotted through time. To

illustrate, figure 1 plots the daily capital gains on the Standard 90 composite stock index from 1928-1952 combined
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with the Standard and Poor’s 500 index from 1953-1990. The returns are expressed in percent, and are continuously

Figure 1

compounded. It is clear from visual inspection of the figure, and any reasonable statistical test, that the returns are

not i.i.d. through time. For example, volatility was clearly higher during the 1930’s than during the 1960’s, as

confirmed by the estimation results reported in French, Schwert and Stambaugh (1987).

A similar message is contained in figure 2, which plots the daily percentage Deutschemark/U.S. Dollar

exchange rate appreciation. Distinct periods of exchange market turbulence and tranquility are immediately evident.

We shall return to a formal analysis of both of these two time series in section 9 below.

Volatility clustering and thick tailed returns are intimately related. As noted in section 1.1 above, if the

unconditional kurtosis ofεt is finite, E(ε t
4)/[E(ε t

2)]2 ≥ E(zt
4), where the last inequality is strict unlessσt is constant.

Excess kurtosis inεt can therefore arise from randomness inσt, from excess kurtosis in the conditional distribution

of εt, i.e., in zt, or from both.
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iii. Leverage Effects

Figure 2

The so-called "leverage effect," first noted by Black (1976), refers to the tendency for changes in stock prices

to be negatively correlated with changes in stock volatility. Fixed costs such as financial and operating leverage

provide a partial explanation for this phenomenon. A firm with debt and equity outstanding typically becomes more

highly leveraged when the value of the firm falls. This raises equity returns volatility if the returns on the firm as

a whole is constant. Black (1976), however, argued that the response of stock volatility to the direction of returns

is too large to be explained by leverage alone. This conclusion is also supported by the empirical work of Christie

(1982) and Schwert (1989b).

iv. Non-Trading Periods

Information that accumulates when financial markets are closed is reflected in prices after the markets reopen.

If, for example, information accumulates at a constant rate over calendar time, then the variance of returns over the
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period from the Friday close to the Monday close should be three times the variance from the Monday close to the

Tuesday close. Fama (1965) and French and Roll (1986) have found, however, that information accumulates more

slowly when the markets are closed than when they are open. Variances are higher following weekends and holidays

than on other days, but not nearly by as much as would be expected if the news arrival rate were constant. For

instance, using data on daily returns across all NYSE and AMEX stocks from 1963-1982, French and Roll (1986)

find that volatility is 70 times higher per hour on average when the market is open than when it is closed. Baillie

and Bollerslev (1989) report qualitatively similar results for foreign exchange rates.

v. Forecastable Events

Not surprisingly, forecastable releases of important information are associated with high ex ante volatility. For

example, Cornell (1978), and Patell and Wolfson (1979, 1981) show that individual firm’s stock returns volatility

is high around earnings announcements. Similarly, Harvey and Huang (1991, 1992) find that fixed income and

foreign exchange volatility is higher during periods of heavy trading by central banks or when macroeconomic news

is being released.

There are also important predictable changes in volatility across the trading day. For example, volatility is

typically much higher at the open and close of stock and foreign exchange trading than during the middle of the day.

This pattern has been documented by Harris (1986), Gerity and Mulherin (1992), Baillie and Bollerslev (1991)

among others. The increase in volatility at the open at least partly reflects information accumulated while the market

was closed. The volatility surge at the close is less easily interpreted.

vi. Volatility and Serial Correlation

LeBaron (1992) finds a strong inverse relation between volatility and serial correlation for U.S. stock indices.

This finding appears remarkably robust to the choice of sample period, market index, measurement interval, and

volatility measure. Kim (1989) documents a similar relationship in foreign exchange rate data.

vii. Co-Movements in Volatilities

Black (1976) observed that:

"...there is a lot of commonality in volatility changes across stocks: a 1% market volatility change
typically implies a 1% volatility change for each stock. Well, perhaps the high volatility stocks are
somewhat more sensitive to market volatility changes than the low volatility stocks. In general it
seems fair to say that when stock volatilities change, they all tend to change in the same direction."
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Diebold and Nerlove (1989) and Harvey, Ruiz, and Sentana (1992) also argue for the existence of a few

common factors explaining exchange rate volatility movements. Engle, Ng, and Rothschild (1990) show that U.S.

bond volatility changes are closely linked across maturities. This commonality of volatility changes holds not only

across assets within a market, but alsoacross different markets. For example, Schwert (1989a) finds that U.S. stock

and bond volatilities move together, while Engle and Susmel (1993) and Hamao, Masulis, and Ng (1990) discover

close links between volatility changes across international stock markets. The importance of international linkages

have been further explored by King, Sentana, and Wadhwani (1990), Engle, Ito and Lin (1990), and Lin, Engle, and

Ito (1991).

That volatilities move together should be encouraging to model builders, since it indicates that a few common

factors may explain much of the temporal variation in the conditional variances and covariances of asset returns.

This forms the basis for the factor ARCH models discussed in section 6.2 below.

viii. Macroeconomic Variables and Volatility

Since stock values are closely tied to the health of the economy, it is natural to expect that measures of

macroeconomic uncertainty such as the conditional variances of industrial production, interest rates, money growth,

etc. should help explain changes in stock market volatility. Schwert (1989a,b) finds that although stock volatility

rises sharply during recessions and financial crises, and drops during expansions, the relation between macroeconomic

uncertainty and stock volatility is surprisingly weak. Glosten, Jagannathan, and Runkle (1993), on the other hand,

uncover a strong positive relationship between stock return volatility and interest rates.

1.3. Univariate Parametric Models

i. GARCH

Numerous parametric specifications for the time varying conditional variance have been proposed in the

literature. In the linear ARCH(q) model originally introduced by Engle (1982), the conditional variance is postulated

to be a linear function of the past q squared innovations,

(1.6) σ t
2 = ω + ∑i=1,qα iε t

2
-i ≡ ω + α(L)ε t

2
-1,

where L denotes the lag or backshift operator, Liyt ≡ yt-i. Of course, for this model to be well defined and the
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conditional variance positive almost surely the parameters must satisfyω>0 andα1≥0,...,αq≥0.

Defining νt ≡ εt
2 - σ t

2, the ARCH(q) model in (1.6) may be re-written as

(1.7) ε t
2 = ω + α(L)ε t

2
-1 + νt.

Since Et-1(νt) = 0, the model corresponds directly to an AR(q) model for the squared innovations,ε t
2. The process

is covariance stationary if and only if the sum of the positive autoregressive parameters is less than one, in which

case the unconditional variance equals Var(εt) ≡ σ2 = ω/(1-α1+...+αq).

Even though theεt’s are serially uncorrelated, they are clearly not independent through time. In accordance

with the stylized facts for asset returns discussed above, there is a tendency for large (small) absolute values of the

process to be followed by other large (small) values of unpredictable sign. Also, as noted above, if the distribution

for the standardized innovations in equation (1.5) is assumed to be time invariant, the unconditional distribution for

εt will have fatter tails than the distribution for zt. For instance, for the ARCH(1) model with conditionally normally

distributed errors, E(ε t
4)/E(ε t

2)2 = 3(1−α1
2)/(1-3α1

2) if 3α1
2 < 1, and E(ε t

4)/E(ε t
2)2 = ∞ otherwise; both of which exceed

the normal value of three.

Alternatively the ARCH(q) model may also be represented as a time varying parameter MA(q) model forεt,

(1.8) εt = ω + α(L)ζ t-1εt-1,

where {ζ t} denotes a scalar i.i.d. stochastic process with mean zero and variance one. Time varying parameter

models have a long history in econometrics and statistics. The appeal of the observational equivalent formulation

in equation (1.6) stems from the explicit focus on the time varying conditional variance of the process. For discussion

of this interpretation of ARCH models, see, e.g., Tsay (1987) and Bera, Higgins and Lee (1992), and Bera and Lee

(1993).

In empirical applications of ARCH(q) a long lag length and a large number of parameters is often called for.

To circumvent this problem Bollerslev (1986) proposed the Generalized ARCH, or GARCH(p,q), model,

(1.9) σ t
2 = ω + ∑i=1,qα iε t

2
-i + ∑j=1,pβjσ t

2
-j ≡ ω + α(L)ε t

2
-1 + β(L)σ t

2
-1.
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For the conditional variance in the GARCH(p,q) model to be well defined all the coefficients in the corresponding

infinite order linear ARCH model must be positive. Provided thatα(L) and β(L) have no common roots and that

the roots of the polynomialβ(x)=1 lie outside the unit circle, this positivity constraint is satisfied if and only if all

the coefficients in the infinite power series expansion forα(x)/(1-β(x)) are non-negative. Necessary and sufficient

conditions for this are given in Nelson and Cao (1992). For the simple GARCH(1,1) model almost sure positivity

of σt
2 requires thatω≥0, α1≥0 and 0≤β1.

Rearranging the GARCH(p,q) model as in equation (1.7), it follows that

(1.10) ε t
2 = ω + (α(L)+β(L))ε t

2
-1 - β(L)νt-1 + νt,

which defines an ARMA(max(p,q),p) model forε t
2. By standard arguments, the model is covariance stationary if

and only if all the roots ofα(x)+β(x)=1 lie outside the unit circle; see Bollerslev (1986) for a formal proof. In many

applications with high frequency financial data the estimate forα(1)+β(1) turn out to be very close to unity. This

provides an empirical motivation for the so-called Integrated GARCH(p,q), or IGARCH(p,q), model introduced by

Engle and Bollerslev (1986). In the IGARCH class of models the autoregressive polynomial in equation (1.10) has

a unit root, and consequently a shock to the conditional variance is persistent in the sense that it remains important

for future forecasts of all horizons. Further discussion of stationarity conditions and issues of persistence are given

in section 3 below.

Just as an ARMA model often leads to a more parsimonious representation of the temporal dependencies in

the conditional mean than an AR model, the GARCH(p,q) formulation in equation (1.9) provides a similar added

flexibility over the linear ARCH(q) model when parameterizing the conditional variance. This analogy to the ARMA

class of models also allows for the use of standard time series techniques in the identification of the orders p and

q as discussed in Bollerslev (1988). Because of the higher order dependencies in theνt process, standard Box and

Jenkins (1976) inference procedures will generally be very inefficient, however. Also, as noted above, in most

empirical applications with finely sampled data, the simple GARCH(1,1) model with ˆα1+β̂1 close to one is found

to provide a good description of the data. Possible explanations for this phenomenon are discussed in sections 4 and

5 below.
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ii. EGARCH

GARCH successfully captures thick tailed returns, and volatility clustering, and can readily be modified to

allow for several other stylized facts, such as non-trading periods and predictable information releases. It is not well

suited to capture the "leverage effect," however, since the conditional variance in equation (1.9) is a function only

of the magnitudes of the lagged residuals and not their signs.

In the Exponential GARCH (EGARCH) model of Nelson (1991),σt
2 depends on both the size and the sign

of lagged residuals. In particular,

(1.11) ln(σt
2) = ω + (1 + Σi=1,qα iL

i)(1 - Σj=1,pβjL
j)-1(θzt-1 + γ[ zt-1 -E zt-1 ]).

Thus, {ln(σt
2)} follows an ARMA(p,q) process, with the usual ARMA stationarity conditions. Formulas for the

higher order moments ofεt are given in Nelson (1991). As in the GARCH case,ω can easily be made a function

of time to accommodate the effect of any non-trading periods or forecastable events.

iii. Other Univariate Parameterizations

Though our list of stylized facts regarding asset volatility narrows the field of candidate ARCH models

somewhat, the number of possible formulations is still vast. For example, to capture volatility clustering, GARCH

assumes that the conditional varianceσt
2 equals a distributed lag of squared residuals. An equally natural assumption,

employed by Taylor (1986) and Schwert (1989a,b), is that the conditional standard deviationσt is a distributed lag

of absolute residuals, as in

(1.12) σt = ω + Σi=1,qα i εt-i + Σj=1,pβjσt-j.

Higgins and Bera (1992) nest the GARCH model and (1.12) in the class of Non-linear ARCH (NARCH)

models:

(1.13) σt
γ = ω + Σi=1,qα i εt-i γ + Σj=1,pβjσt-j

γ.

If (1.13) is modified further by setting

(1.14) σt
γ = ω + Σi=1,qα i εt-i - κ γ + Σj=1,pβjσt-j

γ,
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for some non-zeroκ, the innovations inσt
γ will depend on the size as well as the sign of lagged residuals, thereby

allowing for the leverage effect in stock return volatility. The formulation in equation (1.14) withγ = 2 is also a

special case of Sentana’s (1991) Quadratic ARCH (QARCH) model, in whichσt
2 is modelled as a quadratic form

in the lagged residuals. A simple version of this model termed asymmetric ARCH, or AARCH, was also proposed

by Engle (1990). In the first order case the AARCH model becomes,

(1.15) σt
2 = ω + αε2

t-1 + δεt-1 + βσ2
t-1

where a negative value ofγmeans that positive returns increase volatility less than negative returns.

Another route to introducing asymmetric effects is to set

(1.16) σt
γ = ω + Σi=1,q [α i

+ I(εt-i>0) εt-i γ + α i
- I(εt-i≤0) εt-i γ] + Σj=1,pβjσt-j

γ,

where I( ) denotes the indicator function. For example the Threshold ARCH (TARCH) model of Zakoian (1990)

corresponds to equation (1.16) withγ = 1. Glosten, Jagannathan, and Runkle (1993) estimate a version of equation

(1.16) with γ = 2. This so-called GJR model allows a quadratic response of volatility to news with different

coefficients for good and bad news, but maintains the assertion that the minimum volatility will result when there

is no news.1

Two additional classes of models have recently been proposed. These models have a somewhat different

intellectual heritage but imply particular forms of conditional heteroskedasticity. The first is the unobserved

components STructural ARCH (STARCH) model of Harvey, Ruiz and Sentana (1992). These are state space models

or factor models in which the innovation is composed of several sources of error where each of the error sources

have heteroskedasticity specifications of the ARCH form. Since the error components cannot be separately observed

given the past observations, the independent variables in the variance equations are not measurable with respect to

the available information set, which complicates inference procedures.2 Following earlier work by Diebold and

1In a comparison study for daily Japanese TOPIX data, Engle and Ng (1992) found that the EGARCH and the GJR formulation were superior
to the AARCH model (1.15) which simply shifted the intercept.

2These models sometimes are also called stochastic volatility models; see Andersen (1992a) for a more formal definition.

11



Nerlove (1989), Harvey, Ruiz and Sentana (1992) propose an estimation strategy based on the Kalman Filter.

To illustrate the issues, consider the factor structure

(1.17) yt = B ft + εt,

whereyt is a nx1 vector of asset returns, ft is a scalar factor with time invariant factor loadings, B, andεt is in nx1

vector of idiosyncratic returns. If the factor follows an ARCH(1) process,

(1.18) σf,t
2 = ω + α f2

t-1,

then new estimation problems arise since ft-1 is not observed, andσ2
f,t is not a conditional variance. The Kalman

Filter gives both Et-1(ft-1) and Vt-1(ft-1), so the proposal by Harvey, Ruiz, and Sentana (1992) is to let the conditional

variance of the factor, which is the state variable in the Kalman Filter, be given by

Et-1σ2
f,t = ω + α [V t-1(ft-1) +{Et-1(ft-1)}

2].

Another important class of models is the SWitching ARCH, or SWARCH, model proposed independently by

Cai (1993) and Hamilton and Susmel(1992). This class of models postulate that there are several different ARCH

models and that the economy switches from one to another following a Markov Chain. In this model there can be

an extremely high volatility process which is responsible for events such as the stock market crash in October 1987.

Since this could happen at any time but with very low probability, the behavior of risk averse agents will take this

into account. The SWARCH model must again be estimated using Kalman Filter techniques.

The richness of the family of parametric ARCH models is both a blessing and a curse. It certainly complicates

the search for the "true" model, and leaves quite a bit of arbitrariness in the model selection stage. On the other hand,

the flexibility of the ARCH class of models means that in the analysis of structural economic models with time

varying volatility, there is a good chance that an appropriate parametric ARCH model can be formulated that will

make the analysis tractable. For example, Campbell and Hentschell (1992) seek to explain the drop in stock prices

associated with an increase in volatility within the context an economic model. In their model, exogenous rises in

stock volatility increase discount rates, lowering stock prices. Using an EGARCH model would have made their

formal analysis intractable, but based on a QARCH formulation the derivations are straightforward.
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1.4. ARCH in Mean Models

Many theories in finance call for an explicit tradeoff between the expected returns and the variance, or the

covariance among the returns. For instance, in Merton’s (1973) intertemporal CAPM model, the expected excess

return on the market portfolio is linear in its conditional variance under the assumption of a representative agent with

log utility. In more general settings, the conditional covariance with an appropriately defined benchmark portfolio

often serves to price the assets. For example, according to the traditional Capital Asset Pricing Model (CAPM) the

excess returns on all risky assets are proportional to the non-diversifiable risk as measured by the covariances with

the market portfolio. Of course, this implies that the expected excess return on the market portfolio is simply

proportional to its own conditional variance as in the univariate Merton (1973) model.

The ARCH in Mean, or ARCH-M, model introduced by Engle, Lilien and Robins (1987) was designed to

capture such relationships. In the ARCH-M model the conditional mean is an explicit function of the conditional

variance,

(1.19) µt(θ) = g(σ t
2(θ),θ),

where the derivative of the g( , ) function with respect to the first element is non-zero. The multivariate extension

of the ARCH-M model, allowing for the explicit influence of conditional covariance terms in the conditional mean

equations, was first considered by Bollerslev, Engle and Wooldridge (1988) in the context of a multivariate CAPM

model. The exact formulation of such multivariate ARCH models is discussed further in section 6 below.

The most commonly employed univariate specifications of the ARCH-M model postulate a linear relationship

in σt or σt
2; e.g., g(σ t

2(θ),θ) = µ + δσt
2. For δ≠0 the risk premium will be time-varying, and could change sign

if µ<0<δ. Note that any time variation inσt will result in serial correlation in the {yt} process.3

Because of the explicit dependence of the conditional mean on the conditional variance and/or covariance,

several unique problems arise in the estimation and testing of ARCH-M models. We shall return to a discussion of

these issues in section 2.2 below.

3The exact form of this serial dependence has been formally analyzed for some simple models in Hong (1991).
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1.5. Nonparametric and Semiparametric Methods

A natural response to the overwhelming variety of parametric univariate ARCH models, is to consider and

estimate nonparametric models. One of the first attempts at this problem was by Pagan and Schwert (1990) who

used a collection of standard nonparametric estimation methods, including kernels, fourier series, and least squares

regressions, to fit models for the relation between y2
t and past yt’s, and then compare the fits with several parametric

formulations Effectively, these models estimate the function f( ) in

(1.20) y2
t = f(yt-1,yt-2,,...,yt-p,θ) + ηt.

Several problems immediately arise in estimating f( ), however. Because of the problems of high dimensionality,

the parameter p must generally be chosen rather small, so that only little temporal smoothing can actually be

achieved directly from (1.20). Secondly, if only squares of the past yt’s are used the asymmetric terms may not

discovered. Thirdly, minimizing the distance between y2
t and ft≡f(yt-1,yt-2,,...,yt-p,θ) is most effective ifηt is

homoskedastic, however, in this case it is highly heteroskedastic. In fact, if ft were the precise conditional

heteroskedasticity, then yt
2ft

-1, andηtft
-1, would be homoskedastic. Thus,ηt has a conditional variance ft

2, so that the

heteroskedasticity is much more severe than in yt. Not only does parameter estimation become inefficient, but the

use of a simple R2 measure as a model selection criterion is inappropriate. An R2 criterion penalizes Generalized

Least Squares or Maximum Likelihood estimators, and corresponds to a loss function which does not even penalize

zero or negative predicted variances. This issue will be discussed in more detail in section 7. Indeed, the net effect

of the empirical analysis for U.S. stock returns conducted in Pagan and Schwert (1990) was that there was in-sample

evidence that the nonparametric models could outperform the GARCH and EGARCH models, but that out-of-sample

the performance deteriorated, and when a proportional loss function was used the superiority of the nonparametric

models also disappeared in-sample.

Any nonparametric estimation method must be sensitive to the above mentioned issues. Gourieroux and

Monfort (1992) introduce a Qualitative Threshold ARCH, or QTARCH, model, which has conditional variance that

is constant over various multivariate observation intervals. For example, divide the space of yt into J intervals and

let Ij(yt) be 1 if yt is in the jth interval. The QTARCH model is then written as,
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(1.21) yt = i=1,p j=1,Jα ij I j(yt-i) + i=1,p j=1,Jβij I j(yt-i)ut-i ,

where ut is taken to be i.i.d. Theα ij parameters govern the mean and theβij parameters govern the variance of the

{y t} process. As the sample size grows, J can be increased and the bins made smaller to approximate any process.

In their most successful application, Gourieroux and Monfort (1992) add a GARCH term resulting in the G-

QTARCH(1) model, with a conditional variance given by

(1.22) σ2
t = ω + β0σ2

t-1 + j=1,JβjI j(yt-1)

Interestingly, the estimates using four years of daily returns on the French stock index (CAC) showed strong evidence

of the leverage effect.

In the same spirit, Engle and Ng (1993) propose and estimate a Partially NonParametric, or PNP, model, which

uses linear splines to estimate the shape of the response to the most recent news. The name of the model reflects

the fact that the long memory component is treated as parametric while the relationship between the news and the

volatility is treated non-parametrically.

The semi-nonparametric series expansion developed in a series of papers by Gallant and Tauchen (1989),

Gallant, Hsieh and Tauchen (1991), and Gallant, Rossi and Tauchen (1992,1993) has also been employed in

characterizing the temporal dependencies in the second order moments of asset returns. A formal description of this

innovative nonparametric procedure is beyond the scope of the present chapter, however.

2. Inference Procedures

2.1. Testing for ARCH

i. Serial Correlation and Lagrange Multiplier Tests

The original Lagrange Multiplier test for ARCH proposed by Engle (1982) is very simple to compute, and

relatively easy to derive. Under the null hypothesis it is assumed that the model is a standard dynamic regression

model which can be written as
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(2.1) yt = xtβ + εt

where xt is a set of weakly exogenous and lagged dependent variables andεt is a Gaussian white noise process,

(2.2) εt It-1 ∼ N(o,σ2),

where It denotes the available information set. Because the null is so easily estimated, the Lagrange Multiplier test

is a natural choice. The alternative hypothesis is that the errors are ARCH(q), as in equation (1.6). A straight

forward derivation of the Lagrange Multiplier test as in Engle(1984) leads to the TR2 test statistic, where the R2 is

computed from the regression ofε2t on a constant andε2t-1,...,ε2t-q. Under the null hypothesis that there is no

ARCH, the test statistic is asymptotically distributed as chi-square distribution with q degrees of freedom.

The intuition behind this test is very clear. If the data are homoskedastic, then the variance cannot be predicted

and variations inε2t will be purely random. However, if ARCH effects are present, large values ofε2t will be

predicted by large values of the past squared residuals.

While this is a simple and widely used statistic, there are several points which should be made. First and most

obvious, if the model in (2.1) is misspecified by omission of a relevant regressor or failure to account for some non-

linearity or serial correlation, it is quite likely that the ARCH test will reject as these errors may induce serial

correlation in the squared errors. Thus, one cannot simply assume that ARCH effects are necessarily present when

the ARCH test rejects. Second, there are several other asymptotically equivalent forms of the test, including the

standard F-test from the above regression. Another versions of the test simply omits the constant but subtracts the

estimate of the unconditional variance,σ2, from the dependent variable, and then uses one half the explained sum

of squares as a test statistic. It is also quite common to use asymptotically equivalent portmanteau tests, such as the

Ljung and Box (1978) statistic, forε2.

As described above, the parameters of the ARCH(q) model must be positive. Hence, the ARCH test could

be formulated as a one tailed test. When q = 1 this is simple to do, but for higher values of q, the procedures are

not as clear. Demos and Sentana (1991) has suggested a one sided ARCH test which is presumably more powerful

than the simple TR2 test described above. Similarly, since we find that the GARCH(1,1) is often a superior model

and is surely more parsimoniously parameterized, one would like a test which is more powerful for this alternative.

The Lagrange Multiplier principle unfortunately does not deliver such a test because for models close to the null,
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α1 andβ1 cannot be separately identified. In fact, the LM test for GARCH(1,1) is just the same as the LM test for

ARCH(1). Lee and King (1993) has proposed a locally most powerful test for ARCH and GARCH.

Of course, Wald type tests for GARCH may also be computed. These too are non-standard, however. The

t-statistic onα1 in the GARCH(1,1) model will not have a t distribution under the null hypothesis since there is no

time varying input andβ1 will be unidentified. Finally, Likelihood Ratio test statistics may be examined, although

again they have an uncertain distribution under the null. Practical experience, however, suggests that the latter is

a very powerful approach to testing for GARCH effects. We shall return to a more detailed discussion of these test

in section 2.2.ii below.

ii. BDS Test for ARCH

The tests for ARCH discussed above are tests for volatility clustering rather than general conditional

heteroskedasticity, or general nonlinear dependence. One widely used test for general departures from i.i.d.

observations is the BDS test introduced by Brock, Dechert, and Scheinkman (1987). We will consider only the

univariate version of the test; the multivariate extension is made in Baek and Brock (1992). The BDS test has

inspired quite a large literature and several applications have appeared in the finance area; see e.g., Scheinkman and

LeBaron (1989), Hsieh (1991), and Brock, Hsieh, and LeBaron (1991).

To set up the test, let {xt} t=1,T denote a scalar sequence which under the null hypothesis is assumed to be i.i.d.

through time. Define them-histories of the xt process as the vectors (x1,...xm), (x2,...xm+1), (x3,...xm+2),...,(xT-m,...xT-1),(xT-

m+1,...xT). Clearly, there are T−m+1 such m-histories, and therefore (T-m+1)(T-m)/2 distinct pairs of m-histories. Next,

define thecorrelation integral as the fraction of the distinct pairs of m-histories lying within a distance c in the sup

norm; i.e.,

(2.3) Cm,T(c) ≡ [(T-m+1)(T-m)/2]-1 Σt=m,sΣs=m,TI(maxj=0,m-1 xt-j-xs-j <c).

Under weak dependence conditions, Cm,T(c) converges almost surely to a limit Cm(c). By the basic properties of

order-statistics, Cm(c) = C1(c)m when {xt} is i.i.d.. The BDS test is based on the difference, [Cm,T(c) - C1,T(c)m].

Intuitively, Cm,T(c) > C1,T(c)m means that when xt-j and xs-j are "close" for j = 1 to m-1, i.e., maxj=1,m-1 xt-j-xs-j <c,
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then xt and xs are more likely than average to be close also. In other words, nearest-neighbor methods work in

predicting the {xt} series, which is inconsistent with the i.i.d. assumption.4

Brock, Dechert, and Scheinkman (1987) show that for fixed m and c, T1/2[Cm,T(c) - C1,T(c)m] is asymptotically

normal with mean zero and variance V(m,c) given by

(2.4) V(m,c)≡ 4[K(c)m + 2 Σj=1,m-1K(c)m-jC1(c)2j + (m-1)2C1(c)2m - m2K(c)C1(c)2m-2],

where K(c) = E[(F(xt+c)-F(xt-c))2], and F( ) is the cumulative distribution function of xt. The BDS test is then

computed as

(2.5) T1/2[Cm,T(c) - C1,T(c)m]/V^ (T,m,c),

where V^ (T,m,c) denotes a consistent estimator of V(m,c), details of which are given by Brock, Dechert, and

Scheinkman (1987) and Brock, Hsieh, and LeBaron (1991). For fixed m≥ 2 and c > 0, the BDSstatistic in equation

(2.5) is asymptotically standard normal.

The BDS test has power against many, though not all, departures from i.i.d.. In particular, as documented by

Brock, Hsieh and LeBaron (1991) and Hsieh (1991), the power against ARCH alternatives is close to Engle’s (1982)

test. For other conditionally heteroskedastic alternatives, the power of the BDS test may be superior. To illustrate,

consider the following example from Brock, Hsieh and LeBaron (1991), whereσt
2 is deterministically determined

by the tent map,

(2.6) σt+1
2 = 1 - 2 σt

2-0.5 ,

with σ0
2 ∈ (0,1). The model is clearly heteroskedastic, but does not exhibit volatility clustering, since the empirical

serial correlations of {σt
2} approach zero in large samples for almost all values ofσ0

2.

In order to actually implement the BDS test a choice has to be made regarding the values of m and c. The

4 Cm,T(c) < C1,T(c)m indicates the reverse of nearest neighbors predictability. It is important not to push the nearest neighbors analogy too far,
however. For example, suppose {xt} is an ARCH process with a constant conditional mean of 0. In this case, the conditional mean of xt is always
0, and the nearest-neighbors analogy breaks down for minimum mean-squared-error forecasting of xt. It still holds for forecasting, say, the
probability that xt lies in some interval.
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Monte Carlo experiments of Brock, Hsieh, and LeBaron (1991) suggest that c should be between 1/2 and 2 standard

deviations of the data, and that T/m should be greater than 200 with m no greater than 5. For the asymptotic

distribution to be a good approximation to the finite-sample behavior of the BDS test a sample size of at least 500

observations is required.

Since the BDS test is a test for i.i.d., it requires some adaptation in testing for ARCH errors in the presence

of time-varying conditional means. One of the most convenient properties of the BDS test is that unlike many other

diagnostic tests, including the portmanteau statistic, its distribution is unchanged when applied to residuals from a

linear model. If, for example, the null hypothesis is a stationary, invertible, ARMA model with i.i.d. errors and the

alternative hypothesis is the same ARMA model but with ARCH errors, the standard BDS test remains valid when

applied to the fitted residuals from the homoskedastic ARMA model. A similar invariance property holds for

residuals from a wide variety of nonlinear regression models, but as discussed in section 2.4.ii below, this does not

carry over to the standardized residuals from a fitted ARCH model. Of course, the BDS test may reject due to

misspecification of the conditional mean rather than ARCH effects in the errors. The same is true, however, of the

simple TR2 Lagrange Multiplier test for ARCH, which has power against a wide variety of non-linear alternatives.

2.2. Maximum Likelihood Methods

i. Estimation

The procedure most often used in estimatingθ0 in ARCH models involves the maximization of a likelihood

function constructed under the auxiliary assumption of an i.i.d. distribution for the standardized innovations in

equation (1.5). In particular, let f(zt;η) denote the density function for zt(θ)≡εt(θ)/σt(θ) with mean zero, variance

one, and nuisance parametersη∈Η⊆ Rk. Also, let {yT,yT-1,...,y1} refer to the sample realizations from an ARCH model

as defined by equations (1.1) through (1.4), andψ′≡(θ′,η′ ) the combined (m+k)×1 parameter vector to be estimated

for the conditional mean, variance and density functions.

The log likelihood function for the tth observation is then given by,

(2.7) lt(yt;ψ) ≡ ln(f(zt(θ);η)) - 0.5ln(σ t
2(θ)) t = 1, 2, ... .
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The second term on the right hand side is a Jacobian that arises in the transformation from the standardized

innovations, zt(θ), to the observables, yt(θ).5 By a standard prediction error decomposition argument, the log

likelihood function for the full sample equals the sum of the conditional log likelihoods in equation (2.7),6

(2.8) LT(yT,yT-1,...,y1;ψ) = ∑t=1,Tlt(yt;ψ).

The maximum likelihood estimator (MLE) for the true parametersψ0′≡(θ0′,η0′), say ψ̂T, is found by the

maximization of equation (2.8).

Assuming the conditional density, and the mean and variance functions to be differentiable for allψ∈Θ×Η≡Ψ ,

ψ̂T therefore solves

(2.9) ST(yT,yT-1,...,y1;ψ) ≡ ∑t=1,Tst(yt;ψ) = 0,

where st(yt;ψ) ≡ ∇ ψlt(yt;ψ) is the score vector for the tth observation. In particular, for the conditional mean and

variance parameters,

(2.10) ∇ θlt(yt;ψ) = f(zt(θ);η)-1f′(zt(θ);η)∇ θzt(θ) - 0.5σt
-2(θ)∇ θσt

2(θ)

where f′(zt(θ);η) denotes the derivative of the density function with respect to the first element, and

(2.11) ∇ θzt(θ) = -∇ θµt(θ)σt
-1(θ) - 0.5εt(θ)σt

-3(θ)∇ θσt
2(θ).

In practice the actual solution to the set of m+k non-linear equations in (2.9) will have to proceed by numerical

techniques. Engle (1982) and Bollerslev (1986) provide a discussion of some of the alternative iterative procedures

that have been successfully employed in the estimation of ARCH models.

Of course, the actual implementation of the maximum likelihood procedure requires an explicit assumption

regarding the conditional density in equation (2.7). By far the most commonly employed distribution in the literature

5In the multivariate context, lt(yt;ψ) ≡ ln(f(εt(θ)Ωt(θ)-1/2;η)) - 0.5ln( Ωt(θ) ), where denotes the determinant.

6In most empirical applications the likelihood function is conditioned on a number of initial observations and nuisance parameters in order to
start up the recursions for the conditional mean and variance functions. Subject to proper stationarity conditions this practice does not alter the
asymptotic distribution of the resulting MLE.
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is the normal,

(2.12) f(zt(θ)) = (2π)-1/2exp(-0.5zt(θ)2).

Since the normal distribution is uniquely determined by its first two moments, only the conditional mean and

variance parameters enter the likelihood function in equation (2.8); i.e.,ψ≡θ. If the conditional mean and variance

functions are both differentiable for allθ∈Θ , it follows that the score vector in equation (2.10) takes the simple

form,

(2.13) st(yt;θ) = ∇ θµt(θ) εt(θ)σt
-1(θ) + 0.5 ∇ θσt

2(θ) σt
-1(θ) (εt(θ)2σt

-2(θ) - 1).

From the discussion in section 2.1 the ARCH model with conditionally normal errors results in a leptokurtic

unconditional distribution. However, the degree of leptokurtosis induced by the time varying conditional variance

often does not capture all of the leptokurtosis present in high frequency speculative prices. To circumvent this

problem Bollerslev (1987) suggested using a standardized t-distribution withη>2 degrees of freedom,

(2.14) f(zt(θ);η) = Γ(0.5(η+1))Γ(0.5η)-1(η-2)-1/2[1+zt(θ)(η-2)-1]-(η+1)/2,

whereΓ( ) denotes the gamma function. The t-distribution is symmetric around zero, and converges to the normal

distribution forη→∞. However, for 4<η<∞ the conditional kurtosis equals 3(η-2)/(η-4), which exceeds the normal

value of three.

Several other conditional distributions have been employed in the literature to fully capture the degree of tail

fatness in speculative prices. The density function for the Generalized Error Distribution (GED) used in Nelson

(1991) is given by:

(2.15) f(zt(θ);η) = ηλ -12-(1+1/η)Γ(η-1)-1exp(-0.5 zt(θ)λ-1 η)

where

(2.16) λ = [2(-2/η)Γ(η-1)Γ(3η-1)-1]1/2.
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For the tail-thickness parameterη=2 the density equals the standard normal density in equation (2.10). Forη<2 the

distribution has thicker tails that the normal, whileη>2 results in a distribution with thinner tails than the normal.

Both of these candidates for the conditional density impose the restriction of symmetry. From an economic

point of view the hypothesis of symmetry is of interest since risk averse agents will induce correlation between

shocks to the mean and shocks to the variance as developed more fully by Campbell and Hentschel (1992).

Engle and Gonzalez-Rivera(1991) propose to estimate the conditional density nonparametrically. The procedure

they develop first estimates the parameters of the model using the gaussian likelihood. The density of the residuals

standardized by their estimated conditional standard deviations is then estimated using a linear spline with smoothness

priors. The estimated density is then taken to be the true density, and the new likelihood function is maximized.

The use of the linear spline simplifies the estimation in that the derivatives with respect to the conditional density

are easy to compute and store, which would not be the case for kernels or many other methods. In a Monte Carlo

study, this approach improved the efficiency beyond the quasi MLE, particularly when the density was highly non-

normal and skewed.

ii. Testing

The primary appeal of the maximum likelihood technique stems from the well known optimality conditions

of the resulting estimators under ideal conditions. Crowder (1976) gives one set of sufficient regularity conditions

for the MLE in models with dependent observations to be consistent and asymptotically normally distributed.

Verification of these regularity conditions have proven extremely difficult for the general ARCH class of models,

and a formal proof is only available for a few special cases, including the GARCH(1,1) model with E(ln(α1zt
2+β1))<0

in Lumsdaine (1992a).7 The common practice in empirical studies has been to proceed under the assumption that

the necessary regularity conditions are satisfied.

In particular, if the conditional density is correctly specified and the true parameter vectorψ0∈ int(Ψ), then a

central limit theorem argument yields that,

7As discussed in section 3 below, the condition E(ln(α1zt
2+β1))<0 ensures that the GARCH(1,1) model is strictly stationary and ergodic. Note

also, that by Jensen’s inequality E(ln(α1zt
2+β1)) < lnE(α1zt

2+β1) = ln(α1+β1), so the parameter region covers the interesting IGARCH(1,1) case
in which α1+β1=1.
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(2.17) T1/2(ψ̂T-ψ0) → N(0,A0
-1),

where→ denotes convergence in distribution. Again, the technical difficulties in verifying (2.17) are formidable.

The asymptotic covariance matrix for the MLE is equal to the inverse of the information matrix evaluated at the true

parameter vectorψ0,

(2.18) A0 = -T-1∑t=1,TE(∇ ψst(yt;ψ0)).

The inverse of this matrix is less than the asymptotic covariance matrix for all other estimators by a positive definite

matrix. In practice, a consistent estimate for A0 is available by evaluating the corresponding sample analogue at ˆψT;

i.e., replace E(∇ ψst(yt;ψ0)) in equation (2.18) with∇ ψst(yt;ψ̂T). Furthermore, as shown below, the terms with second

derivatives typically have expected value equal to zero and therefore do not need to be calculated.

Under the assumption of a correctly specified conditional density, the information matrix equality implies that

A0=B0, where B0 denotes the expected value of the outer product of the gradients evaluated at the true parameters,

(2.19) B0 = T-1∑t=1,TE(st(yt;ψ0)st(yt;ψ0)’).

The outer product of the sample gradients evaluated at ˆψT therefore provides an alternative covariance matrix

estimator; that is replace the summand in equation (2.19) by the sample analogues st(yt;ψ̂T)st(yt;ψ̂T)′. Since analytical

derivatives in ARCH models often involve very complicated recursive expressions, it is common in empirical

applications to make use of numerical derivatives to approximate their analytical counterparts. The estimator defined

from equation (2.19) has the computational advantage that only first order derivatives are needed, as numerical

second order derivatives are likely to be unstable.8

In many applications of ARCH models the parameter vector may be partitioned asθ′=(θ1′,θ2′) whereθ1 and

θ2 operates a sequential cut onΘ1×Θ2=Θ, such thatθ1 parameterizes the conditional mean andθ2 parameterizes the

conditional variance function for yt. Thus, ∇ θ2µt(θ)=0, and although∇ θ1σt
2(θ)≠0 for all θ∈Θ , it is possible to

8In the Berndt, Hall, Hall and Hausman (1974) algorithm often used in the maximization of the likelihood function, the covariance matrix from
the auxiliary OLS regression in the last iteration provides an estimate of B0. In a small scale Monte Carlo experiment Bollerslev and Wooldridge
(1992) found that this estimator performed reasonably well under ideal conditions.
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show that under fairly general symmetrical distributional assumptions regarding zt and for particular functional forms

of the ARCH conditional variance, the information matrix forθ′=(θ1′,θ2′) becomes block diagonal. Engle (1982)

gives conditions and provides a formal proof for the linear ARCH(q) model in equation (1.6) under the assumption

of conditional normality. As a result, asymptotically efficient estimates forθ02 may be calculated on the basis of a

consistent estimate forθ01, and vice versa. In particular, for the linear regression model with covariance stationary

ARCH disturbances, the regression coefficients may be consistently estimated by OLS, and asymptotically efficient

estimates for the ARCH parameters in the conditional variance calculated on the basis of the OLS regression

residuals. The loss in asymptotic efficiency for the OLS coefficient estimates may be arbitrarily large, however.

Also, the conventional OLS standard errors are generally inappropriate, and should be modified to take account of

the heteroskedasticity as in White (1980). In particular, as noted by Milhφj (1985), Diebold (1987),

Bollerslev(1988), and Stambaugh (1993) when testing for serial correlation in the mean in the presence of ARCH

effects, the conventional Bartlett standard error for the estimated autocorrelations, given by the inverse of the square

root of the sample size, may severely underestimate the true standard error.

There are several important cases in which block-diagonality does not hold. For example, block diagonality

typically fails for functional forms, such as EGARCH, in whichσt
2 is an asymmetric function of lagged residuals.

Another important exception is the ARCH-M class of models discussed in section 1.4. Consistent estimation of the

parameters in ARCH-M models generally requires that both the conditional mean and variance functions be correctly

specified and estimated simultaneously. A formal analysis of these issues are contained in Engle, Lilien and Robins

(1987), Pagan and Hong (1991), Pagan and Sabau (1987a, 1987b), and Pagan and Ullah (1988).

Standard hypothesis testing procedures concerning the true parameter vector are directly available from

equation (2.17). To illustrate, let the null hypothesis of interest be stated as r(ψ0)=0, where r:Θ×Η→R is

differentiable on int(Ψ) and <m+k. Ifψ0∈ int(Ψ) and rank(∇ ψr(ψ0))= , the Wald statistic takes the familiar form

WT = T r(ψ̂T)′[∇ ψr(ψ̂T)CT
-1∇ ψr(ψ̂T)′]-1r(ψ̂T),

where CT denotes a consistent estimator of the covariance matrix for the parameter estimates under the alternative.

If the null hypothesis is true and the regularity conditions are satisfied, the Wald statistic is asymptotically chi-square
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distributed with (m+k)- degrees of freedom.

Similarly, let ψ̂0T denote the MLE under the null hypothesis. The conventional Likelihood Ratio (LR) statistic,

LRT = 2[LT(yT,yT-1,...,y1;ψ̂T) - LT(yT,yT-1,...,y1;ψ̂0T)],

should then be the realization of a chi-square distribution with (m+k)- degrees of freedom if the null hypothesis

is true andψ0∈ int(Ψ).

As discussion already in section 2.1 above, when testing hypotheses about the parameters in the conditional

variance of estimated ARCH models, non-negativity constraints must often be imposed, so thatψ0 is on the boundary

of the admissible parameter space. As a result the two-sided critical value from the standard asymptotic chi-square

distribution will lead to a conservative test; recent discussions of general issues related to testing inequality

constraints are given in Gourieroux, Holly and Monfort (1982), Kodde and Palm (1986) and Wolak (1991).

Another complication that often arises when testing in ARCH models, also alluded to in section 2.1 above,

concerns the lack of identification of certain parameters under the null hypothesis. This in turn leads to a singularity

of the information matrix under the null and a break down of standard testing procedures. For instance, as previously

noted in the GARCH(1,1) modelβ1 andω are not jointly identified under the null hypothesis thatα1=0. Similarly,

in the ARCH-M modelµt(θ) = µ + δσt
2 with µ≠0, the parameterδ is only identified if the conditional variance

is time-varying. Thus, a standard joint test for ARCH effects andδ=0 is not feasible. Of course, such identification

problems are not unique to the ARCH class of models. A general discussion is beyond the scope of the present

chapter, but one possible solution would be to adjust the critical values following the procedure advocated by Davies

(1977), as implemented by Watson and Engle (1985).

The finite sample evidence on the performance of ARCH MLE estimators and test statistics is still fairly

limited, examples of which include Engle, Hendry and Trumble (1985), Bollerslev and Wooldridge (1992) and

Lumsdaine (1992b). For the GARCH(1,1) model with conditional normal errors the available Monte Carlo evidence

suggests that the estimate forα1+β1 is downward biased and skewed to the right in small samples. This bias in

α̂1+β̂1 comes from a downward bias in̂β1, while α̂1 is upward biased. Consistent with the theoretical results in

Lumsdaine (1992a) there appears to be no discontinuity in the finite sample distribution of the estimators at the
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IGARCH(1,1) boundary; i.e.,α1+β1=1. Reliable inference from the LM, Wald and LR test statistics generally does

require moderately large sample sizes of at least two hundred or more observations, however.

2.3. Quasi-Maximum Likelihood Methods

The assumption of conditional normality for the standardized innovations are difficult to justify in many

empirical applications. This has motivated the use of alternative parametric distributional assumptions such as the

densities in equations (2.14) or (2.15). Alternatively, the MLE based on the normal density in equation (2.12) may

be given a quasi-maximum likelihood interpretation.

If the conditional mean and variance functions are correctly specified, the normal quasi-score in equation (2.13)

evaluated at the true parametersθ0 will have the martingale difference property,

(2.20) Et[∇ θµt(θ0)εt(θ0)σt
-2(θ0) + 0.5∇ θσt

2(θ0)σt
-2(θ0)(εt(θ0)

2σt
-2(θ0) - 1)] = 0.

Since equation (2.20) holds for any value of the true parameters, the QMLE obtained by maximizing the conditional

normal likelihood function defined by equations (2.7), (2.8) and (2.12), sayθ̂T,QMLE, is Fisher-consistent; that is

E[ST(yT,yT-1,...,y1;θ)]=0 for any θ∈Θ . Under appropriate regularity conditions this is sufficient to establish

consistency and asymptotic normality ofθ̂T,QMLE. Wooldridge (1993) provides a formal discussion. Furthermore,

following Weiss (1984, 1986), the asymptotic distribution for the QMLE takes the form,

(2.21) T1/2(θ̂T,QMLE-θ0) → N(0,A0
-1B0A0

-1).

Under appropriate, and difficult to verify, regularity conditions, the A0 and B0 matrices are consistently estimated

by the sample counterparts from equations (2.18) and (2.19).

Provided that the first two conditional moments are correctly specified, it follows from equation (2.13) that,

(2.22) Et(∇ θst(yt;θ0)) = -∇ θµt(θ)∇ θµt(θ)′σt
-2(θ) - 1/2∇ θσt

2(θ)∇ θσt
2(θ)′σt

-4(θ).

As pointed out by Bollerslev and Wooldridge (1992), a convenient estimate of the information matrix, A0, involving

only first derivatives is therefore available by replacing the right hand side of equation (2.18) with the sample
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realizations from equation (2.22).

The finite sample distribution of the QMLE and the Wald statistics based on the robust covariance matrix

estimator constructed from equations (2.18), (2.19) and (2.22) have been investigated by Bollerslev and Wooldridge

(1992). For symmetric departures from conditional normality, the QMLE is generally close to the exact MLE.

However, as noted by Engle and Gonzales-Rivera (1991), for non-symmetric conditional distributions both the

asymptotic and the finite sample loss in efficiency may by quite large, and semi-parametric density estimation, as

discussed in section 1.5, may be preferred.

2.4. Specification Checks

i. Lagrange Multiplier Diagnostic Tests

After a model is selected and estimated, it is generally desirable to test whether it adequately represents the

data. A useful array of tests can readily be constructed from calculating Lagrange Multiplier tests against particular

parametric alternatives. Since almost any moment condition can be formulated as the score against some alternative,

these tests may also be interpreted as conditional moment tests; see Newey (1985) and Tauchen (1985) Whenever

one computes a collection of test statistics, the question of the appropriate size of the full procedure arises. It is

generally impossible to control precisely the size of a procedure when there are many correlated test statistics and

conventional econometric practice does not require this. When these tests are viewed as diagnostic tests, they are

simply aids in the model building process and may well be part of a sequential testing procedure anyway. In this

section, we will show how to develop tests against a variety of interesting alternatives to any particular model. We

focus on the simplest and most useful case.

Suppose we have estimated a parametric model with the assumption that each observation is conditionally

normal with mean zero and varianceσ t
2 = σ t

2(θ). Then the score can be written as a special case of (2.13),

(2.23) st(yt,θ) = ∇ θlogσt
2(θ)[ε2t(θ)σt

-2(θ)-1].

In order to conserve space, equation (2.23) may be written more compactly as

(2.24) sθt ≡ xθtut,

where xθt denotes the kx1 vector of derivatives of the log of the conditional variance equation with respect to the
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parametersθ, and ut ≡ ε2t(θ)σt
-2(θ)-1 defines the generalized residuals. From the first order conditions in equation

(2.9), the MLE forθ, θ̂T, solves,

(2.25) ∑t=1,T ŝθt = ∑t=1,T x̂θt ût = 0.

Suppose that the additional set of r parameters represented by the rx1 vectorγwhich have been implicitly set

to zero during estimation. We wish to test whether this restriction is supported by the data. That is, the null

hypothesis may be expressed asγ0=0, whereσ2
t = σ2

t(θ,γ). Also, suppose that the score with respect toγ has the

same form as in equation (2.24),

(2.26) sγt = xγtut.

Under fairly general regularity conditions, the scores themselves when evaluated at the true parameter,θ0, will

generally satisfy a martingale central limit theorem. Therefore,

(2.27) T1/2 sψ(θ0) → N(0,V)

where V = A0 denotes the covariance matrix of the scores. The conventional form of the Lagrange Multiplier test

as in Breusch and Pagan(1979) or Engle(1984) is then given by,

(2.28) ξT = T-1 ∑t=1,T ŝ’ψt V̂-1 ∑t=1,T ŝψt,

whereψ = (θ,γ), hats represent estimates evaluated under the null hypothesis, andV̂ denotes a consistent estimate

of V. As discussed in section 2.2, a convenient estimate of the information matrix is given by the outer product of

the scores,

(2.29) B̂T = T-1Σt=1,T ŝψt ŝ’ψt,

so that the test statistic can be computed in terms of a regression. Specifically, let the Tx1 vector of ones be denoted

ι , and the Tx(k+r) matrix of scores evaluated under the null hypothesis be denoted by Sˆ ’ = {ŝψ1,ŝψ2,...,ŝψT}. Then

a simple form of the LM test is obtained from,

(2.30) ξ1T = ι ’Ŝ (Ŝ’Ŝ)-1 Ŝ’ ι = T R2,

where the R2 is the uncentered fraction of variance explained by the regression of a vector of ones on all the scores.

The test statistic in equation (2.30) is often referred to as the Outer Product of the Gradient, or OPG, version of the

test. It is very easy to compute. In particular, using the BHHH estimation algorithm, the test statistic is simply

obtained by one step of the BHHH algorithm from the maximum achieved under the null hypothesis.
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Studies of this version of the LM test, such as MacKinnon and White(1985) and Bollerslev and

Wooldridge(1992), often find that it has size distortions and is not very powerful as it does not utilize the structure

of the problem under the null hypothesis to obtain the best estimate of the information matrix. Of course the R2 in

(2.30) will be overstated if the likelihood function has not been fully maximized under the null so that (2.25) is not

satisfied. One might recommend a first step correction by BHHH to be certain that this is achieved.

An alternative estimate of V corresponding to equation (2.19) is available from taking expectations of S’S.

In the simplified notation set out here,

(2.31) E(S’S) =Σt=1,T E(ut
2 xt xt’) = E(ut

2) Σt=1,T E(xt x’ t),

where it is assumed that the conditional expectation Et-1(ut
2) is time invariant. Of course, this will be true if the

standardized innovationsεtσt
-1 has a distribution which does not depend upon time or past information, as is

commonly assumed. Consequently, an alternative consistent estimator of V is given by,

(2.32) V̂T = (T-1û’û) (T-1X̂’X̂ ),

where u’ = {u1,...,uT}, X’ = {x 1,...,xT}, and xt’ ={x’ θt,x’γt}. Since ι ’S = u’X, the Lagrange Multiplier test based

on the estimator in equation (2.32) may also be computed from an auxiliary regression,

(2.33) ξ2T = û’X̂ (X̂’X̂ )-1X̂’û = T R2.

Here the regression is of the percentage difference between the squared residuals and the estimated conditional

variance regressed on the gradient of the log of the conditional variance with respect to all the parameters including

those set to zero under the null hypothesis. This test statistic is similar to one step of a Gauss Newton iteration from

an estimate under the null. It is called the Hessian estimate by Bollerslev and Wooldridge (1992) because it can also

be derived by setting components of the Hessian equal to their expected value assuming only that the first two

moments are correctly specified, as discussed in section 2.3. This version of the test has considerable intuitive appeal

as it asks whether there is remaining conditional heteroskedasticity in ut which is a function of xt. It also performed

better than the OPG test in the simulations reported by Bollerslev and Wooldridge (1992). This is also the version

of the test used by Engle and Ng (1992) to compare various model specifications. As noted by Engle and Ng (1992),

the likelihood must be fully maximized under the null if the test is to have the correct size. An approach to deal

with this issues, would be to first regress uˆt on x̂θt and then form the test on the basis of the residuals from this
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regression. The R2 of this regression should be zero if the likelihood is maximized, so this is merely a numerical

procedure to purge the test statistic of contributions from loose convergence criteria.

Both of these procedures develop the asymptotic distribution under the null hypothesis that the model is

correctly specified including the normality assumption. Recently, Wooldridge (1990) and Bollerslev and Wooldridge

(1992) have developed robust LM tests which have the same limiting distribution under any null specifying that the

first two conditional moments are correct. This follows in the line of conditional moment tests for GMM or QMLE

as in Newey (1985), Tauchen (1985) and White (1987, 1992).

To derive these tests, consider the Taylor series expansions of the scores around the true parameter values,

sγ(θ0) and sθ(θ0),

(2.34) T1/2 sγ(θ0) = T1/2 sγ(θ̂T) + ∂sγ/∂θ’ T 1/2 (θ̂T - θ0),

(2.35) T1/2 sθ(θ0) = T1/2 sθ(θ̂T) + ∂sθ/∂θ’ T 1/2 (θ̂T - θ0),

where the derivatives of the scores are evaluated atθ̂T. The derivatives in equations (2.34) and (2.35) are simply

the Hγθ and Hθθ elements of the Hessian, respectively. The distribution of the score with respect toγ evaluated

at θ̂T is readily obtained from the left hand side of equation (2.34). Substituting in (2.35) and using (2.26) to give

the limiting distribution of the scores, it follows that,

(2.36) T1/2 sγ(θ̂T) → N(0,W),

where,

(2.37) W≡ Vγγ - HγθHθθ
-1Vθγ - VγθHθθ

-1Hθγ + HγθHθθ
-1Vθθ Hθθ

-1Hθγ.

Notice first, that if the scores are the derivatives of the true likelihood, then the information matrix equality will hold,

and therefore H=V asymptotically. In this case we get the conventional LM test described in (2.28) and computed

generally either as (2.30) or (2.33). If the normality assumption underlying the likelihood is false so that the

estimates are viewed as quasi maximum likelihood estimators, then the expressions in equations (2.37) and (2.38)

are needed.

As pointed out by Wooldridge (1990), any score which has the additional property that Hθγ converges in

probability to zero can be tested simply as a limiting normal with covariance matrix Vγγ, or as a TR2 type test from

a regression of a vector of ones on ˆsγt. By proper redefinition of the score, such a test can always be constructed.
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To illustrate, suppose that sγt = xγtut, sθt = xθt ut, and∂ut/∂θ = -xθt. Also define,

(2.39) s*γt ≡ (xγt - xp
γt)ut,

where,

(2.40) xp
γt ≡ xθt(∑t=1,Txθtx’ θt)

-1(∑t=1,Txθtx’ γt).

The statistic based on s*γt in equation (2.39) then tests only the part of xγt which is orthogonal to the scores used

to estimate the model under the null hypothesis. This strategy generalizes to more complicated settings as discussed

by Bollerslev and Wooldridge (1992).

ii. BDS Specification Tests

As discussed in section 2.1.ii, the asymptotic distribution of the BDS test is unaffected by passing the data

through a linear, e.g., ARMA, filter. Since an ARCH model typically assumes that the standardized residuals zt ≡

εtσt
-1 are i.i.d., it seems reasonable to use the BDS test as a specification test by applying it to the fitted standardized

residuals from an ARCH model. Fortunately, the BDS test applied to the standardized residuals has considerable

power to detect misspecification in ARCH models. Unfortunately, the asymptotic distribution of the test is strongly

affected by the fitting of the ARCH model. As documented by Brock, Hsieh, and LeBaron (1991) and Hsieh (1991),

BDS tests on the standardized residuals from fitted ARCH models reject much too infrequently. In light of the

filtering properties of misspecified ARCH models, discussed in section 4 below, this may not be too surprising.

The asymptotic distribution of the BDS test for ARCH residuals has not yet been derived. One commonly

employed procedure to get around this problem is to simply simulate the critical values of the test statistic; i.e., in

each replication generate data by Monte Carlo methods from the specific ARCH model, then estimate the ARCH

model and compute the BDS test for the standardized residuals. This approach is obviously very computationally

demanding.

Brock and Potter (1992) suggest another possibility for the case in which the conditional mean of the observed

data is known. Applying the BDS test to the log of the squared known residuals, i.e., ln(εt2) = ln(zt
2) + ln(σt

2),

separates ln(εt2) into an i.i.d. component, ln(zt
2), and a component which can be estimated by non-linear regression

methods. Under the null of a correctly specified ARCH model, ln(zt
2)=ln(εt2)−ln(σt

2) is i.i.d., and, subject to the
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regularity conditions of Brock and Potter (1992) or Brock , Hsieh, and LeBaron (1991), the asymptotic distribution

of the BDS test is the same whether applied to ln(zt
2) or to the fitted values ln(z^

t
2)≡ln(εt2)−ln(σ^ t

2). While the

assumption of a known conditional mean is obviously unrealistic in some applications, it may be a reasonable

approximation for high-frequency financial time series, where the noise component tends to swamp the conditional

mean component.

3. Stationary and Ergodic Properties

3.1. Strict Stationarity

In evaluating the stationarity of ARCH models, it is convenient to recursively substitute for the laggedεt and

σt
2. For completeness, consider the multivariate case where

(3.1) εt = Ωt
½Zt, Zt ∼ i.i.d., E(Zt) = 0n×1, E(ZtZt′) = In×n,

and

(3.2) Ωt = Ω(t,Zt-1,Zt-2,...).

Using the ergodicity criterion from Corollary 1.4.2 in Krengel (1985), it follows thatstrict stationarity of { εt} t=-∞,∞

is equivalent to the condition

(3.3) Ωt = Ω(Zt-1,Zt-2,...),

with Ω( , ,...) measurable, and

(3.4) Trace(ΩtΩt′) < ∞ a.s.

Equation (3.3) eliminates direct dependence of {Ωt} on t, while (3.4) ensures that random shocks to {Ωt} die out

rapidly enough to keep {Ωt} from exploding asymptotically.

In the univariate EGARCH(p,q) model, for example, equation (3.2) is obtained by exponentiating both sides

of the definition in equation (1.11). Since ln(σt
2) is written in ARMA(p,q) form, it is easy to see that if

(1 + Σj=1,qα jx
j) and (1 -Σi=1,pβix

i) have no common roots, equations (3.3)-(3.4) are equivalent to all the roots of (1 -
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Σi=1,pβix
i) lying outside the unit circle. Similarly, in the bivariate EGARCH model defined in section 6.4 below,

ln(σm,t
2), ln(σp,t

2), andβp,t all follow ARMA processes giving rise to ARMA stationarity conditions.

Onesufficient condition for (3.4) is moment boundedness; i.e., clearly E[Trace(ΩtΩt′)p] finite for some p > 0

implies Trace(ΩtΩt′) <∞ a.s. For example, Bollerslev (1986) shows that in the univariate GARCH(p,q) model defined

by equation (1.9), E(σt
2) is finite, and {εt} is covariance stationary, whenΣi=1,pβi + Σj=1,qα j < 1. This is a sufficient,

but not a necessary condition for strict stationarity, however. Because ARCH processes are thick tailed, the conditions

for "weak" or covariance stationarity are often more stringent than the conditions for "strict" stationarity.

For instance, in the univariate GARCH(1,1) model, (3.2) takes the form

(3.5) σt
2 = ω[1 + Σk=1,∞Π i=1,k(β1 + α1zt

2
−i)].

Nelson (1990b) shows that whenω > 0, σt
2 < ∞ a.s., and {εt,σt

2} is strictly stationary if and only if E[ln(β+αzt
2)]

< 0. An easy application of Jensen’s inequality shows that this is a much weaker requirement thanα+β<1, the

necessary and sufficient condition for {εt} to be covariance stationary. For example, the simple ARCH(1) model

with zt ~ N(0,1) andα=3 andβ=0, is strictly but not weakly stationary.

To grasp the intuition behind this seemingly paradoxical result, consider the terms in the summation in (3.5);

i.e., Π i=1,k(β1+α1zt
2
−i). Taking logs, it follows directly thatΣi=1,kln(β1+α1zt

2
−i) is a random walk with drift. If

E[ln(β1+α1zt−i
2)] ≥ 0, the drift is positive and the random walk diverges to∞ a.s. as k→∞. If, on the other hand,

E[ln(β1+α1zt−i
2)] < 0, the drift is negative and the random walk diverges to -∞ a.s. as k→ ∞, in which case

Π i=1,k(β1+α1zt−i
2) tends to zero at an exponential rate in k a.s. as k→ ∞. This, in turn, implies that the sum in

equation (3.5) converges a.s., establishing (3.4). Measurability in (3.3) follows easily using Theorems 3.19 and 3.20

in Royden (1968).

This result for the univariate GARCH(1,1) model generalizes fairly easily to other closely related ARCH

models. For example, in the multivariate diagonal GARCH(1,1) model, discussed in section 6.1 below, the diagonal

elements ofΩt follow univariate GARCH(1,1) processes. If each of these processes are stationary, the Cauchy-

Schwartz inequality ensures that all of the elements inΩt are bounded a.s. The case of the constant conditional

correlation multivariate GARCH(1,1) model in section 6.3 is similar. The same method can also be used in a
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number of other univariate cases as well. For instance, when p = q = 1, the stationarity condition for the model in

equation (1.15) is E[ln(α1
+I(zt>0) zt

γ + α1
-I(zt≤0) zt

γ)] < 0.

Establishing stationarity becomes much more difficult when we complicate the models even slightly. The

extension to the higher order univariate GARCH(p,q) model has recently been carried out by Bougerol and Picard

(1992) with methods which may be more generally applicable. There exist a large mathematics literature on

conditions for stationarity and ergodicity for markov chains; see, e.g., Nummelin and Tuominin (1982), and Tweedie

(1983a). These conditions can sometimes be verified for ARCH models, although much work remains establishing

useful stationarity criteria even for many commonly-used models.

3.2. Persistence

The notion of "persistence" of a shock to volatility within the ARCH class of models is considerably more

complicated than the corresponding concept of persistence in the mean for linear models. This is because even

strictly stationary ARCH models frequently do not possess finite moments.

Suppose that {σt
2} is strictly stationary and ergodic. Let F(σt

2) denote the unconditional cumulative distribution

function (cdf) for σt
2, and let Fs(σt

2) denote the cdf ofσt
2 given information at time s < t. Then for any s,

Fs(σt
2)−F(σt

2) converges to 0 at all continuity points as t→ ∞; i.e., time s information drops out of the forecast

distribution as t→∞. Therefore, one perfectly reasonable definition of "persistence" would be to say that shocks fail

to persist when {σt
2} is stationary and ergodic.

It is equally natural, however, to definite persistence of shocks in terms of forecastmoments; i.e., to choose

someη > 0 and to say that shocks toσt
2 fail to persist if and only if for every s, Es(σt

2η) converges as t→∞ to a

finite limit independent of time s information. Such a definition of persistence may be particularly appropriate when

an economic theory makes a forecast moment, as opposed to a forecast distribution, the object of interest.

Unfortunately, whether or not shocks to {σt
2} "persist" or not depends very much on which definition is

adopted. The conditional moment Es(σt
2η) may diverge to infinity for someη, but converge to a well-behaved limit

independent of initial conditions for otherη, even when the {σt
2} process is stationary and ergodic.

Consider, for example, the GARCH(1,1) model, in which
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(3.9) σ t
2
+1 = ω + α1εt2 + β1σt

2 = ω + σt
2(α1zt

2 + β1).

The expectation ofσt
2 as of time s, is given by

(3.10) Es(σt
2) = ω[ Σk=0,t-s-1(α1 + β1)

k ] + σs
2(α1 + β1)

t-s.

It is easy to see that Es(σt
2) converges to the unconditional variance ofω/(1-α1-β1) as t→∞ if and only if α1 + β1<1.

In the IGARCH model withω > 0 andα1 + β1 = 1, it follows that Es(σt
2) → ∞ a.s. as t→∞. Nevertheless, as

discussed in the previous section, IGARCH models are strictly stationary and ergodic. In fact, as shown by Nelson

(1990b) in the IGARCH(1,1) model Es(σt
2η) converges to a finite limit independent of time s information as t→∞

wheneverη < 1. This ambiguity of "persistence" holds more generally. When the support of zt is unbounded it

follows from Nelson (1990b) that in any stationary and ergodic GARCH(1,1) model, Es(σt
2η) diverges for all

sufficiently largeη, and converges for all sufficiently smallη.

While the relevant criterion for persistence may be dictated by economic theory, in practice tractability also

plays an important role. For example, Es(σt
2), and its multivariate extension discussed in section 6.5 below, can often

be evaluated even when strict stationarity is difficult to establish, or when Es(σt
2η) for η ≠ 1 is intractable. Criteria

for the convergence of Es(σt
2η) for the GARCH(1,1) case are presented in Nelson (1990b). For many other ARCH

models, moment convergence is most easily established with the methods used in Tweedie (1983b).

In many applications, moment convergence criterion have not been successfully developed. This includes quite

simple cases, such as the univariate GARCH(p,q) model when p > 1 or q > 1. The same is true for multivariate

models, in which co-persistence is an issue. In such cases, the choice ofη = 1 may be impossible to avoid.

Nevertheless, it is important to recognize that apparent persistence of shocks may be driven by thick-tailed

distributions rather than by inherent non-stationarity.

4. Continuous Time Methods

ARCH models are systems of nonlinear stochastic difference equations. This makes their probabilistic and

statistical properties, such as stationarity, moment finiteness, consistency and asymptotic normality of MLE, more
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difficult than is the case with linear models. One way to simplify the analysis of ARCH models is to approximate

the stochasticdifference equations with more tractable stochasticdifferential equations. On the other hand, for certain

purposes, notably in the computation of point forecasts and maximum likelihood estimates, ARCH models are more

convenient than the stochastic differential equation models of time-varying volatility common in the finance literature;

see, e.g., Wiggins (1987), Hull and White (1987), Gennotte and Marsh (1991), Heston (1991) and Andersen (1992a).

Suppose that the process {Xt} is governed by the stochastic integral equation,

(4.1) Xt = X0 + ∫ t0 µ(Xs)ds + ∫ t0 Ω1/2(Xs)dWs,

where {Wt} is an N×1 standard Brownian motion, andµ( ) andΩ1/2( ) are continuous functions from RN into RN

and the space of N×N real matrices respectively. The starting value, X0, may be fixed or random. Following Karatsas

and Shreve (1988) and Ethier and Kurtz (1986), if equation (4.1) has a unique weak-sense solution, the distribution

of the {Xt} process is then completely determined by the following four characteristics,9

(i) the cumulative distribution function, F(x0), of the starting point X0,

(ii) the drift µ(x),

(iii) the conditional covariance matrixΩ(x) ≡ Ω(x)1/2(Ω(x)1/2)′,10

(iv) the continuity with probability one of {Xt} as a function of time.

Our interest here is either in approximating (4.1) by an ARCH model or visa versa. To that end, consider a

sequence of first-order Markov processes {hXt}, whose sample paths are random step functions with jumps at times

h,2h,3h,... . For each h > 0, andeach nonnegative integer k, define the drift and covariance functions byµh(x) ≡

h−1E[(hXk+1 − hXk) hXk=x], and Ωh(x) ≡ h−1Cov[(hXk+1 − hXk) hXk=x], respectively. Also, let Fh(hx0) denote the

cumulative distribution function forhX0. Since (i)-(iv) completely characterize the distribution of the {Xt} process,

9Formally, we consider {Xt} and the approximating discrete time processes {hXt} as random variables in D
Rn

[0,∞), the space of right continuous

functions with finite left limits, equipped with the Skorohod topology. D
Rn

[0,∞) is a complete, separable metric space (see, e.g., Chapter 3 in

Ethier and Kurtz (1986).

10ThusΩ(x)1/2 is a matrix square root ofΩ(x), though it need not be the symmetric square root since we require only thatΩ(x)1/2(Ω(x)1/2)’ =
Ω(x), notΩ(x)1/2Ω(x)1/2 = Ω(x).
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it seems intuitive that weak convergence of {hXt} to {X t} can be achieved by "matching" these properties in the limit

as h↓0. Stroock and Varadhan (1979) showed that this is indeed the case.

Theorem 4.1 (Stroock and Varadhan (1979)): Let the stochastic integral equation (4.1) have a unique weak-

sense solution. Then {hXt} converges weakly to {Xt} for h↓0 if

(i’) F h( ) → F( ) as h↓0 at all continuity points of F( ),

(ii’) µh(x) → µ(x) uniformly on every bounded x set as h↓0,

(iii’) Ωh(x) → Ω(x) uniformly on every bounded x set as h↓0,

(iv’) for some δ > 0, h−1 E[ hXk+1 − hXk
2+δ

hXk=x] → 0 uniformly on every bounded x set as h↓0.11

This result, along with various extensions, is fundamental in all of the continuous record asymptotics discussed

below.

Deriving the theory of continuous time approximation for ARCH models in its full generality is well beyond

the scope of this chapter. Instead, we shall simply illustrate the use of these methods by explicit reference to a

diffusion model frequently applied in the options pricing literature; see e.g., Wiggins (1987). The model considers

an asset price, Yt, and its instantaneous returns volatility,σt. The continuous time process for the joint evolution of

{Y t,σt} with fixed starting values, (Y0,σ0), is given by

(4.2) dYt = µYtdt + YtσtdW1,t

and,

(4.3) d[ln(σt
2)] = −β[ln(σt

2) − α]dt + ψdW2,t,

whereµ, ψ, β, and α denote the parameters of the process, and W1,t and W2,t are driftless Brownian motions

independent of (Y0,σ0
2) that satisfy

11We define the matrix norm, , by A≡ [Trace(AA′)]1/2. It is easy to see why (i’)-(iii’) match (i)-(iii) in the limit as h↓0. That (iv’)

leads to (iv) follows from Hölder’s inequality; see Theorem 2.2 in Nelson (1990a) for a formal proof.
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Of course in practice, the price process is only observable at discrete time intervals. However, the continuous time

(4.4)










dW1,t

dW2,t

[ dW1,t dW2,t ]










1 ρ
ρ 1

dt.

model in equations (4.2)-(4.4) provides a very convenient framework for analyzing issues related to theoretical asset

pricing in general and option pricing in particular. Also, by Ito’s lemma equation (4.2) may be equivalently written

as

(4.2’) dyt = (µ - σt
2/2)dt + σtdW1,t,

where yt ≡ ln(Yt). For many purposes this is a more tractable differential equation.

4.1. ARCH Models as Approximations to Diffusions

Suppose that an economic model specifies a diffusion model such as equation (4.1), where some of the state

variables, includingΩ(xt), are unobservable. Is it possible to formulate an ARCH data generation process that is

similar to the true process, in the sense that the distribution of the sample paths generated by the ARCH model and

the diffusion model in equation (4.1) becomes "close" for increasingly finer discretizations?

Specifically, consider the diffusion model given by equations (4.2’)-(4.4). Strategies for approximating

diffusions such as this are well known. For example, Melino and Turnbull (1990) use a standard Euler approximation

in defining (yt,σt),
12

(4.5) yt+h = yt + (µ - σt
2/2)h + h1/2σtZ1,t+h

(4.6) ln(σ t
2
+h) = ln(σt

2) − hβ[ln(σt
2) − α] + h1/2ψZ2,t+h,

for t = h, 2h, 3h, .... . Here (y0,σ0) is taken to be fixed, and (Z1,t, Z2,t) is assumed to be i.i.d. bivariate normal with

mean vector (0,0) and

12See Pardoux and Talay (1985) for a general discussion of the Euler approximation technique.
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Convergence of this set of stochastic difference equations to the diffusion in equations (4.2)-(4.4) as h↓0 may be

(4.7) Var










Z1,t

Z2,t











1 ρ
ρ 1 .

verified using theorem 4.1. In particular, (i’) holds trivially, since (y0,σ0) are constants. To check conditions (ii’)

and (iii’), note that

and

(4.8) h 1Et













yt h yt

ln(σ2
t h) ln(σ2

t )













(µ σ2
t /2)

β( ln(σ2
t ) α ) ,

which matches the drift and diffusion matrix of (4.2)-(4.4). Condition (iv’) is nearly trivially satisfied, since Z1,t and

(4.9) h 1Vart













yt h yt

ln(σ2
t h) ln(σ2

t )













σ2
t σtρψ

σtρψ ψ2
,

Z2,t are normally distributed with arbitrary finite moments. The final step of verifying that the limit diffusion has

a unique weak-sense solution is often the most difficult and the least intuitive part of the proof for convergence.

Nelson (1990a) summarizes several sets of sufficient conditions, however, and formally shows that the process

defined by (4.5)-(4.7) satisfies these conditions.

While conditionally heteroskedastic, the model defined by the stochastic difference equations (4.5)-(4.7) isnot

an ARCH model. In particular, forρ≠1 σt
2 is not simply a function of the discretely observed sample path of {yt}

combined with a startup valueσ0
2. More technically, while the conditional variance of (yt+h-yt) given theσ-algebra

generated by {yτ ,στ2} 0≤τ≤t equals hσt
2, it is not, in general, the conditional variance of (yt+h-yt) given the smaller

σ-algebra generated by {yτ} 0,h,2h...h[t/h] and σ0
2. Unfortunately, this latter conditional variance is not available in

closed form.13

To create an ARCH approximation to the diffusion in (4.2)-(4.4), simply replace (4.6) by

(4.10) ln(σ t
2
+h) = ln(σt

2) − hβ[ln(σt
2) − α] + h1/2g(Z1,t+h),

where g( ) is measurable with E[ g(Z1,t+h)
2+δ] < ∞ for someδ > 0 and,

13Jacquier, Polson, and Rossi (1992) have recently proposed a computationally tractable algorithm for computing this conditional variance.
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(4.11) Var










Z1,t

g(Z1,t)











1 ρψ

ρψ ψ2
.

As an ARCH model, the discretization defined by (4.5), (4.10) and (4.11) inherits the convenient properties usually

associated with ARCH models, such as the easily computed likelihoods and inference procedures discussed in section

2 above. As such, it is a far more tractable approximation to (4.2)-(4.4) than the discretization defined by equations

(4.5)-(4.7).

To complete the formulation of the ARCH approximation, an explicit g( ) function is needed. Since E( Z1,t )

= (2/π)1/2, E(Z1,t Z1,t ) = 0, and Var( Z1,t ) = 1 - (2/π), one possible formulation would be,

(4.12) g(Z1,t) = ρψZ1,t + ψ[(1-ρ2)/(1 - 2/π)]1/2( Z1,t -(2/π)1/2).

This corresponds directly to the EGARCH model in equation (1.11). Alternatively

(4.13) g(Z1,t) = ψρZ1,t + ψ[(1-ρ2)/2]1/2(Z1
2
,t - 1),

also satisfies equation (4.11). This latter specification turns out to be the asymptotically optimal filter for h↓0, as

discussed in Nelson and Foster (1991) and section 4.3 below.

4.2. Diffusions as Approximations to ARCH Models

Now consider the question of how to best approximate a discrete time ARCH model with a continuous time

diffusion. This can yield important insights into the workings of a particular ARCH model. For example, the

stationary distribution ofσt
2 in the AR(1) version of the EGARCH model given by equation (1.11) is intractable.

However, the sequence of EGARCH models defined by equations (4.5) and (4.10)-(4.12) converges weakly to the

diffusion process in (4.2)-(4.4). Whenβ > 0, the stationary distribution of ln(σt
2) is N(α,ψ2/2β). Nelson (1990a)

shows that this is also the limit of the stationary distribution of ln(σt
2) in the sequence of EGARCH models (4.5)

and (4.10)-(4.12) as h↓0. Similarly, the continuous limit may result in convenient approximations for forecast

moments of the {yt,σt
2} process.

Different ARCH models, will generally result in different limit diffusions. To illustrate, suppose that the data
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are generated by a simple martingale model with a GARCH(1,1) error structure as in equation (1.9). In the present

notation, the process takes the form,

(4.14) yt+h = yt + σthzt+h = yt + εt+h,

and

(4.15) σ t
2
+h = ωh + (1 − θh − αh1/2)σt

2 + h1/2αε t
2
+h,

where given time t information,εt+h is N(0,σ t
2), and (x0,σ0) is assumed to be fixed. Note that using the notation for

the GARCH(p,q) model in equation (1.9)α1+β1=1-θh, so for increasing sampling frequencies, i.e., as h↓0, the

parameters of the process approach the IGARCH(1,1) boundary as discussed in section 3. Following Nelson (1990a)

(4.16) h 1Et



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



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yt h yt

σ2
t h σ

2
t
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
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0

ω θσ2
t ,

and

(4.17) h 1Vart


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



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

yt h yt

σ2
t h σ2

t








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σ2
t 0

0 2α2σ4
t .

Thus, from theorem 4.1 the limit diffusion is given by

(4.18) dxt = σtdW1,t,

and,

(4.19) dσt
2 = (ω − θσt

2)dt + 21/2ασt
2dW2,t,

where W1,t and W2,t independent standard Brownian motions.

The diffusion defined by equations (4.18) and (4.19) is quite different than the EGARCH limit in equations

(4.2)-(4.4). For example, ifθ/2α2 > −1, the stationary distribution ofσt
2 in (4.19) is an inverted gamma, so as h↓0

and t→∞, the normalized increments h−1/2(yt+h-yt) are conditionally normally distributed but unconditionally Student’s

t. In particular, in the IGARCH case corresponding toθ=0, as h↓0 and t→∞, h−1/2(yt+h-yt) approaches a Student’s

t distribution with two degrees of freedom. In the EGARCH case, however, h−1/2(yt+h−yt) is conditionally normal but

is unconditionally a normal-lognormal mixture. Whenσ t
2 is stationary, the GARCH formulation in (1.9) therefore

gives rise to unconditionally thicker-tailed residuals than the EGARCH model in equation (1.11).
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4.3. ARCH Models as Filters and Forecasters

Suppose that discretely sampled observations are only available for a subset of the state variables in (4.1), and

that interest centers on estimating the unobservable state variable(s),Ω(xt). Doing this optimally via a non-linear

Kalman filter is computationally burdensome; see e.g. Kitagawa (1987).14 Alternatively, the data might be passed

through a discrete time ARCH model, and the resulting conditional variances from the ARCH model viewed as

estimates forΩ(xt). Nelson (1992) shows that under fairly mild regularity conditions, a wide variety of misspecified

ARCH models consistently extract conditional variances from high frequency time series. The regularity conditions

require that the conditional distribution of the observable series is not too thick tailed, and that the conditional

covariance matrix moves smoothly over time. Intuitively, the GARCH filter defined by equation (1.9) estimates the

conditional variance by averaging squared residuals over some time window, resulting in a non-parametric estimate

for the conditional variance at each point in time. Many other ARCH models can be similarly interpreted.

While many different ARCH models may serve as consistent filters for the same diffusion process, efficiency

issues may also be relevant in the design of an ARCH model. To illustrate, suppose that the yt process is observable

at time intervals of length h, but thatσt
2 is not observed. Letσ^ 0

2 denote some initial estimate of the conditional

variance at time 0, with subsequent estimates generated by the recursion

(4.20) ln(σ^ t
2
+h) = ln(σ^ t

2) + hκ(σ^ t
2) + h1/2g(σ^ t

2,h−1/2(yt+h-yt)).

The set of admissible g( , ) functions is restricted by the requirement that Et[g(σt
2,h−1/2(yt+h−yt))] be close to zero

for small values of h.15 Define the normalized estimation error from this filter extraction as qt ≡ h-1/4[ln(σ^ t
2)-ln(σt

2)].

Nelson and Foster (1992) derive a diffusion approximation for qt when the data have been generated by the

diffusion in equations (4.2)-(4.4) and the time interval shrinks to zero. In particular, they show that qt is

approximately normally distributed, and that by choosing the g( , ) function to minimize the asymptotic variance

14An approximate linear Kalman filter for a discretized version of (4.1) has been employed by Harvey, Ruiz and Shephard (1992). The exact
nonlinear filter for a discretized version of (4.1) has been developed by Jacquier, Polson, and Rossi (1992).

15Formally, the function must satisfy that h−1/4Et[g(σt
2,h-1/2(yt+h-yt))] → 0 uniformly on bounded (yt,σt) sets as h↓0.
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of qt, the drift term for ln(σt
2) in the ARCH model,κ( ), does not appear in the resulting minimized asymptotic

variance for the measurement error. The effect is second-order in comparison to that of the g( , ) term, and creates

only an asymptotically negligible bias in qt. However, forκ(σ t
2) ≡ −β[ln(σ t

2)-α], the leading term of this asymptotic

bias also disappears. It is easy to verify that the conditions of theorem 4.1 are satisfied for the ARCH model defined

by equation (4.20) withκ(σ2) ≡ −β[ln(σ2)-α] and the variance minimizing g( , ). Thus, as a data generation

process this ARCH model converges weakly to the diffusion in (4.2)-(4.4). In the diffusion limit the first two

conditional moments completely characterize the process, and the optimal ARCH filter matches these moments.

The above result on the optimal choice of an ARCH filter may easily be extended to other diffusions and more

general data generating processes. For example, suppose that the true data generation process is given by the

stochastic difference equation analog of (4.2)-(4.4),

(4.21) yt+h = yt + h(µ - σt
2/2) + ξ1,t,

(4.22) ln(σ t
2
+h) = ln(σt

2) − hβ[ln(σt
2) − α] + h1/2ξ2,t,

where (ξ1,tσt
-1, ξ2,t) is i.i.d. and independent of t, h, and yt, with conditional density f(ξ1,t,ξ2,t σt) with mean (0,0),

bounded 2+δ absolute moments, Vart(ξ1,t) = σt
2, and Vart(ξ2,t) = ψ2. This model can be shown to converge weakly

to (4.2)-(4.4) as h↓0. The asymptotically optimal filter for the model given by equations (4.21) and (4.22) has been

derived in Nelson and Foster (1992). This optimal ARCH filter when (4.21) and (4.22) is the data generation process

is not necessarily the same as the optimal filter for (4.2)-(4.4). The increments in a diffusion such as (4.2)-(4.4) are

approximately conditionally normal over very short time intervals, whereas the innovations (ξ1,t,ξ2,t) in (4.21) and

(4.22) may be non-normal. This affects the properties of the ARCH filter. Consider estimating a variance based

on i.i.d. draws from some distribution with mean zero. If the distribution is normal, averaging squared residuals is

an asymptotically efficient method of estimating the variance. Least squares, however, can be very inefficient if the

distribution is thicker tailed than the normal. This theory of robust scale estimation, discussed in Davidian and

Carroll (1987) and Huber (1977), carries over to the ARCH case. For example, estimatingσt
2 by squaring a

distributed lag of absolute residuals, as proposed by Taylor (1986) and Schwert (1989a,b), will be more efficient than

estimatingσt
2 with a distributed lag of squared residuals if the conditional distribution of the innovations is
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sufficiently thicker-tailed than the normal.

One property of optimally designed ARCH filters concerns their resemblance to the true data generating

process. In particular, if the data were generated by the asymptotically optimal ARCH filter, the functional form

for the second conditional moment of the state variables would be the same as in the true data generating process.

If the conditional first moments also match, the second-order bias is similarly eliminated. Nelson and Foster (1991)

show that ARCH models which match these first two conditional moments also have the desirable property that the

forecasts generated by the possible misspecified ARCH model approach the forecasts from the true model as h↓0.

Thus, even when ARCH models are misspecified, they may consistently estimate the conditional variances.

Unfortunately, the behavior of ARCH filters with estimated as opposed to known parameters, and the properties of

the parameter estimates themselves, are not well understood.

5. Aggregation and Forecasting

5.1. Temporal Aggregation

The continuous record asymptotics discussed in the preceding section summarized the approximate relationships

between continuous time stochastic differential equations and discrete time ARCH models defined at increasingly

higher sampling frequencies. While the approximating stochastic differential equations may result in more

manageable theoretical considerations, the relationship between high frequency ARCH stochastic difference equations

and the implied stochastic process for less frequently sampled, or temporally aggregated, data is often of direct

importance for empirical work. For instance, when deciding on the most appropriate sampling interval for inference

purposes more efficient parameter estimates for the low frequency process may be available from the model estimates

obtained with high frequency data. Conversely, in some instances the high frequency process may be of primary

interest, while only low frequency data is available. The non-linearities in ARCH models severely complicate a

formal analysis of temporal aggregation. In contrast to the linear ARIMA class of models for the conditional means,

most parametric ARCH models are only closed under temporal aggregation subject to specific qualifications.

Following Drost and Nijman (1993) we say that {εt} is a Weak GARCH(p,q) process, ifεt is serially

uncorrelated with unconditional mean zero, andσ t
2 as defined in equation (1.9) corresponds to the best linear
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projection ofε t
2 on the space spanned by {1,εt−1,εt-2,...,ε t

2
-1,ε t

2
-2,... }. More specifically,

(5.1) E(ε t
2 - σ t

2) = E[(ε t
2 - σ t

2)εt-i] = E[(ε t
2 - σ t

2)ε t
2
-i] = 0 i = 1, 2, ... .

This definition of a weak GARCH(p,q) model obviously encompasses the conventional GARCH(p,q) model in which

σ t
2 is equal to the conditional expectation ofε t

2 based on the full information set at time t-1 as a special case.

Whereas the conventional GARCH(p,q) class of models is not closed under temporal aggregation, Drost and Nijman

(1993) show that temporal aggregation of ARIMA models with weak GARCH(p,q) errors lead to another ARIMA

model with weak GARCH(p’,q’) errors. The orders of this temporally aggregated model and the model parameters

depend on the original model characteristics.

To illustrate, suppose that {εt} follows a weak GARCH(1,1) model with parametersω, α1, andβ1. Let {εt(m)}

denote the discrete time temporally aggregated process defined at t, t+m, t+2m, ... . For a stock variableεt(m) is

obtained by samplingεt every mth period. For a flow variableεt
(m) ≡ εt + εt-1 + ... + εt-m+1. In both cases, it is

possible to show that the temporally aggregated process, {εt(m)}, is also weak GARCH(1,1) with parametersω(m) =

ω(1 - (α1 + β1)
m)/(1 - α1 - β1) andα1

(m) = (α1 + β1)
m - β1

(m), whereβ1
(m) is a complicated function of the parameters

for the original process. Thus,α1
(m) + β1

(m) = (α1 + β1)
m, and conditional heteroskedasticity disappears as the

sampling frequency increases, provided thatα1 + β1 < 1. Moreover, for flow variables the conditional kurtosis of

the standardized residuals,εt(m)[σt
(m)]-1, converges to the normal value of three for less frequently sampled

observations. This convergence to asymptotic normality for decreasing sampling frequencies of temporally

aggregated covariance stationary GARCH(p,q) flow variables have been shown previously by Diebold (1988), using

a standard central limit theorem type argument.

These results highlight that the assumption of i.i.d. innovations invoked in maximum likelihood estimation of

GARCH models is necessarily specific to the particular sampling frequency employed in the estimation. Ifεtσt
-1

is assumed i.i.d., the distribution ofεt(m)[σt
(m)]-1 will generally not be time invariant. Following the discussion in

section 2.3, the estimation by maximum likelihood methods could be given a quasi-maximum likelihood type

interpretation, however. Issues pertaining to the efficiency of the resulting estimators remain unresolved.

The extension of the aggregation results for the GARCH(p,q) model to other parametric specifications is in
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principle straightforward. The cross sectional aggregation of multiple GARCH processes, which may be particularly

relevant in the formation of portfolios, could also be addressed using the same methodology.

5.2. Forecast Error Distributions

One of the primary objectives of econometric time series model building is often the construction of out-of-

sample predictions. In conventional econometric models with time invariant innovation variances, the prediction error

uncertainty is an increasing function of the prediction horizon, and does not depend on the origin of the forecast.

In the presence of ARCH errors, however, the forecast accuracy will depend non-trivially on the current information

set. The proper construction of forecast error intervals and post-sample structural stability tests therefore both require

the evaluation of future conditional error variances.16

A detailed analysis of the forecast moments for various GARCH models, are available in Engle and Bollerslev

(1986) and Baillie and Bollerslev (1992). Although both of these studies develop expressions for the second and

higher moments of the forecast error distributions, this is generally not enough for the proper construction of

confidence intervals, since the forecast error distributions will be leptokurtic.

A possible solution to this problem is suggested by Baillie and Bollerslev (1992), who argue for the use of the

Cornish-Fisher asymptotic expansion to take account of the higher order dependencies in the construction of the

prediction error intervals. The implementation of this expansion require the evaluation of higher order conditional

moments ofεt+s, which can be quite complicated. Interestingly, in a small scale Monte Carlo experiment, Baillie

and Bollerslev (1992) find that under the assumption of conditional normality forεtσt
-1, the ninety-five percent

confidence interval for multi-step predictions from the GARCH(1,1) model constructed under the erroneous

assumption of conditional normality ofεt+s[E(σ t
2
+s)]

-1/2 for s>1, have a coverage probability quite close to ninety-five

percent. The one percent fractile is typically underestimated by falsely assuming conditional normality of the multi-

step leptokurtic prediction errors, however.

Most of the above mentioned results are specialized to the GARCH class of models, although extensions to

allow for asymmetric or leverage terms and multivariate formulations in principle would be straight forward.

16Also, as discussed earlier, the forecasts of the future conditional variances are often of direct interest in applications with financial data.
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Analogous results on forecasting ln(σ t
2) for EGARCH models are easily obtained. Closed form expressions for the

moments of the forecast error distribution for the EGARCH model are not available, however.

As discussed in section 4.3, an alternative approximation to the forecast error distribution may be based upon

the diffusion limit of the ARCH model. If the sampling frequency is "high" so that the discrete time ARCH model

is a "close" approximation to the continuous time diffusion limit, the distribution of the forecasts should be "good"

approximations too; see Nelson and Foster (1991). In particular, if the unconditional distribution of the diffusion

limit can be derived, this would provide an approximation to the distribution of the long horizon forecasts from a

strictly stationary model.

Of course, the characteristics of the prediction error distribution may also be analyzed through the use of

numerical methods. In particular, let ft,s(εt+s) denote the density function forεt+s conditional on information up

through time t. Under the assumption of a time invariant conditional density function for the standardized

innovations, f(εtσt
-1), the prediction error density forεt+s is then given by the convolution,

ft,s(εt+s) = ∫...∫ f(εt+sσ-
t
1
+s)f(εt+s-1σ-

t
1
+s-1) ... f(εt+1σ-

t
1
+1)dεt+s-1dεt+s-2 ... dεt+1.

Evaluation of this multi-step prediction error density may proceed directly by numerical integration. This is

illustrated within a Bayesian context by Geweke (1989a,b), who shows how the use of importance sampling and

antithetic variables can be employed in accelerating the convergence of the Monte Carlo integration. In accordance

with the results in Baillie and Bollerslev (1992), Geweke (1989a) finds that for conditional normally distributed one-

step ahead prediction errors, the shorter the forecast horizon s, and the more tranquil the periods before the origin

of the forecast, the closer to normality is the prediction error distribution forεt+s.

6. Multivariate Specifications

Financial market volatility moves together over time across assets and markets. Recognizing this commonality

through a multivariate modeling framework leads to obvious gains in efficiency. Several interesting issues in the

structural analysis of asset pricing theories and the linkage of different financial markets also call for an explicit

multivariate ARCH approach in order to capture the temporal dependencies in the conditional variancesand
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covariances.

In keeping with the notation of the previous sections, the N×1 vector stochastic process {εt} is defined to

follow a multivariate ARCH process if Et-1(εt)=0, but the N×N conditional covariance matrix,

(6.1) Et-1(εtεt′) = Ωt,

depends non-trivially on the past of the process. From a theoretical perspective, inference in multivariate ARCH

models poses no added conceptual difficulties in comparison to the procedures for the univariate case outlined in

section 2 above.

To illustrate, consider the log likelihood function for {εT,εT-1,...,ε1} obtained under the assumption of

conditional multivariate normality,

(6.2) LT(εT,εT-1,...,ε1;ψ) = -0.5[ TN ln(2π) + Σt=1,T(ln Ωt + εt′Ω t
-1εt) ].

This function corresponds directly to the conditional likelihood function for the univariate ARCH model defined by

equations (2.7), (2.8) and (2.12), and maximum likelihood, or quasi-maximum likelihood, procedures may proceed

as discussed in section 2. Of course, the actual implementation of a multivariate ARCH model necessarily requires

some assumptions regarding the format of the temporal dependencies in the conditional covariance matrix sequence,

{Ωt}.

Several key issues must be faced in choosing a parameterization forΩt. Firstly, the sheer number of potential

parameters in a general formulation is overwhelming. All useful specifications must necessarily restrict the

dimensionality of the parameter space, and it is critical to determine whether they impose important untested

characteristics on the conditional variance process. A second consideration is whether such restrictions impose the

required positive semi-definiteness of the conditional covariance matrix estimators. Thirdly, it is important to

recognize whether Granger Causality in variance as in Granger, Robins and Engle(1987) is allowed by the chosen

parameterization; that is, does the past information on one variable predict the conditional variance of another. A

fourth issue is whether the correlations or regression coefficients are time varying, and if so do they have the same

persistence properties as the variances. A fifth issue worth considering is whether there are linear combinations of
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the variables, or portfolios, with less persistence than individual series, or assets. Closely related is the question

of whether there exist simple statistics which are sufficient to forecast the entire covariance matrix. Finally, it is

natural to ask whether there are multivariate asymmetric effects, and if so how these may influence both the

variances and covariances. Below we shall briefly review some of the parameterizations that have been applied in

the literature, and comment on whether they are appropriate for answering any of the above posed questions.

6.1. Vector ARCH and Diagonal ARCH

Let vech( ) denote the vector-half operator, that stacks the lower triangular elements of an N×N matrix as an

(N(N+1)/2)×1 vector. Since the conditional covariance matrix is symmetric, vech(Ωt) contains all the unique elements

in Ωt. Following Kraft and Engle (1982) and Bollerslev, Engle and Wooldridge (1988), a natural multivariate

extension of the univariate GARCH(p,q) model defined in equation (1.9) is then given by,

(6.3) vech(Ωt) = W + Σi=1,qAivech(εt-iε′ t-i) + Σj=1,pBjvech(Ωt-j)

≡ W + A(L)vech(εt-iε′ t-i) + B(L)vech(Ωt-j),

where W is an (N(N+1)/2)×1 vector, and the Ai and Bj matrices are of dimension (N(N+1)/2)×(N(N+1)/2). This

general formulation is termed the vec representation by Engle and Kroner (1993). It allows each of the elements

in {Ωt} to depend on all of the most recent q past cross products of theεt’s and all of the most recent p lagged

conditional variances and covariances, resulting in a total of (N(N+1)/2)[1 + (p+q)N(N+1)/2] parameters. Even for

low dimensions of N and small values of p and q the number of parameters is very large; e.g. for N=5 and p=q=1

the unrestricted version of (6.3) contains 465 parameters. This allows plenty of flexibility to answer most, but not

all, of the questions above.17 However, this large number of parameters is clearly unmanageable, and conditions

to ensure that the conditional covariance matrices are positive definite a.s. for all t are difficult to impose and verify;

Engle and Kroner (1993) provides one set of sufficient conditions discussed below.

In practice some simplifying assumptions will therefore have to be imposed. In the Diagonal GARCH(p,q)

model, originally suggested by Bollerslev, Engle and Wooldridge (1988), the Ai and Bj matrices are all taken to be

17Note, that even with this number of parameters, asymmetric terms are excluded by the focus on squared residuals.
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diagonal. Thus, the (i,j)th element in {Ωt} only depends on the corresponding past (i,j)th element in {εtεt′} and {Ωt}.

This restriction reduces the number of parameters to (N(N+1)/2)(1+p+q). These restrictions are intuitively

reasonable, and can be interpreted in terms of a filtering estimate of each variance and covariance. However, this

model clearly does not allow for causality in variance, co-persistence in variance as discussed in section 6.5 below,

or asymmetries.

Necessary and sufficient conditions on the parameters to ensure that the conditional covariance matrices in the

diagonal GARCH(p,q) model are positive definite a.s. are most easily derived by expressing the model in terms of

Hadamard products. In particular, define the symmetric N×N matrices Ai
*
i and B*

j implicitly by A i=diag{vech(A*i)}

i=1,...,q, Bj=diag{vech(Bj
*)} j=1,...p, and W≡ vech(W*). The diagonal model may then be written as

(6.4) Ωt = W* + Σi=1,qA i
* (εt-iε′ t-i) + Σj=1,pBj

* Ωt-j,

where denotes the Hadamard product.18 It follows now by the algebra of Hadamard products, thatΩt is positive

definite a.s. for all t provided that W* is positive definite, and the Ai
* and Bj

* matrices are positive semi-definite for

all i=1,...,q and j=1,...,p; see Attanasio (1991) and Marcus and Minc (1964) for a formal proof. These conditions

are easy to impose and verify through a Cholesky decomposition for the parameter matrices in equation (6.4). Even

simpler versions of this model which let either Ai
* or Bj

* be rank one matrices, or even simply a scalar times a matrix

of ones, may be useful in some applications.

In the alternative representation of the multivariate GARCH(p,q) model termed by Engle and Kroner (1993)

the Baba, Engle, Kraft and Kroner, or BEKK, representation, the conditional covariance matrix is parameterized as,

(6.5) Ωt = V′V + Σk=1,KΣi=1,qA′kiεt-iε′ t-iAki + Σk=1,KΣj=1,pB′kjΩt-jBkj,

where V, Aik i=1,...,q, k=1,...,K, and Bjk j=1,...,p, k=1,...,K are all N×N matrices. This formulation has the advantage

over the general specification in equation (6.3) thatΩt is guaranteed to be positive definite a.s. for all t. The model

in equation (6.5) still involves a total of (1 + (p+q)K)N2 parameters. By taking vech(Ωt) we can express any model

of the form (6.5) in terms of (6.3). Thus any vec model in (6.3) whose parameters can be expressed as (6.5) must

18The Hadamard product of two N×N matrices A and B is defined by {A B}ij ≡ {A} ij{B} ij; see e.g. Amemiya (1985).
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be positive definite. However, in empirical applications, the structure of the Aik and Bjk matrices must be further

simplified as this model is also overparameterized. A choice made by McCurdy and Stengos (1992) is to set

K=p=q=1 and make A1 and B1 diagonal. This leads to the simple positive definite version of the diagonal vec model

(6.6) Ωt = W* + α1α1’ (εt-1ε′ t-1) + β1β1’ Ωt-1,

where A1 = diag{α1} and B1 = diag{β1}.

6.2. Factor ARCH

The Factor ARCH model can be thought of as an alternative simple parameterization of (6.5). Part of the

appeal of this parameterization in applications with asset returns stems from its derivation in terms of a factor type

model. Specifically, suppose that the Nx1 vector of returns yt has a factor structure with K factors given by the Kx1

vectorξt, and time invariant factor loadings given by the NxK matrix B,

(6.7) yt = B ξt + εt.

Assume that the idiosyncratic shocks,εt, have constant conditional covariancesΨ, and that the factors,ξt, have

conditional covariance matrixΛt. Also, suppose thatεt and ξt are uncorrelated, or that they have constant

correlations. The conditional covariance matrix of yt then equals

(6.8) Vt-1(yt) = Ωt = Ψ + B Λt B’.

If Λt is diagonal with elementsλkt, or if the off diagonal elements are constant and combined intoΨ, the model may

therefore be written as

(6.9) Ωt = Ψ + k=1,K βkβk’ λkt,

whereβk denotes the kth column in B. Thus there are K statistics which determines the full covariance matrix.

Forecasts of the variances and covariances or of any portfolio of assets, will be based only on the forecasts of these

K statistics. This model was first proposed in Engle(1987), and implemented empirically by Engle Ng and

Rothschild (1990), and Ng, Engle and Rothschild (1992) for treasury bills and stocks, respectively.

Diebold and Nerlove (1989) suggested a closely related latent factor model,

(6.9’) Ωt = Ψ + k=1,K βkβk’ δk
2
t,

in which the factor variances,δk
2
t, were not functions of the past information set. An estimation approach based upon
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an approximate Kalman Filter was used by Diebold and Nerlove (1989). More recently King, Sentana and

Wadhwani (1990) have estimated a similar latent factor model using theoretical developments in Harvey, Ruiz and

Sentana (1992).

An immediate implication of (6.8) and (6.9) is that if K<N, there are some portfolios with constant variance.

Indeed a useful way to determine K is to find how many assets are required to form such portfolios. Engle and

Kozicki (1993) present this as an application of a test for common features. This test is applied by Engle and

Susmel (1992) to determine whether there is evidence that international equity markets have common volatility

components. Only for a limited pairs of the countries analyzed can a one factor model not be rejected.

A second implication of the formulation in (6.8) is that there exist factor representing portfolios with portfolio

weights that are orthogonal to all but one set of factor loadings. In particular, consider the portfolio rk = φk’y t, where

φk’βj equals 1 if j=k and zero otherwise. The conditional variance of rk is then given by,

(6.10) Vart-1(rkt) = φk’Ωtφk = ψk + λkt,

whereψk = φk’Ψφk. Thus, the portfolios rk have exactly the same time variation as the factors, which is why they

are called factor representing portfolios.

In order to estimate this model, the dependence in theλkt’s upon the past information set must also be

parameterized. The simplest assumption is that there are a set of factor representing portfolios with univariate

GARCH representations. Thus,

(6.11) Vart-1(rkt) = ψk + αk(φk’εt-1))2 + γk Vt-2(rkt-1)’

and therefore,

(6.12) Ωt = Ψ* + k=1,K αk [βkφk’ εt-1εt-1’ φkβk’] + k=1,K γk [βkφk’ Ωt-1 φkβk’],

so that the Factor ARCH model is a special case of the BEKK parameterization. Clearly, more general Factor ARCH

models would allow the factor representing portfolios to depend upon a broader information set than the simple

univariate assumption underlying (6.11).

Estimation of the Factor ARCH model by full Maximum Likelihood together with several variations has been

considered by Lin (1992). However, it is often convenient to assume that the factor representing portfolios are

known a priori. For example, Engle, Ng and Rothschild (1990) assumed the existence of two such portfolios; one
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an equally weighted treasury bill portfolio and one the Standard and Poor’s 500 composite stock portfolio. A simple

two step estimation procedure is then available, by first estimating the univariate models for each of the factor

representing portfolios. Taking the variance estimates from this first stage as given, the factor loadings may then

be consistently estimated up to a sign, by noticing that each of the individual assets has a variance process which

is linear in the factor variances, where the coefficients equal the square of the factor loadings. While this is surely

an inefficient estimator, it has the advantage that it allows estimation for arbitrarily large matrices using simple

univariate procedures.

6.3. Constant Conditional Correlations

In the Constant Conditional Correlations model of Bollerslev (1990), the time-varying conditional covariances

are parameterized to be proportional to the product of the corresponding conditional standard deviations. This

assumption greatly simplifies the computational burden in estimation, and conditions forΩt to be positive definite

a.s. for all t are also easy to impose.

More explicitly, let Dt denote the N×N diagonal matrix with the conditional variances along the diagonal; i.e.,

{D t} ii ≡ {Ωt} ii and {Dt} ij ≡ 0 for i≠j, i,j=1,...,N. Also, letΓ t denote the matrix of conditional correlations; i.e., {Γ t} ij

≡ {Ωt} ij({Ωt} ii{Ωt} jj)
-1/2, i,j=1,...,N. The constant conditional correlation model then assumes thatΓ t=Γ is time

invariant, so that the temporal variation in {Ωt} is determined solely by the time-varying conditional variances,

(6.13) Ωt = Dt
1/2ΓDt

1/2.

If the conditional variances along the diagonal in the Dt matrices are all positive, and the conditional correlation

matrix Γ is positive definite, the sequence of conditional covariance matrices {Ωt} is guaranteed to be positive

definite a.s. for all t. Furthermore, the inverse ofΩt is simply given byΩt
-1 = Dt

-1/2Γ-1Dt
-1/2. Thus, when calculating

the likelihood function in equation (6.2), or some other multivariate objective function involvingΩt
-1 t=1,...,T, only

one matrix inversion is required for each evaluation. This is especially relevant from a computational point of view

when numerical derivatives are being used. Also, by a standard multivariate SURE analogy,Γ may be concentrated

out of the normal likelihood function by (Dt
-1/2εt)(Dt

-1/2εt)′, simplifying estimation even further.
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Of course, the validity of the assumption of constant conditional correlations remains an empirical question.19

However, this particular formulation has already been successfully applied by a number of authors, including Baillie

and Bollerslev (1990), Beakhart and Hodrick (1992), Bollerslev (1990), Kroner and Sultan (1992), Kroner and

Claessens (1993) and Schwert and Seguin (1990).

6.4. Bivariate EGARCH

A bivariate version of the EGARCH model in equation (1.11) has been introduced by Braun, Nelson, and

Sunier (1992) in order to model any "leverage effects," as discussed in section 1.2.iii, in conditional betas.

Specifically, letεm,t andεp,t denote the residuals for a market index and a second portfolio. The model is then given

by,

(6.14) εm,t = σm,tzm,t,

and,

(6.15) εp,t = βp,tεm,t + σp,tzp,t,

where {zm,t,zp,t} is assumed to be i.i.d. with mean (0,0) and identity covariance matrix. The conditional variance of

the market index,σm
2

,t, is modelled by a univariate EGARCH model,

(6.16) ln(σm
2

,t) = αm + δm(ln(σm
2

,t)-αm) + θmzm,t-1 + γm( zm,t-1 -E zm,t ).

The conditional beta ofεp,t with respect toεm,t, βp,t, is modelled as

(6.17) βp,t = λ0 + λ4(βp,t-1 - λ0) + λ1zm,t-1zp,t-1 + λ2zm,t-1 + λ3zp,t-1.

The coefficientsλ2 and λ3 allow for "leverage effects" inβp,t. The non-market, or idiosyncratic, variance of the

second portfolio,σp
2
,t, is parameterized as a modified univariate EGARCH model, to allow for both market and

idiosyncratic news effects,

(6.18) ln(σp
2
,t) = αp + δp(ln(σp

2
,t)-αp) + θpzp,t-1 + γp( zp,t-1 -E zp,t )

+ θp,mzm,t-1 + γp,m( zm,t-1 -E zm,t ).

19A formal moment based test for the assumption of constant conditional correlations has been developed by Bera and Roh (1991).
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Braun, Nelson, and Sunier (1992) find that this model provides a good description of the returns for a number of

industry and size sorted portfolios.

6.5. Stationarity and Co-Persistence

Stationarity and moment convergence criteria for various univariate specifications were discussed in section

3 above. Corresponding convergence criteria for multivariate ARCH models are generally complex, and explicit

results are only available for a few special cases.

Specifically, consider the multivariate vec GARCH(1,1) model defined in equation (6.3). Analogous to the

expression for the univariate GARCH(1,1) model in equation (3.10), the minimum mean square error forecast for

vech(Ωt) as of time s<t takes the form

(6.18) Es(vech(Ωt)) = W[ Σk=0,t-s-1(A1 + B1)
k] + (A1 + B1)

t-svech(Ωs),

where (A1 + B1)
0 is equal to the identity matrix by definition. Let VΛV-1 denote the Jordan decomposition of the

matrix A1+B1, so that (A1+B1)
t-s = VΛt-sV-1.20 Thus, Es(vech(Ωt)) converges to the unconditional covariance matrix

of the process, W(I - A1 - B1)
-1, for t→∞ a.s. if and only if the norm of the largest eigenvalue for A1+B1 is strictly

less than one. Similarly, by expressing the vector GARCH(p,q) model in companion first order form, it follows that

the forecast moments converge, and that the process is covariance stationary if and only if the norm of the largest

root of the characteristic equation I - A(x−1) - B(x−1) = 0 is strictly less than one. A formal proof is given in

Bollerslev and Engle (1993). This corresponds directly to the condition for the univariate GARCH(p,q) model in

equation (1.9), where the persistence of a shock to the optimal forecast of the future conditional variances is

determined by the largest root of the characteristic polynomialα(x−1) + β(x−1) = 1. The conditions for strict

stationarity and ergodicity for the multivariate GARCH(p,q) model have not yet been established.

Results for other multivariate formulations are scarce, although in some instances the appropriate conditions

may be established by reference to the univariate results in section 3. For instance, for the constant conditional

correlations model in equation (6.13), the persistence of a shock to Es(Ωt), and conditions for the model to be

20If the eigenvalues for A1+B1 are all distinct,Λ equals the diagonal matrix of eigenvalues, and V the corresponding matrix of right eigenvectors.
If some of the eigenvalues coincide,Λ takes the more general Jordan canonical form; see Anderson (1971) for further discussion.
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covariance stationary are simply determined by the properties of each of the N univariate conditional variance

processes; i.e., Es({Ωt} ii) i=1,...,N. Similarly, for the Factor ARCH model in equation (6.9), stationarity of the model

depends directly on the properties of the univariate conditional variance processes for the factor representing

portfolios; i.e. {λkt} k=1,...,K.

The empirical estimates for univariate and multivariate ARCH models often indicate a high degree of

persistence in the forecast moments for the conditional variances; i.e, Es(σ t
2) or Es({Ωt} ii) i=1,..,N, for t→∞. At the

same time, the commonality in volatility movements suggest that this persistence may be common across different

series. More formally, Bollerslev and Engle (1993) define the multivariate ARCH process to be co-persistent in

variance if at least one element in Es(Ωt) is non-convergent a.s. for increasing forecast horizons t-s, yet there exist

a non-trivial linear combination of the process,γ′εt, such that for every forecast origin s, the forecasts of the

corresponding future conditional variances, Es(γ′Ωtγ), converge to a finite limit independent of time s information.

Exact conditions for this to occur within context of the multivariate GARCH(p,q) model in equation (6.3) are

presented in Bollerslev and Engle (1993). These results parallel the conditions for co-integration in the mean as

developed by Engle and Granger (1987). Of course, as discussed in section 3 above, for non-linear models different

notions of convergence may give rise to different classifications in terms of the persistence of shocks. The focus

on forecast second moments corresponds directly to the mean-variance trade-off relationship often stipulated by

economic theory.

To further illustrate, this notion of co-persistence, consider the K-factor GARCH(p,q) model defined in equation

(6.12). If some of the factor representing portfolios have persistent variance processes, then individual assets with

non-zero factor loadings on such factors, will have persistence in variance, also. However, there may be portfolios

which have zero factor loadings on these factors. Such portfolios will not have persistence in variance, and hence

the assets are co-persistent. This will generally be true if there are more assets than there are persistent factors.

From a portfolio selection point of view such portfolios might be desirable as having only transitory fluctuations in

variance. Engle and Lee(1993) explicitly test for such an effect between large individual stocks and a market index,

but fail to find any evidence of co-persistence.
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7. Model Selection

Even in linear statistical models, the problem of selecting an appropriate model is non-trivial, to say the least.

The usual model selection difficulties are further complicated in ARCH models by the uncountable infinity of

functional forms allowed by equation (1.2), and the important issues of the relevant loss function.

Standard model selection criteria such as the Akaike (1973) and the Schwartz (1978) criterion have been widely

used in the ARCH literature, though their statistical properties in the ARCH context are unknown. This is

particularly true when the validity of the distributional assumptions underlying the likelihood are in doubt.

Most model selection problems focus on estimation of means and evaluate loss functions for alternative models

using either in-sample criteria, possibly corrected for fitting by some form of cross-validation, or out of sample

evaluation. The loss function of choice is typically mean squared error.

When the same strategy is applied to variance estimation, the choice of mean squared error is much less clear.

A loss function such as,

(7.1) L1 = ∑t=1,T(ε2t - σ2
t)

2

will penalize conditional variance estimates which are different from the realized squared residuals in a fully

symmetrical fashion. However, this loss function does not penalize the method for negative or zero variance

estimates which are clearly counter factual. By this criterion, least squares regressions of squared residuals on past

information will have the smallest in-sample loss.

More natural alternatives may be the percentage squared errors,

(7.2) L2 = ∑t=1,T(ε2t - σ2
t)

2σt
-4,

the percentage absolute errors, or the loss function implicit in the gaussian likelihood

(7.3) L3 = ∑t=1,T[ln(σ2
t) + ε2tσt

-2].

A simple alternative which exaggerates the interest in predicting when residuals are close to zero is21

(7.4) L4 = ∑t=1,Tln(ε2tσt
-2).

The most natural loss function, however, may be one based upon the goals of the particular application. West,

21Pagan and Schwert (1990) used the loss functions L1 and L4 to compare alternative parametric and non-parametric estimators with in-sample
and out-of-sample data sets. As discussed in section 1.5, the L1 in-sample comparisons favored the non-parametric models, whereas the out-of-
sample tests and the loss function L4 in both cases favored the parametric models.
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Edison and Cho (1991) developed such a criterion from the portfolio decisions of a risk averse investor. In an

expected utility comparison based on the forecast of the return volatility, ARCH models turn out to fare very well.

In a related context, Engle, Hong, Kane, and Noh (1993) assumed that the objective was to price options, and

developed a loss function from the profitability of a particular trading strategy. They again found that the ARCH

variance forecasts were the most profitable.

8. Alternative Measures for Volatility

Several alternative procedures for measuring the temporal variation in second order moments of time series

data have been employed in the literature prior to the development of the ARCH methodology. This is especially

true in the analysis of high frequency financial data, where volatility clustering has a long history as a salient

empirical regularity.

One commonly employed technique for characterizing the variation in conditional second order moments of

asset returns entails the formation of low frequency sample variance estimates based on a time series of high

frequency observations. For instance, monthly sample variances are often calculated as the sum of the squared daily

returns within the month22; examples include Merton (1980) and Poterba and Summers (1986). Of course, if the

conditional variances of the daily returns differ within the month, the resulting monthly variance estimates will

generally be inefficient; see French, Schwert and Stambaugh (1987) and Chou (1988). However, even if the daily

returns are uncorrelated and the variance does not change over the course of the month, this procedure tend to

produce both inefficient and biased monthly estimates; see Foster and Nelson (1992).

A related estimator for the variability may be calculated from the inter-period highs and lows. Data on high

and low prices within a day is readily available for many financial assets. Intuitively, the higher the variance, the

higher the inter-period range. Of course, the exact relationship between the high-low distribution and the variance

is necessarily dependent on the underlying distribution of the price process. Using the theory of range statistics

Parkinson (1980) showed that a high-low estimator for the variance in a continuous time random walk is more

22Since many high frequency asset prices exhibit low but significant first order serial correlation, two times the first order autocovariance is often
added to the daily variance in order to adjust for this serial dependence.
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efficient than the conventional sample variance based on the same number of end-of-interval observations. Of

course, the random walk model assumes that the variance remain constant within the sample period. Formal

extensions of this idea to models with stochastic volatility are difficult; see also Wiggins (1991), who discusses many

of the practical problems, such as sensitivity to data recording errors, involved in applying high-low estimators.

Actively traded options currently exist for a wide variety of financial instruments. A call option gives the

holder the right to buy an underlying security at a pre-specified price within a given time period. A put option gives

the right to sell a security at a pre-specified price. Assuming that the price of the underlying security follows a

continuous time random walk, Black and Scholes (1973) derived an arbitrage based pricing formula for the price of

a call option. Since the only unknown quantity in this formula is the constant instantaneous variance of the

underlying asset price over the life of the option, the option pricing formula may be inverted to infer the conditional

variance, or volatility, implicit in the actual market price of the option. This technique is widely used in practice.

However, if the conditional variance of the asset is changing through time, the exact arbitrage argument underlying

the Black-Scholes formula breaks down. This is consistent with the evidence in Day and Lewis (1992) for stock

index options which indicate that a simple GARCH(1,1) model estimated for the conditional variance of the

underlying index return provides statistically significant information in addition to the implied volatility estimates

from the Black-Scholes formula. Along these lines Engle and Mustafa (1992) find that during normal market

conditions the coefficients in the implied GARCH(1,1) model which minimize the pricing error for a risk neutral

stock option closely resemble the coefficients obtained using more conventional maximum likelihood estimation

methods.23 As mentioned in section 4 above, much recent research have been directed towards the development of

theoretical option pricing formulas in the presence of stochastic volatility; see for instance Amin and Ng (1992),

Heston (1991), Hull and White (1987), Melino and Turnbull (1990), Scott (1987), and Wiggins (1987). While closed

form solutions are only available for a few special cases, it is generally true that the higher the variance of the

underlying security, the more valuable the option. Much further research is needed to better understand the practical

relevance and quality of the implied volatility estimates from these new theoretical models, however.

23More specifically, Engle and Mustafa (1992) estimate the parameters for the implied GARCH(1,1) model by minimizing the risk neutral option
pricing error defined by the discounted value of the maximum of zero and the simulated future price of the underlying asset from the GARCH(1,1)
model minus the exercise price of the option.
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Finance theory suggests a close relationship between the volume of trading and the volatility; see Karpoff

(1987) for a survey of some of the earlier contributions to this literature. In particular, according to the mixtures

of distributions hypothesis, associated with Clark (1973) and Tauchen and Pitts (1983), the evolution of returns and

trading volume are both determined by the same latent mixing variable that reflects the amount of new information

that arrives to the market. If the news arrival process is serially dependent, volatility and trading volume will be

jointly serially correlated. Time series data on trading volume should therefore be useful in inferring the behavior

of the second order moments of returns. This idea has been pursued by a number of empirical studies, including

Andersen (1992b), Gallant, Rossi and Tauchen (1992), and Lamoureux and Lastrapes (1990). While the hypothesis

that contemporaneous trading volume is positively correlated with financial market volatility is supported in the data,

the result that a single latent variable jointly determines both is easily rejected; see Lamoureux and Lastrapes (1992).

In a related context, some market micro structure theories also suggest a close relationship between the

behavior of price volatility and the distribution of the bid-ask spread though time. Only limited evidence is currently

available on the usefulness of such a relationship for the construction of variance estimates for the returns; see e.g.

Bollerslev and Domowitz (1993), Bollerslev and Melvin (1993) and Brock and Kleidon (1992).

The use of the cross sectional variance from survey data to estimate the variance of the underlying time series

has been advocated by a number researchers. Zarnowitz and Lambros (1987) discuss a number of these studies with

macroeconomic variables. Of course, the validity of the dispersion across forecasts as a proxy for the variance will

depend on the theoretical connection between the degree of heterogeneity and uncertainty; see Pagan, Hall and

Trivedi (1983). Along these lines it is worth noting, that Rich, Raymond and Butler (1992) only find a weak

correlation between the dispersion across the forecasts for inflation and an ARCH based estimate for the conditional

variance of inflation. The availability of survey data is also likely to limit the practical relevance of this approach

in many applications.

In a related context, a number of authors have argued for the use of relative prices or returns across different

goods or assets as a way of quantifying inflationary uncertainty or overall market volatility. Obviously, the validity

of such cross sectional based measures again hinges on very stringent conditions about the structure of the market;

see Pagan, Hall and Trivedi (1983).
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While all of the variance estimates discussed above may give some idea about the temporal dependencies in

second order moments, any subsequent model estimates should be carefully interpreted. Analogously to the problems

that arise in the use of generated regressors in the mean, as discussed by Pagan (1984, 1986) and Murphy and Topel

(1985), the conventional standard errors for the coefficient estimates in a second stage model that involves a proxy

for the variance will have to be adjusted to reflect the approximation error uncertainty. Also, if the conditional mean

depends non-trivially on the conditional variance, as in the ARCH in Mean model discussed in section 1.4, any two

step procedure will generally result in inconsistent parameter estimates; for further analysis along these lines we refer

to Pagan and Ullah (1988).

9. Empirical Examples

9.1. U.S. Dollar/Deutschemark Exchange Rates

As noted in section 1.2, ARCH models have found particularly wide used in the modeling of high frequency

speculative prices. In this section we illustrate the empirical quasi-maximum likelihood estimation of a simple

GARCH(1,1) model for a time series of daily exchange rates. Our discussion will be brief. A more detailed and

thorough discussion of the empirical specification, estimation and diagnostic testing of ARCH models is given in

the next section, which analyzes the time series characteristics of more than one hundred years of daily U.S. stock

returns.

The present data set consists of daily observations on the U.S. Dollar/Deutschemark exchange rate over the

January 2, 1981 through July 9, 1992 period, for a total of 3006 observations.24 A broad consensus has emerged

that nominal exchange rates over the free float period are best described as non-stationary, or I(1), type processes;

see e.g. Baillie and Bollerslev (1989). We shall therefore concentrate on modeling the nominal percentage returns;

i.e., yt ≡ 100[ln(st) - ln(st-1)], where st denotes the spot Deutschemark/U.S. Dollar exchange rate at day t. This is the

time series plotted in figure 2 in section 1.2 above. As noted in that section, the daily returns are clearly not

homoskedastic, but characterized by periods of tranquility followed by periods of more turbulent exchange rate

movements. At the same time, there appears to be little or no own serial dependence in the levels of the returns.

24The rates were calculated from the ECU cross rates obtained through Datastream.
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These visual observations are also borne out by more formal tests for serial correlation. For instance, the Ljung and

Box (1978) portmanteau test for up to twentieth order serial correlation in yt equals 19.1, whereas the same test

statistic for twentieth order serial correlation in the squared returns, yt
2, equals 151.9. Under the null of i.i.d. returns,

both test statistic should asymptotically be the realization of a chi-square distribution with twenty degrees of freedom.

Note, that in the presence of ARCH, the portmanteau test for serial correlation in yt will generally be conservative.

As discussed above, numerous parametric and non-parametric formulations have been proposed to model the

volatility clustering phenomenon. In the sake of brevity, we shall here concentrate on the results for the particularly

simple MA(1)-GARCH(1,1) model,

yt = µ0 + θ1εt-1 + εt
(9.1)

σ t
2 = ω0 + ω1Wt - ω1(α1 + β1)Wt-1 + α1ε t

2
-1 + β1σ t

2
-1,

where Wt denotes a weekend dummy equal to one following a closure of the market. The MA(1) term is included

to take account of the weak serial dependence in the mean. Following Baillie and Bollerslev (1989), the weekend

dummy is entered in the conditional variance to allow for an impulse effect.

Table 1: Quasi-Maximum Likelihood Estimates

Coefficient
Jan. 2, 1982
July 9, 1992

Jan. 2, 1982
Oct. 6, 1986

Oct. 7, 1986
July 9, 1992

µ0 -0.002
(0.009)
[0.009]
{0.009}

0.014
(0.018)
[0.018]
{0.018}

-0.017
(0.016)
[0.016]
{0.017}

θ1 -0.056
(0.014)
[0.013]
{0.013}

-0.058
(0.030
[0.027]
{0.027}

-0.055
(0.027)
[0.027]
{0.027}
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ω0 0.028
(0.005)
[0.004]
{0.003}

0.024
(0.009)
[0.007]
{0.006}

0.035
(0.011)
[0.011]
{0.010}

ω1 0.243
(0.045)
[0.031]
{0.022}

0.197
(0.087)
[0.062]
{0.046}

0.281
(0.087)
[0.061]
{0.042}

α1 0.068
(0.009)
[0.007]
{0.005}

0.076
(0.022)
[0.014]
{0.010}

0.063
(0.017)
[0.014]
{0.011}

β1 0.880
(0.015)
[0.012]
{0.010}

0.885
(0.028)
[0.020]
{0.016}

0.861
(0.033)
[0.031]
{0.030}

Notes: Robust standard errors based on equation (2.21) are reported in parenthesis, ( ). Standard errors calculated
from the Hessian in equation (2.18) are reported in [ ]. Standard errors from on the outer product of the sample
gradients in (2.19) are given in { }.

The quasi-maximum likelihood estimates (QMLE) for this model, obtained by the numerical maximization of

the normal likelihood function defined by equations (2.7), (2.8) and (2.12), are contained in table 1. From the first

row in the table, theα1 andβ1 coefficients are both highly significant at the conventional five percent level. The

sum of the estimated GARCH parameters also indicate a fairly strong degree of persistence in the conditional

variance process.25 Consistent with the stylized facts discussed in section 1.2.iv, the conditional variance is also

significantly higher following non-trading periods.

The second and third rows of table 1 report the results with the same model estimated for the first and second

half of the sample respectively; i.e. January 2, 1981 through june 6, 1986 and June 7, 1986 through July 9, 1992.

The parameter estimates are remarkably similar across the two sub-periods.26

In summary, the simple model in equation (9.1) does a remarkably good job of capturing the own temporal

25Reparameterizing the conditional variance in terms of (α1+β1) andα1, the t-test statistic for the null hypothesis thatα1+β1=1 equals 3.784,
thus formally rejecting the IGARCH(1,1) model at standard significance levels.

26Even though the assumption of conditional normality is violated empirically, it is interesting to note that the sum of the maximized normal quasi
log likelihoods for the two sub-samples equals -1727.750 - 1597.166 = -3324.916, compared to -3328.984 for the model estimated over the full
sample.
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dependencies in the volatility of the exchange rate series. For instance, the highly significant portmanteau test for

serial correlation in the squares of the raw series, yt
2, drops to only 21.687 for the squared standardized residuals,

ε̂tσ̂t
-2. We defer our discussion of other residual based diagnostics to the empirical example in the next section.

While the GARCH(1,1) model is able to track the own temporal dependencies, the assumption of conditionally

normally distributed innovations is clearly violated by the data. The sample skewness and kurtosis for ˆεtσ̂t
-1 equal -

0.071 and 4.892, respectively. Under the null of i.i.d. normally distributed standardized residuals, the sample

skewness should be the realization of a normal distribution with a mean of 0 and a variance of 6/√3005 = 0.109,

while the sample kurtosis is asymptotically normally distributed with a mean of 3 and a variance of 24/√3005 =

0.438.

The standard errors for the quasi-maximum likelihood estimates reported in ( ) in table 1 are based on the

asymptotic covariance matrix estimator discussed in section 2.3. These estimates are robust to the presence of

conditional excess kurtosis. The standard errors reported in [ ] and { } are calculated from the Hessian and the

outer product of the gradients as in equations (2.18) and (2.19), respectively. For some of the conditional variance

parameters, the non-robust standard errors are less than one half of their robust counterparts. This compares to the

findings in the Monte Carlo experiment reported in Bollerslev and Wooldridge (1992), and highlights the importance

of appropriately accounting for conditional non-normality when conducting inference in ARCH type models based

on the normal likelihood function.

9.2. U.S. Stock Prices

We next turn to modelling heteroskedasticity in U.S. stock index returns data, drawing on the optimal filtering

results of Nelson and Foster (1991, 1992) summarized in section 4 as a guidance in the model selection. In this

section, very rich parameterizations are introduced for a variety of data sets.

From 1885 on, the Dow Jones corporation has published various stock indices daily. In 1928, the Standard

Statistics company began publishing daily a wider index of 90 utility, industrial and railroad stocks. In 1953, the

Standard 90 index was replaced by an even broader index, the Standard and Poor’s 500 composite. The properties
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of these indices are considered in some detail in Schwert (1990).27 The Dow data has one substantial chronological

break, from July 30 1914, through December 11, 1914, when the financial markets were closed following the

outbreak of the First World War. The first data set we analyze is the Dow data from its inception on February 16,

1885 until the market closure in 1914. The second data set is the Dow data from the December 1914 market

reopening until January 3, 1928. The third data set is the Standard 90 capital gains series beginning in January 4,

1928 and extending to the end of May 1952. The Standard 90 index data is available through the end of 1956, but

we end at the earlier date because that is when the New York Stock Exchange ended its Saturday trading session,

which presumably shifted volatility to other days of the week. The final data set is the S&P 500 index beginning

in January 1953 and continuing through the end of 1990.

i. Model Specification

Our basic capital gains series, rt, is derived from the price index data, Pt, as

(9.2) rt ≡ 100 ln[Pt/Pt-1].

Thus, rt corresponds to the continuously compounded capital gain on the index measured in percent. Any ARCH

formulation for rt may be compactly written as

(9.3) rt = µ(rt-1,σt
2) + εt,

and

(9.4) εt = zt σt, zt ∼ i.i.d., E[zt] = 0, E[zt
2] = 1,

whereµ(rt-1,σt
2) andσt denote the conditional mean and the conditional standard deviation, respectively.

In the estimation reported on below we parameterized the functional form for the conditional mean by

(9.5) µ(rt-1,σt
2) ≡ µ0 + rt-1[µ1 + µ2 exp(-σt

2/u2)] + µ3σt
2.

This is very close to the specification in LeBaron (1992). As is well known, stock index data exhibit significant,

albeit small, first-order autocorrelation. The u2 term denotes the sample mean of rt
2, which is essentially equal to

the unconditional sample variance of rt. As noted by LeBaron (1992), serial correlation seems to be a decreasing

27G. William Schwert kindly provided the data. Schwert’s indices differ from ours after 1962, when he uses the CRSP value weighted market
index. We continue to use the S&P 500 through 1990.
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function of the conditional variance, which may be captured by equation (9.5) throughµ2 > 0. The parameterµ3

is an ARCH-M term.

We assume that the conditional distribution ofεt given σt is generalizedt; see, e.g., McDonald and Newey

(1988). The density for the generalizedt distribution takes the form

η

(9.6) f(εt|σt
2) ≡

2σtbψ1/ηB(1/η,ψ) (1 + |εt|η/(ψbησt
η) )ψ+1/η

where B(1/η,ψ) ≡ Γ(1/η)Γ(ψ)Γ(1/η+ψ) denotes the beta function, b≡ [Γ(ψ)Γ(1/η)/Γ(3/η)Γ(ψ−2/η)]1/2, andψη

> 2, η > 0, andψ > 0. The scale factor b makes Var(εt|σt) = σt
2.

One advantage of this specification is that it nests both the Student’st and the GED distributions discussed

in section 2.2 above. In particular, the Student’st distribution setsη = 2 andψ = 1/2 the degrees of freedom. The

GED is obtained forψ = ∞. Nelson (1989, 1991) fit EGARCH models to U.S. Stock index returns assuming a GED

conditional distribution, and found that there were many more large standardized residuals zt ≡ εtσt
-1 than would

be expected if the returns were actually conditionally GED with the estimatedη. The GED has only one "shape"

parameterη, which is apparently insufficient to fit both the central part and the tails of the conditional distribution.

The generalizedt distribution has two shape parameters, and may therefore be more successful in parametrically

fitting the conditional distribution.

The conditional variance function,σt
2, is parameterized using a variant of the EGARCH formulation in

equation (1.11),

(1 + α1L + . . . + αqL
q)

(9.7) ln(σt
2) = ωt + g(zt−1,σ t

2
-1),

(1 − β1L − . . . − βpL
p)

where the deterministic component is given by,

(9.8) ωt ≡ ω0 + ln[1 + ω1Wt + ω2St + ω3Ht].

As noted in section 1.2, trading and non-trading periods contribute differently to volatility. To also allow for

differences between weekend and holiday non-trading periods Wt gives the number of weekend non-trading days

between trading days t and t-1, while Ht denotes the number of holidays. Prior to May 1952, the NYSE was open

66



for a short trading session on Saturday. Since Saturday may be a "slow" news day, and the Saturday trading session

was short, we would expect low average volatility on Saturdays. The St dummy variable equals one if trading day

t is a Saturday and zero otherwise.

Our specification of the news impact function, g( , ), is a generalization of EGARCH inspired by the optimal

filtering results of Nelson and Foster (1992). In the EGARCH model in equation (1.11) ln(σ t
2
+1) is homoskedastic

conditional onσ2
t, and the partial correlation between zt and ln(σt

2
+1) is constant conditional onσ2

t. These

assumptions may well be too restrictive, and the optimal filtering results indicate the importance of correctly

specifying these moments. Our specification of g(zt,σt
2) therefore allows both moments to vary with the level of

σt
2.

Several recent papers, including and Engle and Ng (1992), have suggested that GARCH, EGARCH and similar

formulations may makeσt
2 or ln(σt

2) too sensitive to outliers. The optimal filtering results discussed in section 4

leads to the same conclusion whenεt is drawn from a conditionally heavy tailed distribution. The final from that

we assume for g( , ) was also motivated by this observation,

(9.9) g(zt,σ
2
t ) ≡ σ

2θ0

t

θ1zt

1 θ2 zt

σ 2γ0

t











γ1 zt
ρ

1 γ2 zt
ρ

Et

γ1 zt
ρ

1 γ2 zt
ρ

.

The γ0 andθ0 parameters allow both the conditional variance of ln(σ t
2
+1) and its conditional correlation with zt to

vary with the level ofσt
2. If θ1 < 0 ln(σ t

2
+1) and zt are negatively correlated; the "leverage effect". The EGARCH

model constrainsθ0 = γ0 = 0, so that the conditional correlation is constant, as is the conditional variance of ln(σt
2).

Theρ, γ2, andθ2 parameters give the model flexibility in how much weight to assign to the tail observations. For

example, ifγ2 andθ2 are both positive, the model downweighs large |zt|’s. The second term on the right hand side

of equation (9.9) was motivated by the optimal filtering results in Nelson and Foster (1992), designed to make the

ARCH model serve as a robust filter.

The orders of the ARMA model for ln(σt
2), p and q, remains to be determined. Table 2 gives the maximized

values of the log likelihoods from (2.7), (2.8) and (9.6) for ARMA models of order up to ARMA(3,5). For three

of the four data sets, the information criterion of Schwartz (1978) selects an ARMA(2,1) model, the exception being

the Dow data for 1914-1928, for which an AR(1) is selected. For linear time series models, the Schwartz criterion
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has been shown to consistently estimate the order of an ARMA model. As noted in section 7, it is not known

whether this result carries over to the ARCH class of models. However, guided by the results in table 2, table 3

reports the maximum likelihood estimates (MLE) for the models selected by the Schwartz criterion. Various Wald

and conditional moment specification tests are given in tables 4 and 5.

ii. Persistence of Shocks to Volatility

As in Nelson (1989, 1991), the ARMA(2,1) models selected for three of the four data sets can be decomposed

into the product of two AR(1) components, one of which has very long lived shocks, with an AR root very close

to one, the other of which exhibits short-lived shocks, with an AR root very far from one; i.e., (1-β1L-β2L
2) ≡ (1-

∆1L)(1-∆2L), where |∆1|≥|∆2|. When the estimated AR roots are real, a useful gauge of the persistence of shocks in

an AR(1) model is the estimated "half life"; that is the value of n for which∆n = 1/2. For the Dow 1885-1914, the

Standard 90, and the S&P 500 the estimated half lives of the long lived components are about 119 days, 4 1/2 years,

and 329 days respectively. The corresponding estimated half lives of the short-lived components are only 5.2, 3.7,

and 6.2 days, respectively.28,29

iii. Conditional Mean of Returns

The estimatedµi terms strongly support the results of LeBaron (1992) of a negative relationship between the

conditional variance and the conditional serial correlation in returns. In particular,µ2 is significantly positive in each

data set, both statistically and economically. For example, for the Standard 90 data, the fitted conditional first order

correlation in returns is 0.17 whenσt
2 is at the 10th percentile of its fitted sample values, but equals -0.07 whenσt

2

is at the 90th percentile. The implied variation in returns serial correlation is similar in the other data sets. The

relatively simple specification ofµ(rt-1,σt
2) remains inadequate, however, as can be seen in the conditional moment

tests reported in table 5. The 17th through 22nd conditions test for serial correlation in the fitted zt’s at lags one

28This is consistent with recent work by Ding, Engle and Granger (1993), in which the empirical autocorrelations of absolute returns from several
financial data sets are found to exhibit rapid decay at short lags and much slower decay at longer lags. These results are also closely related to
the permanent/transitory components ARCH model introduced by Engle and Lee (1992, 1993), and the fractionally integrated ARCH models
recently proposed by Baillie, Bollerslev and Mikkelsen (1993).

29Volatility in the Dow 1914-1928 data shows much less persistence. The half life associated with the AR(1) model selected by the Schwartz
(1978) criterion is only about 7.3 days. For the ARMA(2,1) model selected by the AIC for this data set, the half-lives associated with the two
AR roots are only 24 and 3.3 days, respectively.
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through six. In each data set, substantial serial correlation is found at the higher lags.

iv. Conditional Distribution of Returns

Figure 3 plots the fitted generalizedt density of the zt’s against both a standard normal and a nonparametric

density estimate constructed from the fitted zt’s using a Gaussian Kernel with the bandwidth selection method of

Silverman (1986, pp.45-48). The parametric and nonparametric densities appear quite close, with the exception of

the Dow 1914-1928 data, which exhibits strong negative skewness in ˆzt. Further aspects of the fitted conditional

distribution are checked in the first three conditional moment specification tests reported in table 5. These three

orthogonality conditions test that the standardized residuals z^
t ≡ ε^ tσ^ t

-1 have mean zero, unit variance, and no

skewness.30 In the first three data sets the z^
t series exhibit statistically significant, though not overwhelmingly so,

negative skewness.

The original motivation for adopting the generalizedt distribution was that the two shape parametersη and

ψ would allow the model to fit both the tails and the central part of the conditional distribution. Table 6 gives the

expected and the actual number of zt’s in each data set exceeding N standard deviations. In the S&P 500 data, the

number of outliers is still too large. In the other data sets, the tail fit seems adequate.

As noted above, the generalizedt distribution nests both the Student’st (η=2) and the GED (ψ=∞).

Interestingly, in only two of the data sets does a t-test of the null hypothesis thatη=2 reject at standard levels, and

then only marginally. Thus, the improved fit appears to come from thet component rather than the GED component

of the generalizedt distribution. In total, the generalizedt distribution is a marked improvement over the GED,

though perhaps not over the usual Student’st distribution. Nevertheless, the generalized t is not entirely adequate,

since it does not account for the fairly small skewness in the fitted zt’s, and appears not to have sufficiently thick

tails for the S&P 500 data.

v. News Impact Function

In line with the results for the EGARCH model reported in Nelson (1989, 1991), the "leverage effect" term

θ1 in the g( , ) function is significantly negative in each of the data sets, while the "magnitude effect" termγ1 is

30More precisely, the third orthogonality condition tests that Et[zt |zt|] = 0 rather than Et[zt
3] = 0. We use this test because it requires only the

existence of a fourth conditional moment for zt rather than a sixth conditional moment.
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always positive, significantly so except in the Dow 1914-1928 data. There are important differences, however. The

EGARCH parameter restrictions thatρ=1, γ0 = γ2 = θ0 = θ2 = 0 are decisively rejected in three of the four data

sets. The estimated g(zt,σt
2) functions are plotted in figure 4, from which the differences with the piecewise linear

EGARCH g(zt) formulation is apparent.

To better understand why the standard EGARCH model is rejected, consider more closely the differences

between the specification of the g(zt,σt
2) function in equation (9.9) and the EGARCH formulation in equation (1.11).

Firstly, the parametersγ0 andθ0 allow the conditional variance of ln(σt
2) and the conditional correlation between

ln(σt
2) and rt to change as functions ofσt

2. Secondly, the parametersρ, γ2, and θ2 give the model an added

flexibility in how much weight to assign to large versus small values of zt.

As reported in table 4, the EGARCH assumption thatγ0 = θ0 = 0 is decisively rejected in the Dow 1885-1914

and 1914-1928 data sets, but not for either the Standard 90 or the S&P 500 data sets. For none of the four data set

is the estimated value ofγ0 significantly different from 0 at conventional levels. The estimated value ofθ0 is always

negative, however, and very significantly so in the first two data sets, indicating that the "leverage effect" is more

important in periods of high volatility than in periods of low volatility.

The intuition that the influence of large outliers should be limited by settingθ2 > 0 andγ2 > 0 receives mixed

support from the data; the estimated values ofγ2 and three of the estimatedθ2’s are positive, but only the estimate

of γ2 for the S&P 500 data is significantly positive at standard levels. We also note, that if the data is generated

by a stochastic volatility, as opposed to an ARCH, model with conditionally generalizedt distributed errors, the

asymptotically optimal ARCH filter would setη=ρ and γ2 = ψ-1b-η. The results in table 4 indicate that theη=ρ

restriction is not rejected, but thatγ2 = ψ-1b-η is not supported by the data; the estimated values ofγ2 are "too low"

relative to the asymptotically optimal filter for the stochastic volatility model.
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Table 2: Log Likelihood Values for Fitted Models

Fitted Model Dow
1885-1914

Dow
1914-1928

Standard 90
1928-1952

S&P 500
1953-1990

White Noise -10036.188 -4397.693 -11110.120 -10717.199

MA(1) -9926.781 -4272.639 -10973.417 -10658.775

MA(2) -9848.319 -4241.686 -10834.937 -10596.849

MA(3) -9779.491 -4233.371 -10765.259 -10529.688

MA(4) -9750.417 -4214.821 -10740.999 -10463.534

MA(5) -9718.642 -4198.672 -10634.429 -10433.631

AR(1) -9554.352 -4164.093SC -10275.294 -10091.450

ARMA(1,1) -9553.891 -4164.081 -10269.771 -10076.775

ARMA(1,2) -9553.590 -4160.671 -10265.464 -10071.040

ARMA(1,3) -9552.148 -4159.413 -10253.027 -10070.587

ARMA(1,4) -9543.855 -4158.836 -10250.446 -10064.695

ARMA(1,5) -9540.485 -4158.179 -10242.833 -10060.336

AR(2) -9553.939 -4164.086 -10271.732 -10083.442

ARMA(2,1) -9529.904SC -4159.011AIC -10237.527SC -10052.322SC

ARMA(2,2) -9529.642 -4158.428 -10235.724 -10049.237

ARMA(2,3) -9526.865 -4157.731 -10234.556 -10049.129

ARMA(2,4) -9525.683 -4157.569 -10234.429 -10047.962

ARMA(2,5) -9525.560 -4155.071 -10230.418 -10046.343

AR(3) -9553.787 -4159.227 -10270.685 -10075.441

ARMA(3,1) -9529.410 -4158.608 -10237.462 -10049.833

ARMA(3,2) -9526.089 -4158.230 -10228.701AIC -10049.044

ARMA(3,3) -9524.644AIC -4157.730 -10228.263 -10042.710

ARMA(3,4) -9524.497 -4156.823 -10227.982 -10042.284

ARMA(3,5) -9523.375 -4154.906 -10227.958 -10040.547AIC

Notes: The AIC and SC indicators denote the models selected by the information criteria of Akaike (1973),
and Schwartz (1978), respectively.
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Table 3: Maximum Likelihood Estimates

Coefficient
Dow

1885-1914
ARMA(2,1)

Dow
1914-1928

AR(1)

Standard 90
1928-1952

ARMA(2,1)

S&P 500
1953-1990

ARMA(2,1)

ω0 -0.6682
(0.1251)

-0.6228
(0.0703)

-1.2704
(2.5894)

-0.7899
(0.2628)

ω1 0.2013
(0.0520)

0.3059
(0.0904)

0.1011
(0.0518)

0.1286
(0.0295)

ω2 -0.4416
(0.0270)

-0.5557
(0.0328)

-0.6534
(0.0211)

*

ω3 0.5099
(0.1554)

0.3106
(0.1776)

0.6609
(0.1702)

0.1988
(0.1160)

ψ 3.6032
(0.8019)

2.5316
(0.5840)

4.0436
(0.9362)

3.5437
(0.7557)

η 2.2198
(0.1338)

2.4314
(0.2041)

1.7809
(0.1143)

2.1844
(0.1215)

µ0 0.0280
(0.0112)

0.0642
(0.0222)

0.0725
(0.1139)

0.0259
(0.0113)

µ1 -0.0885
(0.0270)

-0.0920
(0.0418)

-0.0914
(0.0243)

0.0717
(0.0260)

µ2 0.2206
(0.0571)

0.3710
(0.0828)

0.2990
(0.0387)

0.2163
(0.0532)

µ3 0.0006
(0.0209)

0.0316
(0.0442)

0.0285
(0.0102)

0.0050
(0.0213)

γ0 -0.1058
(0.0905)

0.0232
(0.1824)

-0.0508
(0.0687)

0.1117
(0.0908)

γ1 0.1122
(0.0256)

0.0448
(0.0478)

0.1356
(0.0327)

0.0658
(0.0157)

γ2 0.0245
(0.0178)

0.0356
(0.0316)

0.0168
(0.0236)

0.0312
(0.0080)

ρ 2.1663
(0.3119)

3.2408
(1.5642)

1.6881
(0.3755)

2.2477
(0.3312)

θ0 -0.6097
(0.0758)

-0.5675
(0.1232)

-0.1959
(0.0948)

-0.1970
(0.1820)

θ1 -0.1509
(0.0258)

-0.3925
(0.1403)

-0.1177
(0.0271)

-0.1857
(0.02867)
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θ2 0.0361
(0.0828)

0.3735
(0.3787)

-.0055
(0.0844)

0.2286
(0.1241)

∆1 0.9942
(0.0033)

0.9093
(0.0172)

0.9994
(0.0009)

0.9979
(0.0011)

∆2 0.8759
(0.0225)

* 0.8303
(0.0282)

0.8945
(0.0258)

α1 -0.9658
(0.0148)

* -0.9511
(0.0124)

-0.9695
(0.0010)

Notes: Standard errors are reported in parentheses. The parameters indicated by a * were not estimated.
The AR coefficients are decomposed as (1-∆1L)(1-∆2L) ≡ (1-β1L-β2L

2), where |∆1|≥|∆2|.
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Table 4: Wald Hypothesis Tests

Test
Dow

1885-1914
ARMA(2,1)

Dow
1914-1928

AR(1)

Standard 90
1928-1952

ARMA(2,1)

S&P 500
1953-1990

ARMA(2,1)

γ2=θ2=γ0=θ0

=ρ-1=0: χ2
5

97.3825
(0.00000)

63.4545
(0.00000)

10.1816
(.0703)

51.8152
(0.00000)

ω1 = ω3: χ2
1

3.3867
(.06572)

.0006
(.9812)

9.8593
(.0017)

0.3235
(0.5695)

θ0=γ0=0: χ2
2 67.4221

(0.00000)
21.3146

(2.3528 10-5)
4.4853
(.1062)

2.2024
(0.3325)

θ0=γ0: χ2
1 17.2288

(3.1370 10-5)
7.4328
(.0064)

1.7718
(.1832)

1.7844
(0.1816)

η=ρ: χ2
1 0.0247

(0.8751)
0.2684

(0.6044)
0.0554

(0.8139)
0.0312

(0.8598)

γ2=b-ηψ-1: χ2
1 14.0804

(0.00018)
10.0329
(0.0015)

14.1293
(0.00017)

14.6436
(0.00013)

η=ρ, γ2=b-ηψ-1: χ2
2 18.42

(0.00010)
10.4813
(0.0053)

22.5829
(0.00001)

16.9047
(0.00021)
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Table 5: Conditional Moment Specification Tests

Orthogonality
Condition

Dow
1885-1914

ARMA(2,1)

Dow
1914-1928

AR(1)

Standard 90
1928-1952

ARMA(2,1)

S&P 500
1953-1990

ARMA(2,1)

(1) Et[zt] = 0 -0.0147
(0.0208)

-0.0243
(0.0319)

-0.0275
(0.0223)

-0.0110
(0.0202)

(2) Et[zt
2] = 1 0.0007

(0.0382)
0.0007

(0.0613)
0.0083

(0.0503)
0.0183

(0.0469)

(3) Et[zt |zt|]=0 -0.0823
(0.0365)

-0.1122
(0.0564)

-0.1072
(0.0414)

-0.06576
(0.0410)

(4) Et[g(zt,σt)]=0 0.0007
(0.0046)

0.0013
(0.0080)

0.0036
(0.0051)

0.0003
(0.0035)

(5) Et[(zt
2-1)(zt-1

2-1)]=0 -0.0050
(0.0714)

-0.0507
(0.0695)

-0.0105
(0.0698)

0.1152
(0.0930)

(6) Et[(zt
2-1)(zt-2

2-1)]=0 -0.0047
(0.0471)

0.0399
(0.0606)

-0.0358
(0.0815)

-0.0627
(0.0458)

(7) Et[(zt
2-1)(zt-3

2-1)]=0 0.0037
(0.0385)

-0.0365
(0.0521)

0.0373
(0.0583)

-0.0171
(0.0611)

(8) Et[(zt
2-1)(zt-4

2-1)]=0 0.0950
(0.0562)

-0.0658
(0.0403)

-0.0018
(0.0543)

-0.0312
(0.0426)

(9) Et[(zt
2-1)(zt-5

2-1)]=0 0.0165
(0.0548)

0.0195
(0.0486)

0.0710
(0.0565)

0.0261
(0.0731)

(10) Et[(zt
2-1)(zt-6

2-1)]=0 -0.0039
(0.0309)

0.0343
(0.0602)

0.0046
(0.0439)

-0.0557
(0.0392)

(11) Et[(zt
2-1)zt-1]=0 -0.0338

(0.0290)
-0.0364
(0.0414)

-0.0253
(0.0367)

-0.0203
(0.0413)

(12) Et[(zt
2-1)zt-2]=0 0.0069

(0.0251)
-0.0275
(0.0395)

-0.0434
(0.0315)

-0.0378
(0.0278)

(13) Et[(zt
2-1)zt-3]=0 0.0110

(0.0262)
0.0290

(0.0352)
0.0075

(0.0306)
0.0292

(0.0357)

(14) Et[(zt
2-1)zt-4]=0 -0.0296

(0.0275)
0.0530

(0.0340)
-0.0103
(0.0292)

-0.0137
(0.0238)

(15) Et[(zt
2-1)zt-5]=0 -0.0094

(0.0240)
0.0567

(0.0342)
0.0153

(0.0287)
0.0064

(0.0238)

(16) Et[(zt
2-1)zt-6]=0 0.0281

(0.0216)
0.0038

(0.0350)
-0.0170
(0.0253)

0.0417
(0.0326)
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(17) Et[zt zt-1]=0 0.0265
(0.0236)

0.0127
(0.0346)

0.0383
(0.0243)

0.0188
(0.0226)

(18) Et[zt zt-2]=0 0.0133
(0.0157)

-0.0176
(0.0283)

-0.0445
(0.0174)

-0.0434
(0.0158)

(19) Et[zt zt-3]=0 0.0406
(0.0158)

0.0012
(0.0262)

0.0019
(0.0175)

0.0140
(0.0152)

(20) Et[zt zt-4]=0 0.0580
(0.0161)

0.0056
(0.0253)

0.0211
(0.0172)

0.0169
(0.0153)

(21) Et[zt zt-5]=0 0.0516
(0.0163)

0.0164
(0.0251)

0.0250
(0.0174)

0.0121
(0.0158)

(22) Et[zt zt-6]=0 -0.0027
(0.0158)

0.0081
(0.0261)

-0.0040
(0.0172)

-0.0211
(0.0150)

(1)-(16): χ2
16 39.1111

(0.0010)
45.1608

(1.311 10-4)
31.7033
(0.011)

25.1116
(0.0679)

(1)-(22): χ2
22 94.0156

(0.00000)
52.1272

(3.0021 10-4)
67.1231

(1.8609 10-6)
63.6383

(6.3685 10-6)

76



Table 6: Frequency of Tail Events

N

Dow
1885-1914

ARMA(2,1)
Expected Actual

Dow
1914-1928

AR(1)
Expected Actual

Standard 90
1928-1952

ARMA(2,1)
Expected Actual

S&P 500
1953-1990

ARMA(2,1)
Expected Actual

2 421.16 405 180.92 177 369.89 363 458.85 432

3 63.71 74 31.11 33 76.51 81 72.60 57

4 11.54 12 6.99 10 18.76 23 13.83 14

5 2.61 4 2.01 3 5.47 4 3.27 6

6 0.72 2 0.70 1 1.86 1 0.94 5

7 0.23 1 0.28 0 0.71 1 0.31 3

8 9.56 10-6 0 0.13 0 0.30 1 0.12 2

9 3.89 10-7 0 0.06 0 0.14 0 0.05 2

10 1.73 10-7 0 0.03 0 0.07 0 0.02 2

11 8.25 10-8 0 0.01 0 0.04 0 0.01 1

Notes: The table reports the expected and the actual number of observations exceeding N conditional
standard deviations.
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10. Conclusion

This chapter has focused on a wide range of theoretical and empirical properties of ARCH models. It has

presented several new empirical examples but has not attempted to survey the literature on applications, a recent

survey of which can be found in Bollerslev, Chou and Kroner (1992).31 Three of the most active lines of inquiry

are prominently surveyed here, however. The first concerns the general parameterizations of univariate discrete time

models of time varying heteroskedasticity. From the original ARCH model, the literature has focussed upon

GARCH, EGARCH, IGARCH, ARCH-M, AGARCH, NGARCH, QARCH, QTARCH, STARCH, SWARCH, and

many other formulations with particular distinctive properties. Not only has this literature been surveyed here, but

it has been expanded by the analysis of variations in the EGARCH model. Second, we have explored the relations

between the discrete time models and the very popular continuous time diffusion processes that are widely used in

finance. Very useful approximation theorems have been developed, which hold with increasing accuracy when the

time interval becomes very short. The third area of investigation is the analysis of multivariate ARCH processes.

This problem is more complex than the specification of univariate models because of the interest in simultaneously

modeling a large number of variables, or assets, without having to estimate an untractable large number of

parameters. Several multivariate formulations have been proposed, but no clear winners have yet emerged, either

from a theoretical or an empirical point of view.

31Other recent surveys of the ARCH methodology are given in Bera and Higgins (1992) and Nijman and Palm (1992).
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