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1. Introduction

Until a decade ago the focus of most macro econometric and financial time series modeling centered around
the conditional first moments, with any temporal dependencies in the higher order moments treated as a nuisance.
The increased importance played by risk and uncertainty considerations in modern economic theory, however, have
necessitated the development of new econometric time series techniques that allow for the modeling of time varying
variances and covariances. Given the apparent lack of any structural dynamic economic theory explaining the
variation in higher order moments, particularly instrumental in this development has been the AutoRegressive
Conditional Heteroskedastic (ARCH) class of models introduced by Engle (1982). Parallel to the success of standard
linear time series models, arising from the use of the conditional versus the unconditional mean, the key insight
offered by the ARCH model lies in the distinction between toaditional and theunconditional second order
moments. While the unconditional covariance matrix for the variables of interest may be time invariant, the
conditional variances and covariances often depend non-trivially on the past states of the world. Understanding the
exact nature of this temporal dependence is crucially important for many issues in macroeconomics and finance, such
as irreversible investments, option pricing, the term structure of interest rates, and general dynamic asset pricing
relationships. Also, from the perspective of econometric inference, the loss in asymptotic efficiency from neglected
heteroskedasticity may be arbitrarily large, and when evaluating economic forecasts, a much more accurate estimate
of the forecast error uncertainty is generally available by conditioning on the current information set.
1.1. Definitions

Let {€(0)} denote a discrete time stochastic process with conditional mean and variance functions
parameterized by the finite dimensional vedd@® R™, where8, denotes the true value. For notational simplicity
we shall initially assume thag(0) is a scalar, with the obvious extensions to a multivariate framework treated in
section 6. Also, let E(*) denote the mathematical expectation conditional on the past of the process along with any
other information available at time t-1.

The {&(6,)} process is then defined to follow an ARCH model if the conditional mean equals zero,

(1.1) E4(e(8y) =0 t=1, 2, ...,



but the conditional variance,

(1.2) 6(8) = Var,,(&(80) = E1(i(85)), t=1,2, ..,

depends non-trivially on the sigma-field generated by the past observationsg,i,0,){
€.(6y),... }. When obvious from the context, the explicit dependence on the param@tevdl be suppressed for
notational convenience. Also, in the multivariate case the corresponding time varying conditional covariance matrix
will be denoted byQ,.

In much of the subsequent discussion we shall focus directly ongh@rocess, but the same ideas extend
directly to the situation in whichg} corresponds to the innovations from some more elaborate econometric model.

In particular, let {y(6,)} denote the stochastic process of interest with conditional mean

(1.3) K(6o) = Ea(yy) t=1,2, ...

Note, by the timing convention boti(6,) andc,*(6,) are measurable with respect to the time t-1 information set.

Define the £,(6,)} process by,

(1.4) &(8) =Y, - I(6) t=1,2, ...

The conditional variances foef then equals the conditional variance for the{grocess. Since very few economic
and financial time series have a constant conditional mean of zero, most of the empirical applications of the ARCH
methodology actually fall within this framework.

Returning to the definitions in equations (1.1) and (1.2), it follows that the standardized process,

(1.5) (8 = &(8r)07(85) t=1,2 ...,

will have conditional mean zero, and a time invariant conditional variance of unity. This observation forms the basis
for most of the inference procedures that underlie the applications of ARCH type models.
If the conditional distribution for s furthermore assumed to be time invariant with a finite fourth moment,

it follows by Jensen’s inequality that,



E(e)) = E(R)E(0Y) 2 E(Z)E(07)* = E()E(ED?,

where the equality holds true for a constant conditional variance only. Given a normal distribution for the
standardized innovations in equation (1.5), the unconditional distributiog, fertherefore leptokurtic.

The setup in equations (1.1) through (1.4) is extremely general and does not lend itself directly to empirical
implementation without first imposing any further restrictions on the temporal dependencies in the conditional mean
and variance functions. Below we shall discuss some of the most practical and popular such ARCH formulations for
the conditional variance. While the first empirical applications of the ARCH class of models were concerned with
modeling inflationary uncertainty, the methodology have subsequently found especially wide use in capturing the
temporal dependencies in asset returns. For a recent survey of this extensive empirical literature we refer to

Bollerslev, Chou and Kroner (1992).

1.2. Empirical Regularities of Asset Returns

Even in the univariate case, the array of functional forms permitted by equation (1.2) is vast, and infinitely
larger than can be accommodated by any parametric family of ARCH models. Clearly, to have any hope of selecting
an appropriate ARCH model, we must have a good idea of what empirical regularities the model should capture.
Thus, a brief discussion of some of the important regularities for asset returns volatility follows.

i. Thick Tails

Asset returns tend to be leptokurtic. The documentation of this empirical regularity by Mandelbrot (1963),
Fama (1965) and others led to a large literature on modelling stock returns as i.i.d. draws from thick-tailed
distributions; see e.g., Mandelbrot (1963), Fama (1963, 1965), Clark (1973), and Blattberg and Gonedes (1974).
ii. Volatility Clustering
As Mandelbrot (1963) wrote:

". .. large changes tend to be followed by large changes, of either sign, and small changes tend to be
followed by small change. . . ."
This volatility clustering phenomenon is immediately apparent when asset returns are plotted through time. To

illustrate, figure 1 plots the daily capital gains on the Standard 90 composite stock index from 1928-1952 combined
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Figure 1

with the Standard and Poor’s 500 index from 1953-1990. The returns are expressed in percent, and are continuously
compounded. It is clear from visual inspection of the figure, and any reasonable statistical test, that the returns are
not i.i.d. through time. For example, volatility was clearly higher during the 1930’s than during the 1960’s, as
confirmed by the estimation results reported in French, Schwert and Stambaugh (1987).

A similar message is contained in figure 2, which plots the daily percentage Deutschemark/U.S. Dollar
exchange rate appreciation. Distinct periods of exchange market turbulence and tranquility are immediately evident.
We shall return to a formal analysis of both of these two time series in section 9 below.

Volatility clustering and thick tailed returns are intimately related. As noted in section 1.1 above, if the
unconditional kurtosis o€, is finite, E€})/[E(e?)]* = E(Z), where the last inequality is strict unlegsis constant.

Excess kurtosis iig, can therefore arise from randomnessjnfrom excess kurtosis in the conditional distribution

of &, i.e., in z, or from both.
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iii. Leverage Effects

The so-called "leverage effect," first noted by Black (1976), refers to the tendency for changes in stock prices
to be negatively correlated with changes in stock volatility. Fixed costs such as financial and operating leverage
provide a partial explanation for this phenomenon. A firm with debt and equity outstanding typically becomes more
highly leveraged when the value of the firm falls. This raises equity returns volatility if the returns on the firm as
a whole is constant. Black (1976), however, argued that the response of stock volatility to the direction of returns
is too large to be explained by leverage alone. This conclusion is also supported by the empirical work of Christie
(1982) and Schwert (1989b).
iv. Non-Trading Periods

Information that accumulates when financial markets are closed is reflected in prices after the markets reopen.

If, for example, information accumulates at a constant rate over calendar time, then the variance of returns over the
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period from the Friday close to the Monday close should be three times the variance from the Monday close to the
Tuesday close. Fama (1965) and French and Roll (1986) have found, however, that information accumulates more
slowly when the markets are closed than when they are open. Variances are higher following weekends and holidays
than on other days, but not nearly by as much as would be expected if the news arrival rate were constant. For
instance, using data on daily returns across all NYSE and AMEX stocks from 1963-1982, French and Roll (1986)
find that volatility is 70 times higher per hour on average when the market is open than when it is closed. Baillie
and Bollerslev (1989) report qualitatively similar results for foreign exchange rates.

v. Forecastable Events

Not surprisingly, forecastable releases of important information are associated with high ex ante volatility. For
example, Cornell (1978), and Patell and Wolfson (1979, 1981) show that individual firm’s stock returns volatility
is high around earnings announcements. Similarly, Harvey and Huang (1991, 1992) find that fixed income and
foreign exchange volatility is higher during periods of heavy trading by central banks or when macroeconomic news
is being released.

There are also important predictable changes in volatility across the trading day. For example, volatility is
typically much higher at the open and close of stock and foreign exchange trading than during the middle of the day.
This pattern has been documented by Harris (1986), Gerity and Mulherin (1992), Baillie and Bollerslev (1991)
among others. The increase in volatility at the open at least partly reflects information accumulated while the market
was closed. The volatility surge at the close is less easily interpreted.

vi. Volatility and Serial Correlation

LeBaron (1992) finds a strong inverse relation between volatility and serial correlation for U.S. stock indices.
This finding appears remarkably robust to the choice of sample period, market index, measurement interval, and
volatility measure. Kim (1989) documents a similar relationship in foreign exchange rate data.

vii. Co-Movementsin Volatilities

Black (1976) observed that:

"...there is a lot of commonality in volatility changes across stocks: a 1% market volatility change
typically implies a 1% volatility change for each stock. Well, perhaps the high volatility stocks are

somewhat more sensitive to market volatility changes than the low volatility stocks. In general it
seems fair to say that when stock volatilities change, they all tend to change in the same direction.”
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Diebold and Nerlove (1989) and Harvey, Ruiz, and Sentana (1992) also argue for the existence of a few
common factors explaining exchange rate volatility movements. Engle, Ng, and Rothschild (1990) show that U.S.
bond volatility changes are closely linked across maturities. This commonality of volatility changes holds not only
across assets within a market, but asooss different markets. For example, Schwert (1989a) finds that U.S. stock
and bond volatilities move together, while Engle and Susmel (1993) and Hamao, Masulis, and Ng (1990) discover
close links between volatility changes across international stock markets. The importance of international linkages
have been further explored by King, Sentana, and Wadhwani (1990), Engle, Ito and Lin (1990), and Lin, Engle, and
Ito (1991).

That volatilities move together should be encouraging to model builders, since it indicates that a few common
factors may explain much of the temporal variation in the conditional variances and covariances of asset returns.
This forms the basis for the factor ARCH models discussed in section 6.2 below.

viii. Macroeconomic Variables and Volatility

Since stock values are closely tied to the health of the economy, it is natural to expect that measures of
macroeconomic uncertainty such as the conditional variances of industrial production, interest rates, money growth,
etc. should help explain changes in stock market volatility. Schwert (1989a,b) finds that although stock volatility
rises sharply during recessions and financial crises, and drops during expansions, the relation between macroeconomic
uncertainty and stock volatility is surprisingly weak. Glosten, Jagannathan, and Runkle (1993), on the other hand,
uncover a strong positive relationship between stock return volatility and interest rates.

1.3. Univariate Parametric Models
i. GARCH

Numerous parametric specifications for the time varying conditional variance have been proposed in the

literature. In the linear ARCH(q) model originally introduced by Engle (1982), the conditional variance is postulated

to be a linear function of the past q squared innovations,

(1.6) 0t = w+ Y, € = w+ a(L)er,,

where L denotes the lag or backshift operatdy, E y,;. Of course, for this model to be well defined and the



conditional variance positive almost surely the parameters must satfyanda,>0,...0,>0.

Defining v, = € - o7, the ARCH(q) model in (1.6) may be re-written as
(1.7) &€ =w+a(L)e, + v,

Since E4(v,) = 0, the model corresponds directly to an AR(q) model for the squared innovatfori$e process
is covariance stationary if and only if the sum of the positive autoregressive parameters is less than one, in which
case the unconditional variance equals ¥ 0° = w/(1-a,+...40,).

Even though the,'s are serially uncorrelated, they are clearly not independent through time. In accordance
with the stylized facts for asset returns discussed above, there is a tendency for large (small) absolute values of the
process to be followed by other large (small) values of unpredictable sign. Also, as noted above, if the distribution
for the standardized innovations in equation (1.5) is assumed to be time invariant, the unconditional distribution for
€, will have fatter tails than the distribution for. #or instance, for the ARCH(1) model with conditionally normally
distributed errors, E()/E(e?)? = 3(1-a3)/(1-3u3) if 30 < 1, and E€})/E(e?)* = « otherwise; both of which exceed
the normal value of three.

Alternatively the ARCH(q) model may also be represented as a time varying parameter MA(q) maoglel for
(1.8) & = w+ a(L) {184,

where {(;} denotes a scalar i.i.d. stochastic process with mean zero and variance one. Time varying parameter
models have a long history in econometrics and statistics. The appeal of the observational equivalent formulation
in equation (1.6) stems from the explicit focus on the time varying conditional variance of the process. For discussion
of this interpretation of ARCH models, see, e.g., Tsay (1987) and Bera, Higgins and Lee (1992), and Bera and Lee
(1993).

In empirical applications of ARCH(q) a long lag length and a large number of parameters is often called for.

To circumvent this problem Bollerslev (1986) proposed the Generalized ARCH, or GARCH(p,q), model,

(19 or=w+ Zizl,qaisii + Zj=l,pl3jo-%-j = w+ a(L)el, + B(L)o?,.



For the conditional variance in the GARCH(p,q) model to be well defined all the coefficients in the corresponding
infinite order linear ARCH model must be positive. Provided thflt) and (L) have no common roots and that

the roots of the polynomidgs(x)=1 lie outside the unit circle, this positivity constraint is satisfied if and only if all
the coefficients in the infinite power series expansiond¢x)/(1-3(x)) are non-negative. Necessary and sufficient
conditions for this are given in Nelson and Cao (1992). For the simple GARCH(1,1) model almost sure positivity
of o2 requires thato=0, a,>0 and &B,.

Rearranging the GARCH(p,q) model as in equation (1.7), it follows that

(1.10) &f = 0+ (a(L)+BL)eLs - BL)Viy + v,

which defines an ARMA(max(p,q),p) model faf. By standard arguments, the model is covariance stationary if

and only if all the roots ofi(x)+p(x)=1 lie outside the unit circle; see Bollerslev (1986) for a formal proof. In many
applications with high frequency financial data the estimateofd)+3(1) turn out to be very close to unity. This
provides an empirical motivation for the so-called Integrated GARCH(p,q), or IGARCH(p,q), model introduced by
Engle and Bollerslev (1986). In the IGARCH class of models the autoregressive polynomial in equation (1.10) has
a unit root, and consequently a shock to the conditional variance is persistent in the sense that it remains important
for future forecasts of all horizons. Further discussion of stationarity conditions and issues of persistence are given
in section 3 below.

Just as an ARMA model often leads to a more parsimonious representation of the temporal dependencies in
the conditional mean than an AR model, the GARCH(p,q) formulation in equation (1.9) provides a similar added
flexibility over the linear ARCH(g) model when parameterizing the conditional variance. This analogy to the ARMA
class of models also allows for the use of standard time series techniques in the identification of the orders p and
g as discussed in Bollerslev (1988). Because of the higher order dependencies,iprieess, standard Box and
Jenkins (1976) inference procedures will generally be very inefficient, however. Also, as noted above, in most
empirical applications with finely sampled data, the simple GARCH(1,1) model avit3, ‘close to one is found
to provide a good description of the data. Possible explanations for this phenomenon are discussed in sections 4 and

5 below.



ii. EGARCH

GARCH successfully captures thick tailed returns, and volatility clustering, and can readily be modified to
allow for several other stylized facts, such as non-trading periods and predictable information releases. It is not well
suited to capture the "leverage effect," however, since the conditional variance in equation (1.9) is a function only
of the magnitudes of the lagged residuals and not their signs.

In the Exponential GARCH (EGARCH) model of Nelson (1994, depends on both the size and the sign

of lagged residuals. In particular,

(1.11) G2 =+ (1 + Ty L)L - Ty BLYY 62, + ] | 201 | -E| 2, |D.

Thus, {In(c?} follows an ARMA(p,q) process, with the usual ARMA stationarity conditions. Formulas for the
higher order moments o are given in Nelson (1991). As in the GARCH casgecan easily be made a function
of time to accommodate the effect of any non-trading periods or forecastable events.
iii. Other Univariate Parameterizations

Though our list of stylized facts regarding asset volatility narrows the field of candidate ARCH models
somewhat, the number of possible formulations is still vast. For example, to capture volatility clustering, GARCH
assumes that the conditional variamgeequals a distributed lag of squared residuals. An equally natural assumption,
employed by Taylor (1986) and Schwert (1989a,b), is that the conditional standard degjasandistributed lag

of absolute residuals, as in
(1.12) 0, = w + X, O le] + Zy Bioy

i=1,q%i

Higgins and Bera (1992) nest the GARCH model and (1.12) in the class of Non-linear ARCH (NARCH)

models:
(1.13) o) = w+ Z, ;e |" + 2 Bioy.
If (1.13) is modified further by setting

(1.14) o) = 0+ I, O |g - K[V + 2 Boy,
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for some non-zera, the innovations iro,Y will depend on the size as well as the sign of lagged residuals, thereby
allowing for the leverage effect in stock return volatility. The formulation in equation (1.14) witl? is also a
special case of Sentana’s (1991) Quadratic ARCH (QARCH) model, in whjfds modelled as a quadratic form

in the lagged residuals. A simple version of this model termed asymmetric ARCH, or AARCH, was also proposed

by Engle (1990). In the first order case the AARCH model becomes,

(1.15) o=+ 0e%, + 8g, + B0’y

where a negative value gfmeans that positive returns increase volatility less than negative returns.

Another route to introducing asymmetric effects is to set

(1.16) 0 = w+ Z 4 [0/ 1(;>0) [e, Y + o I(€.,<0) |e;|] + 2y B0

where I¢) denotes the indicator function. For example the Threshold ARCH (TARCH) model of Zakoian (1990)
corresponds to equation (1.16) wigh= 1. Glosten, Jagannathan, and Runkle (1993) estimate a version of equation
(1.16) withy = 2. This so-called GJR model allows a quadratic response of volatility to news with different
coefficients for good and bad news, but maintains the assertion that the minimum volatility will result when there
iS no news.

Two additional classes of models have recently been proposed. These models have a somewhat different
intellectual heritage but imply particular forms of conditional heteroskedasticity. The first is the unobserved
components STructural ARCH (STARCH) model of Harvey, Ruiz and Sentana (1992). These are state space models
or factor models in which the innovation is composed of several sources of error where each of the error sources
have heteroskedasticity specifications of the ARCH form. Since the error components cannot be separately observed
given the past observations, the independent variables in the variance equations are not measurable with respect to

the available information set, which complicates inference procedutfésliowing earlier work by Diebold and

Yna comparison study for daily Japanese TOPIX data, Engle and Ng (1992) found that the EGARCH and the GJR formulation were superior
to the AARCH model (1.15) which simply shifted the intercept.

“These models sometimes are also called stochastic volatility models; see Andersen (1992a) for a more formal definition.
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Nerlove (1989), Harvey, Ruiz and Sentana (1992) propose an estimation strategy based on the Kalman Filter.

To illustrate the issues, consider the factor structure

(2.17) y, = Bf, +¢g,

wherey, is a nx1 vector of asset returnsjd a scalar factor with time invariant factor loadings, B, &pib in nx1
vector of idiosyncratic returns. If the factor follows an ARCH(1) process,

(1.18) ol=w+af,

then new estimation problems arise singgi$ not observed, and?, is not a conditional variance. The Kalman
Filter gives both E (f.,) and V,,(f.,), so the proposal by Harvey, Ruiz, and Sentana (1992) is to let the conditional
variance of the factor, which is the state variable in the Kalman Filter, be given by

E0% = 0 + o [Vy(fey) HE(F)} -

Another important class of models is the SWitching ARCH, or SWARCH, model proposed independently by
Cai (1993) and Hamilton and Susmel(1992). This class of models postulate that there are several different ARCH
models and that the economy switches from one to another following a Markov Chain. In this model there can be
an extremely high volatility process which is responsible for events such as the stock market crash in October 1987.
Since this could happen at any time but with very low probability, the behavior of risk averse agents will take this
into account. The SWARCH model must again be estimated using Kalman Filter techniques.

The richness of the family of parametric ARCH models is both a blessing and a curse. It certainly complicates
the search for the "true” model, and leaves quite a bit of arbitrariness in the model selection stage. On the other hand,
the flexibility of the ARCH class of models means that in the analysis of structural economic models with time
varying volatility, there is a good chance that an appropriate parametric ARCH model can be formulated that will
make the analysis tractable. For example, Campbell and Hentschell (1992) seek to explain the drop in stock prices
associated with an increase in volatility within the context an economic model. In their model, exogenous rises in
stock volatility increase discount rates, lowering stock prices. Using an EGARCH model would have made their

formal analysis intractable, but based on a QARCH formulation the derivations are straightforward.
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1.4. ARCH in Mean Models

Many theories in finance call for an explicit tradeoff between the expected returns and the variance, or the
covariance among the returns. For instance, in Merton’s (1973) intertemporal CAPM model, the expected excess
return on the market portfolio is linear in its conditional variance under the assumption of a representative agent with
log utility. In more general settings, the conditional covariance with an appropriately defined benchmark portfolio
often serves to price the assets. For example, according to the traditional Capital Asset Pricing Model (CAPM) the
excess returns on all risky assets are proportional to the non-diversifiable risk as measured by the covariances with
the market portfolio. Of course, this implies that the expected excess return on the market portfolio is simply
proportional to its own conditional variance as in the univariate Merton (1973) model.

The ARCH in Mean, or ARCH-M, model introduced by Engle, Lilien and Robins (1987) was designed to
capture such relationships. In the ARCH-M model the conditional mean is an explicit function of the conditional

variance,

(1.19)  (6) = g(c7(6).6),

where the derivative of the g( ,) function with respect to the first element is non-zero. The multivariate extension
of the ARCH-M model, allowing for the explicit influence of conditional covariance terms in the conditional mean
equations, was first considered by Bollerslev, Engle and Wooldridge (1988) in the context of a multivariate CAPM
model. The exact formulation of such multivariate ARCH models is discussed further in section 6 below.

The most commonly employed univariate specifications of the ARCH-M model postulate a linear relationship
in o, or 0% e.g., g6%®6),0) = u + d0.. For 820 the risk premium will be time-varying, and could change sign
if u<0<d. Note that any time variation ig, will result in serial correlation in the { process?

Because of the explicit dependence of the conditional mean on the conditional variance and/or covariance,
several unigue problems arise in the estimation and testing of ARCH-M models. We shall return to a discussion of

these issues in section 2.2 below.

%The exact form of this serial dependence has been formally analyzed for some simple models in Hong (1991).
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1.5. Nonparametric and Semiparametric Methods

A natural response to the overwhelming variety of parametric univariate ARCH models, is to consider and
estimate nonparametric models. One of the first attempts at this problem was by Pagan and Schwert (1990) who
used a collection of standard nonparametric estimation methods, including kernels, fourier series, and least squares
regressions, to fit models for the relation betweéragd past ys, and then compare the fits with several parametric

formulations Effectively, these models estimate the function f() in

(1.20) ¥ = fen Yoo Yop) + N

Several problems immediately arise in estimating f( ), however. Because of the problems of high dimensionality,
the parameter p must generally be chosen rather small, so that only little temporal smoothing can actually be
achieved directly from (1.20). Secondly, if only squares of the pastaye used the asymmetric terms may not
discovered. Thirdly, minimizing the distance betweeh and f=f(y, .Y, }n0) is most effective ifn, is
homoskedastic, however, in this case it is highly heteroskedastic. In fagtwiérk the precise conditional
heteroskedasticity, therffy*, andnf,*, would be homoskedastic. Thug,has a conditional variancé, o that the
heteroskedasticity is much more severe than,.inNot only does parameter estimation become inefficient, but the
use of a simple Rmeasure as a model selection criterion is inappropriate. Acrierion penalizes Generalized
Least Squares or Maximum Likelihood estimators, and corresponds to a loss function which does not even penalize
zero or negative predicted variances. This issue will be discussed in more detail in section 7. Indeed, the net effect
of the empirical analysis for U.S. stock returns conducted in Pagan and Schwert (1990) was that there was in-sample
evidence that the nonparametric models could outperform the GARCH and EGARCH models, but that out-of-sample
the performance deteriorated, and when a proportional loss function was used the superiority of the nonparametric
models also disappeared in-sample.

Any nonparametric estimation method must be sensitive to the above mentioned issues. Gourieroux and
Monfort (1992) introduce a Qualitative Threshold ARCH, or QTARCH, model, which has conditional variance that
is constant over various multivariate observation intervals. For example, divide the spadetoflyintervals and

let I,(y) be 1 if y, is in the [rinterval. The QTARCH model is then written as,
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(1.21) y= Zi:l,pj:l,ﬂijlj(Yt-i) + Zi:l,pj:l,JBijlj(Yt-i)Ut-i ,

where yis taken to be i.i.d. The; parameters govern the mean and fheparameters govern the variance of the

{y4 process. As the sample size grows, J can be increased and the bins made smaller to approximate any process.

In their most successful application, Gourieroux and Monfort (1992) add a GARCH term resulting in the G-

QTARCH(1) model, with a conditional variance given by
(1.22) 0% =W+ BO%, + Zj=l,JBj|j(yt-l)

Interestingly, the estimates using four years of daily returns on the French stock index (CAC) showed strong evidence
of the leverage effect.

In the same spirit, Engle and Ng (1993) propose and estimate a Partially NonParametric, or PNP, model, which
uses linear splines to estimate the shape of the response to the most recent news. The name of the model reflects
the fact that the long memory component is treated as parametric while the relationship between the news and the
volatility is treated non-parametrically.

The semi-nonparametric series expansion developed in a series of papers by Gallant and Tauchen (1989),
Gallant, Hsieh and Tauchen (1991), and Gallant, Rossi and Tauchen (1992,1993) has also been employed in
characterizing the temporal dependencies in the second order moments of asset returns. A formal description of this

innovative nonparametric procedure is beyond the scope of the present chapter, however.

2. Inference Procedures
2.1. Testing for ARCH
i. Serial Correlation and Lagrange Multiplier Tests
The original Lagrange Multiplier test for ARCH proposed by Engle (1982) is very simple to compute, and
relatively easy to derive. Under the null hypothesis it is assumed that the model is a standard dynamic regression

model which can be written as
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(2.1) y=xB +¢

where xis a set of weakly exogenous and lagged dependent variableg snd Gaussian white noise process,

(2.2) &]l,, ON(0,09),

where | denotes the available information set. Because the null is so easily estimated, the Lagrange Multiplier test
is a natural choice. The alternative hypothesis is that the errors are ARCH(q), as in equation (1.6). A straight
forward derivation of the Lagrange Multiplier test as in Engle(1984) leads to tRda€ERstatistic, where the?Rs
computed from the regression ef, on a constant and”,,...£%,. Under the null hypothesis that there is no
ARCH, the test statistic is asymptotically distributed as chi-square distribution with q degrees of freedom.

The intuition behind this test is very clear. If the data are homoskedastic, then the variance cannot be predicted
and variations ire, will be purely random. However, if ARCH effects are present, large valueg, ofill be
predicted by large values of the past squared residuals.

While this is a simple and widely used statistic, there are several points which should be made. First and most
obvious, if the model in (2.1) is misspecified by omission of a relevant regressor or failure to account for some non-
linearity or serial correlation, it is quite likely that the ARCH test will reject as these errors may induce serial
correlation in the squared errors. Thus, one cannot simply assume that ARCH effects are necessarily present when
the ARCH test rejects. Second, there are several other asymptotically equivalent forms of the test, including the
standard F-test from the above regression. Another versions of the test simply omits the constant but subtracts the
estimate of the unconditional variane®, from the dependent variable, and then uses one half the explained sum
of squares as a test statistic. It is also quite common to use asymptotically equivalent portmanteau tests, such as the
Ljung and Box (1978) statistic, foa®.

As described above, the parameters of the ARCH(q) model must be positive. Hence, the ARCH test could
be formulated as a one tailed test. When g = 1 this is simple to do, but for higher values of q, the procedures are
not as clear. Demos and Sentana (1991) has suggested a one sided ARCH test which is presumably more powerful
than the simple TRtest described above. Similarly, since we find that the GARCH(1,1) is often a superior model
and is surely more parsimoniously parameterized, one would like a test which is more powerful for this alternative.

The Lagrange Multiplier principle unfortunately does not deliver such a test because for models close to the null,
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o, andp, cannot be separately identified. In fact, the LM test for GARCH(1,1) is just the same as the LM test for
ARCH(1). Lee and King (1993) has proposed a locally most powerful test for ARCH and GARCH.

Of course, Wald type tests for GARCH may also be computed. These too are non-standard, however. The
t-statistic ona, in the GARCH(1,1) model will not have a t distribution under the null hypothesis since there is no
time varying input and, will be unidentified. Finally, Likelihood Ratio test statistics may be examined, although
again they have an uncertain distribution under the null. Practical experience, however, suggests that the latter is
a very powerful approach to testing for GARCH effects. We shall return to a more detailed discussion of these test

in section 2.2.ii below.

ii. BDSTest for ARCH

The tests for ARCH discussed above are tests for volatility clustering rather than general conditional
heteroskedasticity, or general nonlinear dependence. One widely used test for general departures from i.i.d.
observations is the BDS test introduced by Brock, Dechert, and Scheinkman (1987). We will consider only the
univariate version of the test; the multivariate extension is made in Baek and Brock (1992). The BDS test has
inspired quite a large literature and several applications have appeared in the finance area; see e.g., Scheinkman and
LeBaron (1989), Hsieh (1991), and Brock, Hsieh, and LeBaron (1991).

To set up the test, let {k., r denote a scalar sequence which under the null hypothesis is assumed to be i.i.d.
through time. Define therhistories of the x process as the vectors (X.X,), (Xa-- Xne1)s (Kasee K2 s s Ormae« - X-1)s (X7
menr---X)- Clearly, there are T-m+1 such m-histories, and therefore (T-m+1)(T-m)/2 distinct pairs of m-histories. Next,
define thecorrelation integral as the fraction of the distinct pairs of m-histories lying within a distance c in the sup

norm; i.e.,

(23) Qn,T(C) = [(T-m+1)(T-m)/2]1 zt:m,szs:m,Tl(rna)ﬁzo,m-ﬂXt-j'xs-j|<C)'

Under weak dependence conditions, (&) converges almost surely to a limit,(¢). By the basic properties of
order-statistics, (Xc) = C,(c)" when {x} is i.i.d.. The BDS test is based on the difference,, [&) - C,(c)"].

Intuitively, C,+(c) > C,(c)" means that when,xand x; are "close" fo j = 1 to m-1, i.e., may, »|X,-Xs;|<C,
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then x and x are more likely than average to be close also. In other words, nearest-neighbor methods work in
predicting the {}} series, which is inconsistent with the i.i.d. assumption.
Brock, Dechert, and Scheinkman (1987) show that for fixed m and¥CT (c) - C,+(c)" is asymptotically

normal with mean zero and variance V(m,c) given by
(2.4) V(m,c)= 4[K(Cc)" + 2 I, ,,K(C)™Cy(c)? + (M-LFCy(c)™ - m*K(c)C,y(c)™,

where K(c) = E[(F(¢c)-F(x-c))], and F¢) is the cumulative distribution function of Xhe BDS test is then

computed as

(2.5) TCp1(c) - Ci+(0)"IV (T.m,cC),

where YT,m,c) denotes a consistent estimator of V(m,c), details of which are given by Brock, Dechert, and
Scheinkman (1987) and Brock, Hsieh, and LeBaron (1991). For fixedknand ¢ > 0, the BDStatistic in equation
(2.5) is asymptotically standard normal.

The BDS test has power against many, though not all, departures from i.i.d.. In particular, as documented by
Brock, Hsieh and LeBaron (1991) and Hsieh (1991), the power against ARCH alternatives is close to Engle’s (1982)
test. For other conditionally heteroskedastic alternatives, the power of the BDS test may be superior. To illustrate,
consider the following example from Brock, Hsieh and LeBaron (1991), whigrie deterministically determined

by the tent map,
(2.6) 0,,°=1-2|020.5],

with o> [ (0,1). The model is clearly heteroskedastic, but does not exhibit volatility clustering, since the empirical
serial correlations of %} approach zero in large samples for almost all valueggf

In order to actually implement the BDS test a choice has to be made regarding the values of m and c. The

4 C..1(c) < C 4(c)" indicates the reverse of nearest neighbors predictability. It is important not to push the nearest neighbors analogy too far,
however. For example, supposel{is an ARCH process with a constant conditional mean of 0. In this case, the conditional meénaiivays

0, and the nearest-neighbors analogy breaks down for minimum mean-squared-error forecastiny sfilkholds for forecasting, say, the
probability that xlies in some interval.

18



Monte Carlo experiments of Brock, Hsieh, and LeBaron (1991) suggest that ¢ should be between 1/2 and 2 standard
deviations of the data, and that T/m should be greater than 200 with m no greater than 5. For the asymptotic
distribution to be a good approximation to the finite-sample behavior of the BDS test a sample size of at least 500
observations is required.

Since the BDS test is a test for i.i.d., it requires some adaptation in testing for ARCH errors in the presence
of time-varying conditional means. One of the most convenient properties of the BDS test is that unlike many other
diagnostic tests, including the portmanteau statistic, its distribution is unchanged when applied to residuals from a
linear model. If, for example, the null hypothesis is a stationary, invertible, ARMA model with i.i.d. errors and the
alternative hypothesis is the same ARMA model but with ARCH errors, the standard BDS test remains valid when
applied to the fitted residuals from the homoskedastic ARMA model. A similar invariance property holds for
residuals from a wide variety of nonlinear regression models, but as discussed in section 2.4.ii below, this does not
carry over to the standardized residuals from a fitted ARCH model. Of course, the BDS test may reject due to
misspecification of the conditional mean rather than ARCH effects in the errors. The same is true, however, of the

simple TR Lagrange Multiplier test for ARCH, which has power against a wide variety of non-linear alternatives.

2.2. Maximum Likelihood Methods
i. Estimation
The procedure most often used in estimatigagn ARCH models involves the maximization of a likelihood
function constructed under the auxiliary assumption of an i.i.d. distribution for the standardized innovations in
equation (1.5). In particular, let f(n) denote the density function for(&)=¢(6)/c,(6) with mean zero, variance
one, and nuisance parametgi®] R*. Also, let {y;,Yr1,...,y,} refer to the sample realizations from an ARCH model
as defined by equations (1.1) through (1.4), &%(0',n') the combined (m+KY1 parameter vector to be estimated
for the conditional mean, variance and density functions.

The log likelihood function for the"tobservation is then given by,

(2.7) W) = In(f(z(6):n)) - 0.5In(0(6)) t=1,2, ...
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The second term on the right hand side is a Jacobian that arises in the transformation from the standardized
innovations, £0), to the observables,(§).° By a standard prediction error decomposition argument, the log

likelihood function for the full sample equals the sum of the conditional log likelihoods in equatior’ (2.7),

(2.8) Le(YriYrasyul) = Zt:l,Tlt(yt;qJ)'

The maximum likelihood estimator (MLE) for the true parametgrg=(6,.n,), say ;, is found by the
maximization of equation (2.8).
Assuming the conditional density, and the mean and variance functions to be differentiablepf@»at=y ,

O); therefore solves

(2.9) S(YrYrp---YuW) = S SYed) = 0,

where gy;) = O,l(y; V) is the score vector for thé'tobservation. In particular, for the conditional mean and

variance parameters,

(2.10)  Oeli(ysw) = f(z(6):n)™'(z(8);:n)Dez,(8) - 0.50,%(8)40,(6)
where f(z(8);n) denotes the derivative of the density function with respect to the first element, and
(2.11)  Ugz(6) = -Ueht(6)a,*(B) - 0.5,(8)0,*(6)40,%(6).

In practice the actual solution to the set of m+k non-linear equations in (2.9) will have to proceed by numerical
techniques. Engle (1982) and Bollerslev (1986) provide a discussion of some of the alternative iterative procedures
that have been successfully employed in the estimation of ARCH models.

Of course, the actual implementation of the maximum likelihood procedure requires an explicit assumption

regarding the conditional density in equation (2.7). By far the most commonly employed distribution in the literature

5In the multivariate context,(y; W) = In(f(e(6)Q,(68)4n)) - 0.5In(|Q(8) ), where|-| denotes the determinant.

5n most empirical applications the likelihood function is conditioned on a number of initial observations and nuisance parameters in order to
start up the recursions for the conditional mean and variance functions. Subject to proper stationarity conditions this practice does not alter the
asymptotic distribution of the resulting MLE.
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is the normal,

(2.12) f(z(0)) = (2 ?exp(-0.5¢6)?).

Since the normal distribution is uniquely determined by its first two moments, only the conditional mean and
variance parameters enter the likelihood function in equation (2.8)is#, If the conditional mean and variance
functions are both differentiable for &8® , it follows that the score vector in equation (2.10) takes the simple

form,

(2.13) 9(y6) = Ooht(6) £(B)a*(6) + 0.5 0e0(6) 6,(8) (e(6)°0*(6) - 1).

From the discussion in section 2.1 the ARCH model with conditionally normal errors results in a leptokurtic
unconditional distribution. However, the degree of leptokurtosis induced by the time varying conditional variance
often does not capture all of the leptokurtosis present in high frequency speculative prices. To circumvent this

problem Bollerslev (1987) suggested using a standardized t-distributiomwRhdegrees of freedom,

(2.14) f(z(6):n) = I (0.5Q+1)) (0.5n)*(n-2)*1+2(6)(n-2)"1 "™,

wherel () denotes the gamma function. The t-distribution is symmetric around zero, and converges to the normal
distribution forn - c. However, for 49q9<o the conditional kurtosis equalsr)/(n-4), which exceeds the normal
value of three.

Several other conditional distributions have been employed in the literature to fully capture the degree of tail
fatness in speculative prices. The density function for the Generalized Error Distribution (GED) used in Nelson

(1991) is given by:

(2.15) 1(z(®):n) = 287 (") *exp(-0.5 ZON*")

where

(2.16) A = [22Pr(n)r@n
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For the tail-thickness parametgs2 the density equals the standard normal density in equation (2.10)<Rathe
distribution has thicker tails that the normal, whije2 results in a distribution with thinner tails than the normal.

Both of these candidates for the conditional density impose the restriction of symmetry. From an economic
point of view the hypothesis of symmetry is of interest since risk averse agents will induce correlation between
shocks to the mean and shocks to the variance as developed more fully by Campbell and Hentschel (1992).

Engle and Gonzalez-Rivera(1991) propose to estimate the conditional density nonparametrically. The procedure
they develop first estimates the parameters of the model using the gaussian likelihood. The density of the residuals
standardized by their estimated conditional standard deviations is then estimated using a linear spline with smoothness
priors. The estimated density is then taken to be the true density, and the new likelihood function is maximized.
The use of the linear spline simplifies the estimation in that the derivatives with respect to the conditional density
are easy to compute and store, which would not be the case for kernels or many other methods. In a Monte Carlo
study, this approach improved the efficiency beyond the quasi MLE, particularly when the density was highly non-

normal and skewed.

ii. Testing

The primary appeal of the maximum likelihood technique stems from the well known optimality conditions
of the resulting estimators under ideal conditions. Crowder (1976) gives one set of sufficient regularity conditions
for the MLE in models with dependent observations to be consistent and asymptotically normally distributed.
Verification of these regularity conditions have proven extremely difficult for the general ARCH class of models,
and a formal proof is only available for a few special cases, including the GARCH(1,1) model with ZHf;))<0
in Lumsdaine (1992&) The common practice in empirical studies has been to proceed under the assumption that
the necessary regularity conditions are satisfied.

In particular, if the conditional density is correctly specified and the true parameter vetiont(¥), then a

central limit theorem argument yields that,

"As discussed in section 3 below, the condition Eflaf+p,))<0 ensures that the GARCH(1,1) model is strictly stationary and ergodic. Note
also, that by Jensen’s inequality E@ng®+B,)) < InE(a,z+B,) = In(a,+B,), so the parameter region covers the interesting IGARCH(1,1) case
in which a,+3,=1.

22



(2.17)  TAPw) —~ N(OASY,

where - denotes convergence in distribution. Again, the technical difficulties in verifying (2.17) are formidable.
The asymptotic covariance matrix for the MLE is equal to the inverse of the information matrix evaluated at the true

parameter vectow,,

(2.18) Ay = -T'12t=1,TE(DwS(yt;llJo))-

The inverse of this matrix is less than the asymptotic covariance matrix for all other estimators by a positive definite
matrix. In practice, a consistent estimate forig\available by evaluating the corresponding sample analogyg at ~
i.e., replace E{,s(YsW,)) in equation (2.18) with],s(y, ). Furthermore, as shown below, the terms with second
derivatives typically have expected value equal to zero and therefore do not need to be calculated.

Under the assumption of a correctly specified conditional density, the information matrix equality implies that

A,=B,, where B denotes the expected value of the outer product of the gradients evaluated at the true parameters,

(2.19) B = T3 E(S(YaWo)s(YaWo)).

The outer product of the sample gradients evaluateg;athérefore provides an alternative covariance matrix
estimator; that is replace the summand in equation (2.19) by the sample analoguiess(y,;J;)’. Since analytical
derivatives in ARCH models often involve very complicated recursive expressions, it is common in empirical
applications to make use of numerical derivatives to approximate their analytical counterparts. The estimator defined
from equation (2.19) has the computational advantage that only first order derivatives are needed, as numerical
second order derivatives are likely to be unstédble.

In many applications of ARCH models the parameter vector may be partition@e@&s,0,') where6, and
0, operates a sequential cut @x©,=0, such thaB, parameterizes the conditional mean &ggarameterizes the

conditional variance function for yThus, Dezut(e):o, and aIthougH]elof(e)iO for all 8@ , it is possible to

8n the Berndt, Hall, Hall and Hausman (1974) algorithm often used in the maximization of the likelihood function, the covariance matrix from
the auxiliary OLS regression in the last iteration provides an estimatg. & B small scale Monte Carlo experiment Bollerslev and Wooldridge
(1992) found that this estimator performed reasonably well under ideal conditions.
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show that under fairly general symmetrical distributional assumptions regara@ing for particular functional forms

of the ARCH conditional variance, the information matrix #(0,,0,") becomes block diagonal. Engle (1982)
gives conditions and provides a formal proof for the linear ARCH(g) model in equation (1.6) under the assumption
of conditional normality. As a result, asymptotically efficient estimatesOfgimay be calculated on the basis of a
consistent estimate fd,,, and vice versa. In particular, for the linear regression model with covariance stationary
ARCH disturbances, the regression coefficients may be consistently estimated by OLS, and asymptotically efficient
estimates for the ARCH parameters in the conditional variance calculated on the basis of the OLS regression
residuals. The loss in asymptotic efficiency for the OLS coefficient estimates may be arbitrarily large, however.
Also, the conventional OLS standard errors are generally inappropriate, and should be modified to take account of
the heteroskedasticity as in White (1980). In particular, as noted by @Mi({t985), Diebold (1987),
Bollerslev(1988), and Stambaugh (1993) when testing for serial correlation in the mean in the presence of ARCH
effects, the conventional Bartlett standard error for the estimated autocorrelations, given by the inverse of the square
root of the sample size, may severely underestimate the true standard error.

There are several important cases in which block-diagonality does not hold. For example, block diagonality
typically fails for functional forms, such as EGARCH, in whidlf is an asymmetric function of lagged residuals.
Another important exception is the ARCH-M class of models discussed in section 1.4. Consistent estimation of the
parameters in ARCH-M models generally requires that both the conditional mean and variance functions be correctly
specified and estimated simultaneously. A formal analysis of these issues are contained in Engle, Lilien and Robins
(1987), Pagan and Hong (1991), Pagan and Sabau (1987a, 1987b), and Pagan and Ullah (1988).

Standard hypothesis testing procedures concerning the true parameter vector are directly available from
equation (2.17). To illustrate, let the null hypothesis of interest be statedygs=0( where ©xH-R’ is

differentiable on int§’) and ¢ <m+k. If,0int(¥) and rank(J,r(y,))=¢, the Wald statistic takes the familiar form

Wy = (@) [0, (@) Cr Oy (B T (@),

where G denotes a consistent estimator of the covariance matrix for the parameter estimates under the alternative.

If the null hypothesis is true and the regularity conditions are satisfied, the Wald statistic is asymptotically chi-square
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distributed with (m+k)¢ degrees of freedom.

Similarly, letJ,; denote the MLE under the null hypothesis. The conventional Likelihood Ratio (LR) statistic,

LR = 2[Lr(Yr.Yrar- Y W) = Le(YriYrase- Yo Bor)],

should then be the realization of a chi-square distribution with (ni+k)- degrees of freedom if the null hypothesis
is true andy,dint(\V).

As discussion already in section 2.1 above, when testing hypotheses about the parameters in the conditional
variance of estimated ARCH models, non-negativity constraints must often be imposed ygpistat the boundary
of the admissible parameter space. As a result the two-sided critical value from the standard asymptotic chi-square
distribution will lead to a conservative test; recent discussions of general issues related to testing inequality
constraints are given in Gourieroux, Holly and Monfort (1982), Kodde and Palm (1986) and Wolak (1991).

Another complication that often arises when testing in ARCH models, also alluded to in section 2.1 above,
concerns the lack of identification of certain parameters under the null hypothesis. This in turn leads to a singularity
of the information matrix under the null and a break down of standard testing procedures. Forinstance, as previously
noted in the GARCH(1,1) mod@, andw are not jointly identified under the null hypothesis togt0. Similarly,
in the ARCH-M modelp,(6) = u + da? with p#0, the parameted is only identified if the conditional variance
is time-varying. Thus, a standard joint test for ARCH effects &nd is not feasible. Of course, such identification
problems are not unique to the ARCH class of models. A general discussion is beyond the scope of the present
chapter, but one possible solution would be to adjust the critical values following the procedure advocated by Davies
(1977), as implemented by Watson and Engle (1985).

The finite sample evidence on the performance of ARCH MLE estimators and test statistics is still fairly
limited, examples of which include Engle, Hendry and Trumble (1985), Bollerslev and Wooldridge (1992) and
Lumsdaine (1992b). For the GARCH(1,1) model with conditional normal errors the available Monte Carlo evidence
suggests that the estimate for+3, is downward biased and skewed to the right in small samples. This bias in
a,+3, comes from a downward bias @, while d, is upward biased. Consistent with the theoretical results in

Lumsdaine (1992a) there appears to be no discontinuity in the finite sample distribution of the estimators at the
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IGARCH(1,1) boundary; i.eq,+B,=1. Reliable inference from the LM, Wald and LR test statistics generally does

require moderately large sample sizes of at least two hundred or more observations, however.

2.3. Quasi-Maximum Likelihood Methods

The assumption of conditional normality for the standardized innovations are difficult to justify in many
empirical applications. This has motivated the use of alternative parametric distributional assumptions such as the
densities in equations (2.14) or (2.15). Alternatively, the MLE based on the normal density in equation (2.12) may
be given a quasi-maximum likelihood interpretation.

If the conditional mean and variance functions are correctly specified, the normal quasi-score in equation (2.13)

evaluated at the true paramet&gswill have the martingale difference property,
(2.20) [k (Bo)e(80)0;*(8p) + 0.5150%(80)0; *(Bo) (€,(86)°0; *(By) - 1)] = 0.

Since equation (2.20) holds for any value of the true parameters, the QMLE obtained by maximizing the conditional
normal likelihood function defined by equations (2.7), (2.8) and (2.12),é$§5)g|LE, is Fisher-consistent; that is
E[S:(Y1Yr.0:--¥1;0)]1=0 for any 6[® . Under appropriate regularity conditions this is sufficient to establish
consistency and asymptotic normality @){QMLE. Wooldridge (1993) provides a formal discussion. Furthermore,

following Weiss (1984, 1986), the asymptotic distribution for the QMLE takes the form,

(2-21) Tl/z(éT,QMLE'eo) - N(OvAo-lBvo_l)-

Under appropriate, and difficult to verify, regularity conditions, theahd B, matrices are consistently estimated
by the sample counterparts from equations (2.18) and (2.19).

Provided that the first two conditional moments are correctly specified, it follows from equation (2.13) that,
(2.22) E(es(Y460)) = -Uek(8) Hobti(8)'a*(6) - 1/20040,%(8) e0%(8) T *(6).

As pointed out by Bollerslev and Wooldridge (1992), a convenient estimate of the information matiixva@ving

only first derivatives is therefore available by replacing the right hand side of equation (2.18) with the sample
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realizations from equation (2.22).

The finite sample distribution of the QMLE and the Wald statistics based on the robust covariance matrix
estimator constructed from equations (2.18), (2.19) and (2.22) have been investigated by Bollerslev and Wooldridge
(1992). For symmetric departures from conditional normality, the QMLE is generally close to the exact MLE.
However, as noted by Engle and Gonzales-Rivera (1991), for non-symmetric conditional distributions both the
asymptotic and the finite sample loss in efficiency may by quite large, and semi-parametric density estimation, as

discussed in section 1.5, may be preferred.

2.4. Specification Checks
i. Lagrange Multiplier Diagnostic Tests

After a model is selected and estimated, it is generally desirable to test whether it adequately represents the
data. A useful array of tests can readily be constructed from calculating Lagrange Multiplier tests against particular
parametric alternatives. Since almost any moment condition can be formulated as the score against some alternative,
these tests may also be interpreted as conditional moment tests; see Newey (1985) and Tauchen (1985) Whenever
one computes a collection of test statistics, the question of the appropriate size of the full procedure arises. It is
generally impossible to control precisely the size of a procedure when there are many correlated test statistics and
conventional econometric practice does not require this. When these tests are viewed as diagnostic tests, they are
simply aids in the model building process and may well be part of a sequential testing procedure anyway. In this
section, we will show how to develop tests against a variety of interesting alternatives to any particular model. We
focus on the simplest and most useful case.

Suppose we have estimated a parametric model with the assumption that each observation is conditionally
normal with mean zero and variancé = (6). Then the score can be written as a special case of (2.13),
(2.23) (Y,,0) = OglogoA(0)[€%(8)0,(6)-1].
In order to conserve space, equation (2.23) may be written more compactly as
(2.24) %t = Xeily,

where x, denotes the kx1 vector of derivatives of the log of the conditional variance equation with respect to the
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parameter®, and y = €°(0)0,%(6)-1 defines the generalized residuals. From the first order conditions in equation
(2.9), the MLE for8, 8;, solves,
(2.25) Y1t S = et X 0, = 0.

Suppose that the additional set of r parameters represented by the rx1ywetich have been implicitly set
to zero during estimation. We wish to test whether this restriction is supported by the data. That is, the null
hypothesis may be expressedygs0, whereo? = 0(6,y). Also, suppose that the score with respecy twas the
same form as in equation (2.24),
(2.26) S = Xl

Under fairly general regularity conditions, the scores themselves when evaluated at the true pafgméier,
generally satisfy a martingale central limit theorem. Therefore,
(2.27) T2 5,(8)) - N(O,V)
where V = A denotes the covariance matrix of the scores. The conventional form of the Lagrange Multiplier test
as in Breusch and Pagan(1979) or Engle(1984) is then given by,
(2.28) & =T S S V! Senr S
wherey = (8,y), hats represent estimates evaluated under the null hypothesi¥, denotes a consistent estimate
of V. As discussed in section 2.2, a convenient estimate of the information matrix is given by the outer product of
the scores,
(2.29) Br=T"%r 8 Sy
so that the test statistic can be computed in terms of a regression. Specifically, let the Tx1 vector of ones be denoted
[, and the Tx(k+r) matrix of scores evaluated under the null hypothesis be denoféd:t{yf@,spz,...,%}. Then
a simple form of the LM test is obtained from,
(2.30) £.=1'SS9'SI =TR,
where the Ris the uncentered fraction of variance explained by the regression of a vector of ones on all the scores.
The test statistic in equation (2.30) is often referred to as the Outer Product of the Gradient, or OPG, version of the
test. It is very easy to compute. In particular, using the BHHH estimation algorithm, the test statistic is simply

obtained by one step of the BHHH algorithm from the maximum achieved under the null hypothesis.
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Studies of this version of the LM test, such as MacKinnon and White(1985) and Bollerslev and
Wooldridge(1992), often find that it has size distortions and is not very powerful as it does not utilize the structure
of the problem under the null hypothesis to obtain the best estimate of the information matrix. Of courdénthe R
(2.30) will be overstated if the likelihood function has not been fully maximized under the null so that (2.25) is not
satisfied. One might recommend a first step correction by BHHH to be certain that this is achieved.

An alternative estimate of V corresponding to equation (2.19) is available from taking expectations of S'S.
In the simplified notation set out here,

(2.31) E(S'S) =%, 1 E(U? X X) = E(u?) Zp 1 E(X X)),

where it is assumed that the conditional expectatigyfui) is time invariant. Of course, this will be true if the
standardized innovationgo,* has a distribution which does not depend upon time or past information, as is
commonly assumed. Consequently, an alternative consistent estimator of V is given by,

(2.32) V= (TH0ra) (TEXX),

where U = {u,...,u}, X' = {X 4,....%}, and X’ ={X’ g,X'}. Since 'S = u’X, the Lagrange Multiplier test based

on the estimator in equation (2.32) may also be computed from an auxiliary regression,

(2.33) &= UX (XX)X'G=TR

Here the regression is of the percentage difference between the squared residuals and the estimated conditional
variance regressed on the gradient of the log of the conditional variance with respect to all the parameters including
those set to zero under the null hypothesis. This test statistic is similar to one step of a Gauss Newton iteration from
an estimate under the null. Itis called the Hessian estimate by Bollerslev and Wooldridge (1992) because it can also
be derived by setting components of the Hessian equal to their expected value assuming only that the first two
moments are correctly specified, as discussed in section 2.3. This version of the test has considerable intuitive appeal
as it asks whether there is remaining conditional heteroskedasticitymhich is a function of x It also performed

better than the OPG test in the simulations reported by Bollerslev and Wooldridge (1992). This is also the version
of the test used by Engle and Ng (1992) to compare various model specifications. As noted by Engle and Ng (1992),
the likelihood must be fully maximized under the null if the test is to have the correct size. An approach to deal

with this issues, would be to first regreSsam %, and then form the test on the basis of the residuals from this
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regression. The Rof this regression should be zero if the likelihood is maximized, so this is merely a numerical
procedure to purge the test statistic of contributions from loose convergence criteria.

Both of these procedures develop the asymptotic distribution under the null hypothesis that the model is
correctly specified including the normality assumption. Recently, Wooldridge (1990) and Bollerslev and Wooldridge
(1992) have developed robust LM tests which have the same limiting distribution under any null specifying that the
first two conditional moments are correct. This follows in the line of conditional moment tests for GMM or QMLE
as in Newey (1985), Tauchen (1985) and White (1987, 1992).

To derive these tests, consider the Taylor series expansions of the scores around the true parameter values,
5/(680) and g(8,),

(2.34) T2 5(8,) = T¥2 5(8;) + 0/06' T2 (8; - 6),

(2.35) T2 5(8,) = T2 5(8;) + 05/00 T2 (8; - 0,),

where the derivatives of the scores are evaluatd}.atThe derivatives in equations (2.34) and (2.35) are simply
the H, and Hy elements of the Hessian, respectively. The distribution of the score with respgevaiuated

at 8, is readily obtained from the left hand side of equation (2.34). Substituting in (2.35) and using (2.26) to give

the limiting distribution of the scores, it follows that,

(2.36) T2 5(87) - NO.W),
where,
(2.37) W= Vvv ) HVB Hee-lvev ) Vye Hee-lHey + Hve Hee_lvee Hee_lHey-

Notice first, that if the scores are the derivatives of the true likelihood, then the information matrix equality will hold,
and therefore H=V asymptotically. In this case we get the conventional LM test described in (2.28) and computed
generally either as (2.30) or (2.33). If the normality assumption underlying the likelihood is false so that the
estimates are viewed as quasi maximum likelihood estimators, then the expressions in equations (2.37) and (2.38)
are needed.

As pointed out by Wooldridge (1990), any score which has the additional property habhierges in
probability to zero can be tested simply as a limiting normal with covariance majjoias a TRtype test from

a regression of a vector of ones gp "By proper redefinition of the score, such a test can always be constructed.
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To illustrate, suppose thaj, & XU, Sy = Xg U, andou/d0 = -x,. Also define,

(2.39)  s% = (X, - XU,

where,

(2.40) R, = X T ieq XaX o) (Tic e y0)-

The statistic based on gfn equation (2.39) then tests only the part gfwhich is orthogonal to the scores used

to estimate the model under the null hypothesis. This strategy generalizes to more complicated settings as discussed

by Bollerslev and Wooldridge (1992).

ii. BDS Specification Tests

As discussed in section 2.1.ii, the asymptotic distribution of the BDS test is unaffected by passing the data
through a linear, e.g., ARMA, filter. Since an ARCH model typically assumes that the standardized resiguals z
g0, are i.i.d., it seems reasonable to use the BDS test as a specification test by applying it to the fitted standardized
residuals from an ARCH model. Fortunately, the BDS test applied to the standardized residuals has considerable
power to detect misspecification in ARCH models. Unfortunately, the asymptotic distribution of the test is strongly
affected by the fitting of the ARCH model. As documented by Brock, Hsieh, and LeBaron (1991) and Hsieh (1991),
BDS tests on the standardized residuals from fitted ARCH models reject much too infrequently. In light of the
filtering properties of misspecified ARCH models, discussed in section 4 below, this may not be too surprising.

The asymptotic distribution of the BDS test for ARCH residuals has not yet been derived. One commonly
employed procedure to get around this problem is to simply simulate the critical values of the test statistic; i.e., in
each replication generate data by Monte Carlo methods from the specific ARCH model, then estimate the ARCH
model and compute the BDS test for the standardized residuals. This approach is obviously very computationally
demanding.

Brock and Potter (1992) suggest another possibility for the case in which the conditional mean of the observed
data is known. Applying the BDS test to the log of the squared known residuals, i&%) #(n(z?) + In(c?),
separates l8f) into an i.i.d. component, In, and a component which can be estimated by non-linear regression

methods. Under the null of a correctly specified ARCH model, )#in(e>)-In(c?) is i.i.d., and, subject to the
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regularity conditions of Brock and Potter (1992) or Brock , Hsieh, and LeBaron (1991), the asymptotic distribution
of the BDS test is the same whether applied to fp(ar to the fitted values In(@=In(¢)-In(G;%). While the
assumption of a known conditional mean is obviously unrealistic in some applications, it may be a reasonable
approximation for high-frequency financial time series, where the noise component tends to swamp the conditional

mean component.

3. Stationary and Ergodic Properties
3.1. Strict Stationarity
In evaluating the stationarity of ARCH models, it is convenient to recursively substitute for the Iggeti

o2 For completeness, consider the multivariate case where

@1 &=Q"Z, z0Oiid, EZ) =0 EZZ)=lwm
and

(3.2) Q= Q2,17 ...).

Using the ergodicity criterion from Corollary 1.4.2 in Krengel (1985), it follows thaict stationarity of { €} - ..

is equivalent to the condition
(3.3) Q,=QZ.1,Zs--)s

with Q(+,-,...) measurable, and
(3.4) TraceQQ/) <o a.s.

Equation (3.3) eliminates direct dependence @f}{on t, while (3.4) ensures that random shocks @}die out
rapidly enough to keepQ,} from exploding asymptotically.

In the univariate EGARCH(p,q) model, for example, equation (3.2) is obtained by exponentiating both sides
of the definition in equation (1.11). Since &yf) is written in ARMA(p,q) form, it is easy to see that if

@+ ijlvqorjxj) and (1 -Zizlvpﬁixi) have no common roots, equations (3.3)-(3.4) are equivalent to all the roots of (1 -
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..., BX) lying outside the unit circle. Similarly, in the bivariate EGARCH model defined in section 6.4 below,
In(0,,), In(opf), andf,, all follow ARMA processes giving rise to ARMA stationarity conditions.

Onesufficient condition for (3.4) is moment boundedness; i.e., clearly E[T@g&()"] finite for some p > 0
implies Trace,Q,') <« a.s. For example, Bollerslev (1986) shows that in the univariate GARCH(p,q) model defined
by equation (1.9), E(?) is finite, and {£} is covariance stationary, wherk_, B + 2., @; < 1. This is a sufficient,
but not a necessary condition for strict stationarity, however. Because ARCH processes are thick tailed, the conditions
for "weak" or covariance stationarity are often more stringent than the conditions for "strict" stationarity.

For instance, in the univariate GARCH(1,1) model, (3.2) takes the form

(35) 6/ = W1+ Iy, My By + a,25)].

Nelson (1990b) shows that when> 0, 6 < » a.s., and §,0.% is strictly stationary if and only if E[InB+az?)]

< 0. An easy application of Jensen’s inequality shows that this is a much weaker requiremeat-fizdn the
necessary and sufficient condition fog}{to be covariance stationary. For example, the simple ARCH(1) model
with z, _ N(0,1) ando=3 andp=0, is strictly but not weakly stationary.

To grasp the intuition behind this seemingly paradoxical result, consider the terms in the summation in (3.5);
i.e., M (Bta,zi,). Taking logs, it follows directly thatr, In(B,+a,z;) is a random walk with drift. If
E[In(B,+0a,z_2)] = 0, the drift is positive and the random walk divergesda.s. as k- «. If, on the other hand,
E[In(B+0a,z_2)] < 0, the drift is negative and the random walk diverges ¢oa.s. as k— o, in which case
M-y (Br+a,z %) tends to zero at an exponential rate in k a.s. as ko. This, in turn, implies that the sum in
equation (3.5) converges a.s., establishing (3.4). Measurability in (3.3) follows easily using Theorems 3.19 and 3.20
in Royden (1968).

This result for the univariate GARCH(1,1) model generalizes fairly easily to other closely related ARCH
models. For example, in the multivariate diagonal GARCH(1,1) model, discussed in section 6.1 below, the diagonal
elements ofQ, follow univariate GARCH(1,1) processes. If each of these processes are stationary, the Cauchy-
Schwartz inequality ensures that all of the elementQjrare bounded a.s. The case of the constant conditional

correlation multivariate GARCH(1,1) model in section 6.3 is similar. The same method can also be used in a
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number of other univariate cases as well. For instance, when p = q = 1, the stationarity condition for the model in
equation (1.15) is E[lm(,"I(z>0)|z|" + a,1(z=0)|z|))] < O.

Establishing stationarity becomes much more difficult when we complicate the models even slightly. The
extension to the higher order univariate GARCH(p,q) model has recently been carried out by Bougerol and Picard
(1992) with methods which may be more generally applicable. There exist a large mathematics literature on
conditions for stationarity and ergodicity for markov chains; see, e.g., Nummelin and Tuominin (1982), and Tweedie
(1983a). These conditions can sometimes be verified for ARCH models, although much work remains establishing

useful stationarity criteria even for many commonly-used models.

3.2. Persistence

The notion of "persistence" of a shock to volatility within the ARCH class of models is considerably more
complicated than the corresponding concept of persistence in the mean for linear models. This is because even
strictly stationary ARCH models frequently do not possess finite moments.

Suppose thatd?} is strictly stationary and ergodic. Let &f) denote the unconditional cumulative distribution
function (cdf) for 6 and let o denote the cdf ofo? given information at tire s < t. Then for any s,
F(o?)-F(0? converges to 0 at all continuity points as-t «; i.e., time s information drops out of the forecast
distribution as t— 0. Therefore, one perfectly reasonable definition of "persistence” would be to say that shocks fail
to persist when §2} is stationary and ergodic.

It is equally natural, however, to definite persistence of shocks in terms of fon@oa®nts; i.e., to choose
somen > 0 and to say that shocks &’ fail to persist if and only if for every s, §5,>") converges as-t~ to a
finite limit independent of time s information. Such a definition of persistence may be particularly appropriate when
an economic theory makes a forecast moment, as opposed to a forecast distribution, the object of interest.

Unfortunately, whether or not shocks t@3} "persist’ or not depends very much on which definition is
adopted. The conditional momen&?") may diverge to infinity for som@, but converge to a well-behaved limit
independent of initial conditions for othey;, even when the %} process is stationary and ergodic.

Consider, for example, the GARCH(1,1) model, in which
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(3.9) 0%, = w+ag’+ B0’ = w+ o(a;z” + By

The expectation o6 as of time s, is given by

(3.10) E(0)) = [ Zypps 0y + B)“1+ oo, + By

It is easy to see that{®,?) converges to the unconditional varianceustl-a,-B,) as t- « if and only if a, + B,<1.

In the IGARCH model withw > 0 anda, + B, = 1, it follows that E(c?) - « a.s. as t.«. Nevertheless, as
discussed in the previous section, IGARCH models are strictly stationary and ergodic. In fact, as shown by Nelson
(1990b) in the IGARCH(1,1) model ") converges to a finite limit independent of time s information asot
whenevem < 1. This ambiguity of "persistence” holds more generally. When the supporti®funbounded it
follows from Nelson (1990b) that in any stationary and ergodic GARCH(1,1) modes*E diverges for all
sufficiently largen, and converges for all sufficiently smail

While the relevant criterion for persistence may be dictated by economic theory, in practice tractability also
plays an important role. For example(&?), and its multivariate extension discussed in section 6.5 below, can often
be evaluated even when strict stationarity is difficult to establish, or wh@y| for n # 1 is intractable. Criteria
for the convergence of 6, for the GARCH(1,1) case are presented in Nelson (1990b). For many other ARCH
models, moment convergence is most easily established with the methods used in Tweedie (1983b).

In many applications, moment convergence criterion have not been successfully developed. This includes quite
simple cases, such as the univariate GARCH(p,q) model when p > 1 or g > 1. The same is true for multivariate
models, in which co-persistence is an issue. In such cases, the choige=df may be impossible to avoid.
Nevertheless, it is important to recognize that apparent persistence of shocks may be driven by thick-tailed

distributions rather than by inherent non-stationarity.

4, Continuous Time Methods

ARCH models are systems of nonlinear stochastic difference equations. This makes their probabilistic and

statistical properties, such as stationarity, moment finiteness, consistency and asymptotic normality of MLE, more
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difficult than is the case with linear models. One way to simplify the analysis of ARCH models is to approximate
the stochastidifference equations with more tractable stochasfiiferential equations. On the other hand, for certain
purposes, notably in the computation of point forecasts and maximum likelihood estimates, ARCH models are more
convenient than the stochastic differential equation models of time-varying volatility common in the finance literature;
see, e.g., Wiggins (1987), Hull and White (1987), Gennotte and Marsh (1991), Heston (1991) and Andersen (1992a).

Suppose that the process JXs governed by the stochastic integral equation,

(4.1) X =X, + o u(XJds +J5 Q*(XJdW,,

where {W} is an Nx1 standard Brownian motion, ang:) and Q¥4") are continuous functions from"Rnto R"
and the space of 8N real matrices respectively. The starting valug, ay be fixed or random. Following Karatsas
and Shreve (1988) and Ethier and Kurtz (1986), if equation (4.1) has a unique weak-sense solution, the distribution

of the {X;} process is then completely determined by the following four characteristics,

(i) the cumulative distribution function, F{x of the starting point ¥
(i) the drift p(x),
(iii) the conditional covariance matriR(x) = Q(x)“4(Q(x)¥?)’",*°

(iv) the continuity with probability one of {3 as a function of time.

Our interest here is either in approximating (4.1) by an ARCH model or visa versa. To that end, consider a
sequence of first-order Markov processeX J, whose sample paths are random step functions with jumps at times
h,2h,3h,... . For edch > 0, andeach nonnegative integer k, define the drift and covariance functionsg(Ry =

hE[( X1 — X [1X=X], and Qi (x)

h™CoV[(X\.1 — X)X =X], respectively. Also, let f.x,) denote the

cumulative distribution function fogX,. Since (i)-(iv) completely characterize the distribution of the}{process,

gFormaIIy, we consider {} and the approximating discrete time process@§Has random variables in B”[O’w)' the space of right continuous
functions with finite left limits, equipped with the Skorohod topology.Rnﬂ;Q),oo) is a complete, separable metric space (see, e.g., Chapter 3 in
Ethier and Kurtz (1986).

PThus Q(x)*2 is a matrix square root a(x), though it need not be the symmetric square root since we require onl@{RF(Q(X)Y?) =
Q(x), not Q(x)*?Q(x)"? = Q(x).
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it seems intuitive that weak convergence pX{ to {X ;} can be achieved by "matching" these properties in the limit

as h 0. Stroock and Varadhan (1979) showed that this is indeed the case.

Theorem 4.1 (Stroock and Varadhan (1979)): Let the stochastic integral equation (4.1) have a unique weak-

sense solution. Then X} converges weakly to {3 for h10 if

@i F.() - F() as h0 at all continuity points of F(),

@ii" Hn(X) - H(X) uniformly on every bounded x set as O

(iii") Q,(X) - Q(x) uniformly on every bounded x set as®

(iv') for some & > 0, ' E[[ Xy, = X I*®[X,=X] - 0 uniformly on every bounded x set as ('

This result, along with various extensions, is fundamental in all of the continuous record asymptotics discussed
below.

Deriving the theory of continuous time approximation for ARCH models in its full generality is well beyond
the scope of this chapter. Instead, we shall simply illustrate the use of these methods by explicit reference to a
diffusion model frequently applied in the options pricing literature; see e.g., Wiggins (1987). The model considers
an asset price, Yand its instantaneous returns volatility, The continuous time process for the joint evolution of

{Y ,04 with fixed starting values, (¥,0,), is given by

(4.2) dY; = pY dt + Yo dW,,
and,

(4.3) d[In@Ed)] = -BlIn(c?) - aldt + YdW,,

where y, ), B, anda denote the parameters of the process, and add W, are driftless Brownian motions

independent of (¥,0%) that satisfy

e define the matrix normj-| , by A= [Trace(AA)]*2 It is easy to see why (i)-(ii") match (i)-(iii) in the limit as h0. That (iv")
leads to (iv) follows from Holder’s inequality; see Theorem 2.2 in Nelson (1990a) for a formal proof.
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Of course in practice, the price process is only observable at discrete time intervals. However, the continuous time
model in equations (4.2)-(4.4) provides a very convenient framework for analyzing issues related to theoretical asset
pricing in general and option pricing in particular. Also, by Ito’s lemma equation (4.2) may be equivalently written

as

(4.2) dy, = (u-o?2)dt +odW,,

where y = In(Y,). For many purposes this is a more tractable differential equation.

4.1. ARCH Models as Approximations to Diffusions

Suppose that an economic model specifies a diffusion model such as equation (4.1), where some of the state
variables, including(x,), are unobservable. Is it possible to formulate an ARCH data generation process that is
similar to the true process, in the sense that the distribution of the sample paths generated by the ARCH model and
the diffusion model in equation (4.1) becomes "close" for increasingly finer discretizations?

Specifically, consider the diffusion model given by equations (4.2’)-(4.4). Strategies for approximating
diffusions such as this are well known. For example, Melino and Turnbull (1990) use a standard Euler approximation

in defining (y,0,),*

(4.5) Yun =Y, + (U - 622)h + hl/zotzl,nh

(4.6) In@t.) = In(a) = hB[In(a?) - o] + h*AZ, .,

for t = h, 2h, 3h, .... . Here (yo,) is taken to be fixed, and (£ Z,) is assumed to be i.i.d. bivariate normal with

mean vector (0,0) and

2See Pardoux and Talay (1985) for a general discussion of the Euler approximation technique.
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Convergence of this set of stochastic difference equations to the diffusion in equations (4.2)-(4.9)raayhbe
verified using theorem 4.1. In particular, (i’) holds trivially, since,@y) are constants. To check conditions (ii’)
and (iii"), note that

(0-0i12)

B(In(a?) - a)

3 Yen-
|:| 2t\h t )
(ot ) -In(o?)

[ [ [

(4.8) h'E,

0 o [
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which matches the drift and diffusion matrix of (4.2)-(4.4). Condition (iv’) is nearly trivially satisfied, sincard
Z, . are normally distributed with arbitrary finite moments. The final step of verifying that the limit diffusion has
a unique weak-sense solution is often the most difficult and the least intuitive part of the proof for convergence.
Nelson (1990a) summarizes several sets of sufficient conditions, however, and formally shows that the process
defined by (4.5)-(4.7) satisfies these conditions.

While conditionally heteroskedastic, the model defined by the stochastic difference equations (4.5)A0t.7) is
an ARCH model. In particular, fop#1 o2 is not simply a function of the discretely observed sample path $f {y
combined with a startup valug’. More technically, while the conditional variance of,(yy,) given thec-algebra
generated by {y,0,%} o..: €quals l?, it is not, in general, the conditional variance of,(y, given the smaller
o-algebra generated by {} ., num@nd o,>.  Unfortunately, this latter conditional variance is not available in
closed form'®

To create an ARCH approximation to the diffusion in (4.2)-(4.4), simply replace (4.6) by

(4.10) In@%.y) = In(0) = hBlin(a?) - o] + h**g(Z, .y,

where g ) is measurable with E[ g(Z)|**’] < « for somed > 0 and,

13Jacquier, Polson, and Rossi (1992) have recently proposed a computationally tractable algorithm for computing this conditional variance.
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As an ARCH model, the discretization defined by (4.5), (4.10) and (4.11) inherits the convenient properties usually
associated with ARCH models, such as the easily computed likelihoods and inference procedures discussed in section
2 above. As such, it is a far more tractable approximation to (4.2)-(4.4) than the discretization defined by equations
(4.5)-(4.7).

To complete the formulation of the ARCH approximation, an explicit g( ) function is needed. Since,[E( Z

= (2m)"%, E(Z,,|Z,,]) = 0, and Var( Z,|) = 1 - (2, one possible formulation would be,

(4.12) 9y = PWZy, + YI(A-pA/(QA - 2M)H(|Z, |-(2/)™).

This corresponds directly to the EGARCH model in equation (1.11). Alternatively

(4.13)  9(Z) = WpZy, + W(1-pY21HZ], - 1),

also satisfies equation (4.11). This latter specification turns out to be the asymptotically optimal filtelOfcash

discussed in Nelson and Foster (1991) and section 4.3 below.

4.2. Diffusions as Approximations to ARCH Models

Now consider the question of how to best approximate a discrete time ARCH model with a continuous time
diffusion. This can yield important insights into the workings of a particular ARCH model. For example, the
stationary distribution ob/? in the AR(1) version of the EGARCH model given by equation (1.11) is intractable.
However, the sequence of EGARCH models defined by equations (4.5) and (4.10)-(4.12) converges weakly to the
diffusion process in (4.2)-(4.4). Wheh> 0, the stationary distribution of laf) is N(a,/”2B). Nelson (1990a)
shows that this is also the limit of the stationary distribution o&ff)(in the sequence of EGARCH models (4.5)
and (4.10)-(4.12) asD. Similarly, the continuous limit may result in convenient approximations for forecast
moments of the {yc,% process.

Different ARCH models, will generally result in different limit diffusions. To illustrate, suppose that the data
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are generated by a simple martingale model with a GARCH(1,1) error structure as in equation (1.9). In the present

notation, the process takes the form,

(4.14)  Yun = Yo+ ONZy, = Y0+ Euy

and

(4.15) 0%, =wh + (1 -6h - ah*®g? + h*2ae?,,

where given time t informatiorg,,,, is N(0,0%), and (%,0,) is assumed to be fixed. Note that using the notation for
the GARCH(p,q) model in equation (1.9),+(3,=1-6h, so for increasing sampling frequencies, i.e., a§,the

parameters of the process approach the IGARCH(1,1) boundary as discussed in section 3. Following Nelson (1990a)

O O
( ) h [Dyt\hiytg E 0 E
4.16) h'E, =

%tzwh 70‘?% - eo—tzg
and

[l 0 0O O
(4.17) h'V. ey ch ° H
. ar. =

t%f\h70t2E %0 20(20;15

Thus, from theorem 4.1 the limit diffusion is given by

(4.18) dx=aodw,,

and,

(4.19) & = (w - Bcd)dt + 2?00 2dW,,

where W, and W, independent standard Brownian motions.

The diffusion defined by equations (4.18) and (4.19) is quite different than the EGARCH limit in equations
(4.2)-(4.4). For example, #/202 > —1, the stationary distribution af? in (4.19) is an inverted gamma, so asth
andt- oo, the normalized increments'i(y,.,-y,) are conditionally normally distributed but unconditionally Student’s
t. In particular, in the IGARCH case correspondingdte0, as h 0 and t- », h™4qy,,-y,) approaches a Student’s
t distribution with two degrees of freedom. In the EGARCH case, howev&i(yh, -y, is conditionally normal but
is unconditionally a normal-lognormal mixture. Wheh is stationary, the GARCH formulation in (1.9) therefore

gives rise to unconditionally thicker-tailed residuals than the EGARCH model in equation (1.11).
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4.3. ARCH Models as Filters and Forecasters

Suppose that discretely sampled observations are only available for a subset of the state variables in (4.1), and
that interest centers on estimating the unobservable state varialf}é{3), Doing this optimally via a non-linear
Kalman filter is computationally burdensome; see e.g. Kitagawa (1'98A)ternatively, the data might be passed
through a discrete time ARCH model, and the resulting conditional variances from the ARCH model viewed as
estimates fof(x,). Nelson (1992) shows that under fairly mild regularity conditions, a wide variety of misspecified
ARCH models consistently extract conditional variances from high frequency time series. The regularity conditions
require that the conditional distribution of the observable series is not too thick tailed, and that the conditional
covariance matrix moves smoothly over time. Intuitively, the GARCH filter defined by equation (1.9) estimates the
conditional variance by averaging squared residuals over some time window, resulting in a non-parametric estimate
for the conditional variance at each point in time. Many other ARCH models can be similarly interpreted.

While many different ARCH models may serve as consistent filters for the same diffusion process, efficiency
issues may also be relevant in the design of an ARCH model. To illustrate, suppose thatrtdoeys is observable
at time intervals of length h, but that? is not observed. Lef,? denote some initial estimate of the conditional

variance at time 0, with subsequent estimates generated by the recursion
(4.20)  InG%.p) = In(G7) + hk(67) + h*?g(62 N AYery)-
The set of admissible g(,) functions is restricted by the requirement tfbEh™"{y,..~Y,)] be close to zero

for small values of H® Define the normalized estimation error from this filter extraction &s lg*“[In(6,)-In(c,%)].

Nelson and Foster (1992) derive a diffusion approximation fawlten the data have been generated by the
diffusion in equations (4.2)-(4.4) and the time interval shrinks to zero. In particular, they show,tisat q

approximately normally distributed, and that by choosing the g(, ) function to minimize the asymptotic variance

Yan approximate linear Kalman filter for a discretized version of (4.1) has been employed by Harvey, Ruiz and Shephard (1992). The exact
nonlinear filter for a discretized version of (4.1) has been developed by Jacquier, Polson, and Rossi (1992).

15Formally, the function must satisfy that*E[g(c2h AY,..-Y))] — O uniformly on bounded (o, sets as hO.
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of q, the drift term for Ing,?) in the ARCH modelk(-), does not appear in the resulting minimized asymptotic
variance for the measurement error. The effect is second-order in comparison to that of the g(, ) term, and creates
only an asymptotically negligible bias in.gHowever, fork(a?) = —B[In(c?)-a], the leading term of this asymptotic
bias also disappears. lItis easy to verify that the conditions of theorem 4.1 are satisfied for the ARCH model defined
by equation (4.20) withk(c?) = —B[In(c?)-a] and the variance minimizing g(,). Thus, as a data generation
process this ARCH model converges weakly to the diffusion in (4.2)-(4.4). In the diffusion limit the first two
conditional moments completely characterize the process, and the optimal ARCH filter matches these moments.
The above result on the optimal choice of an ARCH filter may easily be extended to other diffusions and more
general data generating processes. For example, suppose that the true data generation process is given by the

stochastic difference equation analog of (4.2)-(4.4),

(4.21) Y=y, th@-ol/2) + 1o

(4.22) In@t,) = In(0) - hB[In(c?) - a] + h*%,,

where €, 0,% &, is i.i.d. and independent of t, h, ang with conditional density f, ,&,,/c,) with mean (0,0),
bounded 28 absolute moments, V&, ) = 62, and Vay(&,) = y°. This model can be shown to converge weakly

to (4.2)-(4.4) as h0. The asymptotically optimal filter for the model given by equations (4.21) and (4.22) has been
derived in Nelson and Foster (1992). This optimal ARCH filter when (4.21) and (4.22) is the data generation process
is not necessarily the same as the optimal filter for (4.2)-(4.4). The increments in a diffusion such as (4.2)-(4.4) are
approximately conditionally normal over very short time intervals, whereas the innovaigys ) in (4.21) and

(4.22) may be non-normal. This affects the properties of the ARCH filter. Consider estimating a variance based
on i.i.d. draws from some distribution with mean zero. If the distribution is normal, averaging squared residuals is
an asymptotically efficient method of estimating the variance. Least squares, however, can be very inefficient if the
distribution is thicker tailed than the normal. This theory of robust scale estimation, discussed in Davidian and
Carroll (1987) and Huber (1977), carries over to the ARCH case. For example, estiragting squaring a
distributed lag of absolute residuals, as proposed by Taylor (1986) and Schwert (1989a,b), will be more efficient than

estimatingo,? with a distributed lag of squared residuals if the conditional distribution of the innovations is
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sufficiently thicker-tailed than the normal.

One property of optimally designed ARCH filters concerns their resemblance to the true data generating
process. In particular, if the data were generated by the asymptotically optimal ARCH filter, the functional form
for the second conditional moment of the state variables would be the same as in the true data generating process.
If the conditional first moments also match, the second-order bias is similarly eliminated. Nelson and Foster (1991)
show that ARCH models which match these first two conditional moments also have the desirable property that the
forecasts generated by the possible misspecified ARCH model approach the forecasts from the true mddel as h
Thus, even when ARCH models are misspecified, they may consistently estimate the conditional variances.
Unfortunately, the behavior of ARCH filters with estimated as opposed to known parameters, and the properties of

the parameter estimates themselves, are not well understood.

5. Adggregation and Forecasting
5.1. Temporal Aggregation

The continuous record asymptotics discussed in the preceding section summarized the approximate relationships
between continuous time stochastic differential equations and discrete time ARCH models defined at increasingly
higher sampling frequencies. While the approximating stochastic differential equations may result in more
manageable theoretical considerations, the relationship between high frequency ARCH stochastic difference equations
and the implied stochastic process for less frequently sampled, or temporally aggregated, data is often of direct
importance for empirical work. For instance, when deciding on the most appropriate sampling interval for inference
purposes more efficient parameter estimates for the low frequency process may be available from the model estimates
obtained with high frequency data. Conversely, in some instances the high frequency process may be of primary
interest, while only low frequency data is available. The non-linearities in ARCH models severely complicate a
formal analysis of temporal aggregation. In contrast to the linear ARIMA class of models for the conditional means,
most parametric ARCH models are only closed under temporal aggregation subject to specific qualifications.

Following Drost and Nijman (1993) we say that}{is a Weak GARCH(p,q) process, &, is serially

uncorrelated with unconditional mean zero, asidas defined in equation (1.9) corresponds to the best linear



projection ofe? on the space spanned by §1,,¢.,,...£2,,€2,,... }. More specifically,

(5.1) EE? - 0%) = E[(€? - 09)¢,.] = E[(¢7 - 09)€Z] = O i=1,2, ...

This definition of a weak GARCH(p,q) model obviously encompasses the conventional GARCH(p,q) model in which
o2 is equal to the conditional expectation &f based on the full information set at time t-1 as a special case.
Whereas the conventional GARCH(p,q) class of models is not closed under temporal aggregation, Drost and Nijman
(1993) show that temporal aggregation of ARIMA models with weak GARCH(p,q) errors lead to another ARIMA
model with weak GARCH(p’,q’) errors. The orders of this temporally aggregated model and the model parameters
depend on the original model characteristics.

To illustrate, suppose that} follows a weak GARCH(1,1) model with parametens a,, andp,. Let {¢™}
denote the discrete time temporally aggregated process defined at t, t+m, t+2m, ... . For a stock sf@risble
obtained by sampling, every ni" period. For a flow variable™ = ¢ + ¢, + ... + €,,.,. In both cases, it is
possible to show that the temporally aggregated proce$3}, {is also weak GARCH(1,1) with parametess$™ =
w(1 - (o, + B)™/(1 - a, - B) andai™ = (a, + B)™ - B{™, whereB{™ is a complicated function of the parameters
for the original process. Thusi{™ + B{™ = (a, + B,)™, and conditional heteroskedasticity disappears as the
sampling frequency increases, provided that- 3, < 1. Moreover, for flow variables the conditional kurtosis of
the standardized residuals{™[c{™]?, converges to the normal value of three for less frequently sampled
observations. This convergence to asymptotic normality for decreasing sampling frequencies of temporally
aggregated covariance stationary GARCH(p,q) flow variables have been shown previously by Diebold (1988), using
a standard central limit theorem type argument.

These results highlight that the assumption of i.i.d. innovations invoked in maximum likelihood estimation of
GARCH models is necessarily specific to the particular sampling frequency employed in the estimatgn! If
is assumed i.i.d., the distribution ef”[c{™]* will generally not be time invariant. Following the discussion in
section 2.3, the estimation by maximum likelihood methods could be given a quasi-maximum likelihood type
interpretation, however. Issues pertaining to the efficiency of the resulting estimators remain unresolved.

The extension of the aggregation results for the GARCH(p,q) model to other parametric specifications is in
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principle straightforward. The cross sectional aggregation of multiple GARCH processes, which may be particularly

relevant in the formation of portfolios, could also be addressed using the same methodology.

5.2. Forecast Error Distributions

One of the primary objectives of econometric time series model building is often the construction of out-of-
sample predictions. In conventional econometric models with time invariant innovation variances, the prediction error
uncertainty is an increasing function of the prediction horizon, and does not depend on the origin of the forecast.
In the presence of ARCH errors, however, the forecast accuracy will depend non-trivially on the current information
set. The proper construction of forecast error intervals and post-sample structural stability tests therefore both require
the evaluation of future conditional error varianées.

A detailed analysis of the forecast moments for various GARCH models, are available in Engle and Bollerslev
(1986) and Baillie and Bollerslev (1992). Although both of these studies develop expressions for the second and
higher moments of the forecast error distributions, this is generally not enough for the proper construction of
confidence intervals, since the forecast error distributions will be leptokurtic.

A possible solution to this problem is suggested by Baillie and Bollerslev (1992), who argue for the use of the
Cornish-Fisher asymptotic expansion to take account of the higher order dependencies in the construction of the
prediction error intervals. The implementation of this expansion require the evaluation of higher order conditional
moments ofe,,, which can be quite complicated. Interestingly, in a small scale Monte Carlo experiment, Baillie
and Bollerslev (1992) find that under the assumption of conditional normalitg@gf, the ninety-five percent
confidence interval for multi-step predictions from the GARCH(1,1) model constructed under the erroneous
assumption of conditional normality ef. JE(c?,J] ™ for s>1, have a coverage probability quite close to ninety-five
percent. The one percent fractile is typically underestimated by falsely assuming conditional normality of the multi-
step leptokurtic prediction errors, however.

Most of the above mentioned results are specialized to the GARCH class of models, although extensions to

allow for asymmetric or leverage terms and multivariate formulations in principle would be straight forward.

16Also, as discussed earlier, the forecasts of the future conditional variances are often of direct interest in applications with financial data.
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Analogous results on forecasting drf{ for EGARCH models are easily obtained. Closed form expressions for the
moments of the forecast error distribution for the EGARCH model are not available, however.

As discussed in section 4.3, an alternative approximation to the forecast error distribution may be based upon
the diffusion limit of the ARCH model. If the sampling frequency is "high" so that the discrete time ARCH model
is a "close" approximation to the continuous time diffusion limit, the distribution of the forecasts should be "good"
approximations too; see Nelson and Foster (1991). In particular, if the unconditional distribution of the diffusion
limit can be derived, this would provide an approximation to the distribution of the long horizon forecasts from a
strictly stationary model.

Of course, the characteristics of the prediction error distribution may also be analyzed through the use of
numerical methods. In particular, let(E.) denote the density function fa, conditional on information up
through time t. Under the assumption of a time invariant conditional density function for the standardized

innovations, f¢,0,"), the prediction error density fa, is then given by the convolution,

fid€ud =[S (60 L IM(EusiOsd) - (€10 0a) s (e s - Cn:

Evaluation of this multi-step prediction error density may proceed directly by numerical integration. This is
illustrated within a Bayesian context by Geweke (1989a,b), who shows how the use of importance sampling and
antithetic variables can be employed in accelerating the convergence of the Monte Carlo integration. In accordance
with the results in Baillie and Bollerslev (1992), Geweke (1989a) finds that for conditional normally distributed one-
step ahead prediction errors, the shorter the forecast horizon s, and the more tranquil the periods before the origin

of the forecast, the closer to normality is the prediction error distributiorg for

6. Multivariate Specifications

Financial market volatility moves together over time across assets and markets. Recognizing this commonality
through a multivariate modeling framework leads to obvious gains in efficiency. Several interesting issues in the
structural analysis of asset pricing theories and the linkage of different financial markets also call for an explicit

multivariate ARCH approach in order to capture the temporal dependencies in the conditional vasihces
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covariances.
In keeping with the notation of the previous sections, thel Nector stochastic process){is defined to

follow a multivariate ARCH process if Eg,)=0, but the NkN conditional covariance matrix,

(6.1) Bi(eg) = Q,

depends non-trivially on the past of the process. From a theoretical perspective, inference in multivariate ARCH
models poses no added conceptual difficulties in comparison to the procedures for the univariate case outlined in
section 2 above.

To illustrate, consider the log likelihood function fore{er,,...£} obtained under the assumption of

conditional multivariate normality,

(6.2) Lr(er&ry..-£5W) = -0.5[ TN In(2m) + X (In[Q| + &Q'e) 1.

This function corresponds directly to the conditional likelihood function for the univariate ARCH model defined by
equations (2.7), (2.8) and (2.12), and maximum likelihood, or quasi-maximum likelihood, procedures may proceed
as discussed in section 2. Of course, the actual implementation of a multivariate ARCH model necessarily requires
some assumptions regarding the format of the temporal dependencies in the conditional covariance matrix sequence,
{Q}.

Several key issues must be faced in choosing a parameterizatitn f&iirstly, the sheer number of potential
parameters in a general formulation is overwhelming. All useful specifications must necessarily restrict the
dimensionality of the parameter space, and it is critical to determine whether they impose important untested
characteristics on the conditional variance process. A second consideration is whether such restrictions impose the
required positive semi-definiteness of the conditional covariance matrix estimators. Thirdly, it is important to
recognize whether Granger Causality in variance as in Granger, Robins and Engle(1987) is allowed by the chosen
parameterization; that is, does the past information on one variable predict the conditional variance of another. A
fourth issue is whether the correlations or regression coefficients are time varying, and if so do they have the same

persistence properties as the variances. A fifth issue worth considering is whether there are linear combinations of
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the variables, or portfolios, with less persistence than individual series, or assets. Closely related is the question
of whether there exist simple statistics which are sufficient to forecast the entire covariance matrix. Finally, it is
natural to ask whether there are multivariate asymmetric effects, and if so how these may influence both the
variances and covariances. Below we shall briefly review some of the parameterizations that have been applied in
the literature, and comment on whether they are appropriate for answering any of the above posed questions.
6.1. Vector ARCH and Diagonal ARCH

Let vech() denote the vector-half operator, that stacks the lower triangular elements sNamadrix as an
(N(N+1)/2)x1 vector. Since the conditional covariance matrix is symmetric, ¥&glkbntains all the unique elements
in Q,. Following Kraft and Engle (1982) and Bollerslev, Engle and Wooldridge (1988), a natural multivariate

extension of the univariate GARCH(p,q) model defined in equation (1.9) is then given by,

(6.3) vechQ) =W + %, Avech§ g') + 2., BvechQ,))

=1.p-]

=W + A(L)vechg,€';) + B(L)vech@Q,)),

where W is an (N(N+1)/21 vector, and the Aand B matrices are of dimension (N(N+1)AN(N+1)/2). This
general formulation is termed the vec representation by Engle and Kroner (1993). It allows each of the elements
in {Q;} to depend on all of the most recent g past cross products o€ thend all of the most recent p lagged
conditional variances and covariances, resulting in a total of (N(N+1)/2)[1 + (p+q)N(N+1)/2] parameters. Even for
low dimensions of N and small values of p and g the number of parameters is very large; e.g. for N=5 and p=g=1
the unrestricted version of (6.3) contains 465 parameters. This allows plenty of flexibility to answer most, but not
all, of the questions abové. However, this large number of parameters is clearly unmanageable, and conditions
to ensure that the conditional covariance matrices are positive definite a.s. for all t are difficult to impose and verify;
Engle and Kroner (1993) provides one set of sufficient conditions discussed below.

In practice some simplifying assumptions will therefore have to be imposed. In the Diagonal GARCH(p,q)

model, originally suggested by Bollerslev, Engle and Wooldridge (1988), tlee\B matrices are all taken to be

17Note, that even with this number of parameters, asymmetric terms are excluded by the focus on squared residuals.
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diagonal. Thus, the (i)element in 2} only depends on the corresponding past'{iglement in g¢/} and {Q}.
This restriction reduces the number of parameters to (N(N+1)/2)(1+p+q). These restrictions are intuitively
reasonable, and can be interpreted in terms of a filtering estimate of each variance and covariance. However, this
model clearly does not allow for causality in variance, co-persistence in variance as discussed in section 6.5 below,
or asymmetries.

Necessary and sufficient conditions on the parameters to ensure that the conditional covariance matrices in the
diagonal GARCH(p,q) model are positive definite a.s. are most easily derived by expressing the model in terms of
Hadamard products. In particular, define the symmetrié\Nnatrices A and B implicitly by A,=diag{vech(A*)}

i=1,...,q, B=diag{vech(B)} j=1,...p, and W= vech(W). The diagonal model may then be written as

(6.4) Q =W + 5 Alo(g€) + Iy Bj0Q

=1,p=] tj

whereo denotes the Hadamard prodictt follows now by the algebra of Hadamard products, tats positive
definite a.s. for all t provided that Wis positive definite, and the Aand B matrices are positive semi-definite for
all i=1,...,q and j=1,...,p; see Attanasio (1991) and Marcus and Minc (1964) for a formal proof. These conditions
are easy to impose and verify through a Cholesky decomposition for the parameter matrices in equation (6.4). Even
simpler versions of this model which let eithe} ér B] be rank one matrices, or even simply a scalar times a matrix
of ones, may be useful in some applications.

In the alternative representation of the multivariate GARCH(p,q) model termed by Engle and Kroner (1993)

the Baba, Engle, Kraft and Kroner, or BEKK, representation, the conditional covariance matrix is parameterized as,

(6.5) Q =V'V+ 5T Aki€ui€ P + Zier i

I
=1,0B'Q;By»

where V, A, i=1,...,q, k=1,...,K, and Bj=1,...,p, k=1,...,K are all KN matrices. This formulation has the advantage
over the general specification in equation (6.3) tQats guaranteed to be positive definite a.s. for all t. The model
in equation (6.5) still involves a total of (1 + (p+q)Kjdarameters. By taking vedd() we can express any model

of the form (6.5) in terms of (6.3). Thus any vec model in (6.3) whose parameters can be expressed as (6.5) must

8he Hadamard product of two>W matrices A and B is defined by {8 B}={A} ;{B};; see e.g. Amemiya (1985).

50



be positive definite. However, in empirical applications, the structure of thandl B, matrices must be further
simplified as this model is also overparameterized. A choice made by McCurdy and Stengos (1992) is to set

K=p=g=1 and make pAand B diagonal. This leads to the simple positive definite version of the diagonal vec model

(6.6) Q=W + 0,0, A(€4€'11) + BiBy 01
where A = diag{a,} and B, = diag{B,}.
6.2. Factor ARCH

The Factor ARCH model can be thought of as an alternative simple parameterization of (6.5). Part of the
appeal of this parameterization in applications with asset returns stems from its derivation in terms of a factor type
model. Specifically, suppose that the Nx1 vector of retugisg a factor structure with K factors given by the Kx1
vectorg,, and time invariant factor loadings given by the NxK matrix B,
(6.7 y=B¢ +e.
Assume that the idiosyncratic shocleg, have constant conditional covarianc®s and that the factors;,, have
conditional covariance matriX\. Also, suppose that, and &, are uncorrelated, or that they have constant
correlations. The conditional covariance matrix pthen equals
(6.8) Vauy)=Q,=¥W+BAB.
If A is diagonal with elements,, or if the off diagonal elements are constant and combined$htine model may
therefore be written as
6.9 Q=W+ BB Mo
where B, denotes the %k column in B. Thus there are K statistics which determines the full covariance matrix.
Forecasts of the variances and covariances or of any portfolio of assets, will be based only on the forecasts of these
K statistics. This model was first proposed in Engle(1987), and implemented empirically by Engle Ng and
Rothschild (1990), and Ng, Engle and Rothschild (1992) for treasury bills and stocks, respectively.

Diebold and Nerlove (1989) suggested a closely related latent factor model,
6.9) Q=¥+ Ekzl,K BB O

in which the factor variancess, were not functions of the past information set. An estimation approach based upon
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an approximate Kalman Filter was used by Diebold and Nerlove (1989). More recently King, Sentana and
Wadhwani (1990) have estimated a similar latent factor model using theoretical developments in Harvey, Ruiz and
Sentana (1992).

An immediate implication of (6.8) and (6.9) is that if K<N, there are some portfolios with constant variance.
Indeed a useful way to determine K is to find how many assets are required to form such portfolios. Engle and
Kozicki (1993) present this as an application of a test for common features. This test is applied by Engle and
Susmel (1992) to determine whether there is evidence that international equity markets have common volatility
components. Only for a limited pairs of the countries analyzed can a one factor model not be rejected.

A second implication of the formulation in (6.8) is that there exist factor representing portfolios with portfolio
weights that are orthogonal to all but one set of factor loadings. In particular, consider the poytfofigyr,, where
@B, equals 1 if j=k and zero otherwise. The conditional variance, ¢ then given by,

(6.10) Vap(fd = @/ Qe = Y + Ay,
wherey, = @/ W@,. Thus, the portfolios,rhave exactly the same time variation as the factors, which is why they
are called factor representing portfolios.

In order to estimate this model, the dependence inMfie upon the past information set must also be
parameterized. The simplest assumption is that there are a set of factor representing portfolios with univariate
GARCH representations. Thus,

(6.11) Vap(ng = W + 0@ €0)* + Vi Viallied)’

and therefore,

(6.12) Q=W+ Zk:l,K o [Bepy’ €€t OBT + Z:k=1,|< Vi [Be@ Qui 0B,

so that the Factor ARCH model is a special case of the BEKK parameterization. Clearly, more general Factor ARCH
models would allow the factor representing portfolios to depend upon a broader information set than the simple
univariate assumption underlying (6.11).

Estimation of the Factor ARCH model by full Maximum Likelihood together with several variations has been
considered by Lin (1992). However, it is often convenient to assume that the factor representing portfolios are

known a priori. For example, Engle, Ng and Rothschild (1990) assumed the existence of two such portfolios; one
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an equally weighted treasury bill portfolio and one the Standard and Poor’s 500 composite stock portfolio. A simple
two step estimation procedure is then available, by first estimating the univariate models for each of the factor
representing portfolios. Taking the variance estimates from this first stage as given, the factor loadings may then
be consistently estimated up to a sign, by noticing that each of the individual assets has a variance process which
is linear in the factor variances, where the coefficients equal the square of the factor loadings. While this is surely
an inefficient estimator, it has the advantage that it allows estimation for arbitrarily large matrices using simple
univariate procedures.
6.3. Constant Conditional Correlations

In the Constant Conditional Correlations model of Bollerslev (1990), the time-varying conditional covariances
are parameterized to be proportional to the product of the corresponding conditional standard deviations. This
assumption greatly simplifies the computational burden in estimation, and conditiofds timtbe positive definite
a.s. for all t are also easy to impose.

More explicitly, let O denote the XN diagonal matrix with the conditional variances along the diagonal; i.e.,
{D4i ={Q4; and {D}; =0 for i#}, i,j=1,...,N. Also, letl', denote the matrix of conditional correlations; i.€ X
= {Q};{Q}{Q}))™, ij=1,...,N. The constant conditional correlation model then assumeslth&tis time

invariant, so that the temporal variation i@} is determined solely by the time-varying conditional variances,
(6.13) Q,=DYTD¥

If the conditional variances along the diagonal in theniatrices are all positive, and the conditional correlation
matrix " is positive definite, the sequence of conditional covariance matri€gsi§ guaranteed to be positive
definite a.s. for all t. Furthermore, the inverse®fis simply given byQ,* = D;¥4'D,*2 Thus, when calculating

the likelihood function in equation (6.2), or some other multivariate objective function invofjig=1,...,T, only

one matrix inversion is required for each evaluation. This is especially relevant from a computational point of view
when numerical derivatives are being used. Also, by a standard multivariate SURE amhatogy,be concentrated

out of the normal likelihood function by (B%,)(D,*%,)', simplifying estimation even further.
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Of course, the validity of the assumption of constant conditional correlations remains an empirical ddestion.
However, this particular formulation has already been successfully applied by a number of authors, including Baillie
and Bollerslev (1990), Beakhart and Hodrick (1992), Bollerslev (1990), Kroner and Sultan (1992), Kroner and
Claessens (1993) and Schwert and Seguin (1990).

6.4. Bivariate EGARCH

A bivariate version of the EGARCH model in equation (1.11) has been introduced by Braun, Nelson, and
Sunier (1992) in order to model any "leverage effects," as discussed in section 1.2.iii, in conditional betas.
Specifically, lete,,, ande,, denote the residuals for a market index and a second portfolio. The model is then given
by,

(6.14) &,,= OnZme
and,

(6.15) ot = Bp,lam,t * Op o

where {z,,z,} is assumed to be i.i.d. with mean (0,0) and identity covariance matrix. The conditional variance of

the market indexg?,, is modelled by a univariate EGARCH model,

(616) In(o-rfn) =a,+ 6m(m(o-r%],l)'am) + emzm,t-l + ym(|zm,t-1|'E|Zm,t|)'
The conditional beta of,, with respect tce,,,, 3,, is modelled as
(6.17) Bor=Ao + ABora = Mo) + MiZoeiZpra + AoZiea + AaZppa

The coefficients\, and A, allow for "leverage effects" i3, The non-market, or idiosyncratic, variance of the
second portfolio,og,t, is parameterized as a modified univariate EGARCH model, to allow for both market and
idiosyncratic news effects,

(6.18) In@y) = a, + 3,(IN(0p)-ap) + 87, 11 + V(12,4 ]-El Z,)

+ ep,rnzm,t-l + yp,m(|zm,t-l|'E| th|)

1A formal moment based test for the assumption of constant conditional correlations has been developed by Bera and Roh (1991).
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Braun, Nelson, and Sunier (1992) find that this model provides a good description of the returns for a number of
industry and size sorted portfolios.
6.5. Stationarity and Co-Persistence

Stationarity and moment convergence criteria for various univariate specifications were discussed in section
3 above. Corresponding convergence criteria for multivariate ARCH models are generally complex, and explicit
results are only available for a few special cases.

Specifically, consider the multivariate vec GARCH(1,1) model defined in equation (6.3). Analogous to the
expression for the univariate GARCH(1,1) model in equation (3.10), the minimum mean square error forecast for

vech@Q,)) as of time s<t takes the form

(6.18) E(vechQ)) = W[ T {A; + B)'] + (A, + By)“vechQ)),

where (A + B,)° is equal to the identity matrix by definition. Let/AW™ denote the Jordan decomposition of the
matrix A;+B,, so that (A+B,)" = VA"V Thus, E(vechQ,)) converges to the unconditional covariance matrix
of the process, W(l - A- B,)?, for t-  a.s. if and only if the norm of the largest eigenvalue fq#B, is strictly
less than one. Similarly, by expressing the vector GARCH(p,q) model in companion first order form, it follows that
the forecast moments converge, and that the process is covariance stationary if and only if the norm of the largest
root of the characteristic equation | - Afx- B(x™")| = 0 is strictly less than one. A formal proof is given in
Bollerslev and Engle (1993). This corresponds directly to the condition for the univariate GARCH(p,q) model in
equation (1.9), where the persistence of a shock to the optimal forecast of the future conditional variances is
determined by the largest root of the characteristic polynom{al™) + B(x™*) = 1. The conditions for strict
stationarity and ergodicity for the multivariate GARCH(p,q) model have not yet been established.

Results for other multivariate formulations are scarce, although in some instances the appropriate conditions
may be established by reference to the univariate results in section 3. For instance, for the constant conditional

correlations model in equation (6.13), the persistence of a shock(f@)Eand conditions for the model to be

2 the eigenvalues for AB, are all distinctA equals the diagonal matrix of eigenvalues, and V the corresponding matrix of right eigenvectors.
If some of the eigenvalues coincid&,takes the more general Jordan canonical form; see Anderson (1971) for further discussion.
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covariance stationary are simply determined by the properties of each of the N univariate conditional variance
processes; i.e., £ Q};) i=1,...,N. Similarly, for the Factor ARCH model in equation (6.9), stationarity of the model
depends directly on the properties of the univariate conditional variance processes for the factor representing
portfolios; i.e. i} k=1,....K.

The empirical estimates for univariate and multivariate ARCH models often indicate a high degree of
persistence in the forecast moments for the conditional variances(08) & E({Q};) i=1,..,N, for t- . At the
same time, the commonality in volatility movements suggest that this persistence may be common across different
series. More formally, Bollerslev and Engle (1993) define the multivariate ARCH process to be co-persistent in
variance if at least one element i(8,) is non-convergent a.s. for increasing forecast horizons t-s, yet there exist
a non-trivial linear combination of the procesgg, such that for every forecast origin s, the forecasts of the
corresponding future conditional varianceg(yEy), converge to a finite limit independent of time s information.

Exact conditions for this to occur within context of the multivariate GARCH(p,q) model in equation (6.3) are
presented in Bollerslev and Engle (1993). These results parallel the conditions for co-integration in the mean as
developed by Engle and Granger (1987). Of course, as discussed in section 3 above, for non-linear models different
notions of convergence may give rise to different classifications in terms of the persistence of shocks. The focus
on forecast second moments corresponds directly to the mean-variance trade-off relationship often stipulated by
economic theory.

To further illustrate, this notion of co-persistence, consider the K-factor GARCH(p,q) model defined in equation
(6.12). If some of the factor representing portfolios have persistent variance processes, then individual assets with
non-zero factor loadings on such factors, will have persistence in variance, also. However, there may be portfolios
which have zero factor loadings on these factors. Such portfolios will not have persistence in variance, and hence
the assets are co-persistent. This will generally be true if there are more assets than there are persistent factors.
From a portfolio selection point of view such portfolios might be desirable as having only transitory fluctuations in
variance. Engle and Lee(1993) explicitly test for such an effect between large individual stocks and a market index,

but fail to find any evidence of co-persistence.
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7. Model Selection

Even in linear statistical models, the problem of selecting an appropriate model is non-trivial, to say the least.
The usual model selection difficulties are further complicated in ARCH models by the uncountable infinity of
functional forms allowed by equation (1.2), and the important issues of the relevant loss function.

Standard model selection criteria such as the Akaike (1973) and the Schwartz (1978) criterion have been widely
used in the ARCH literature, though their statistical properties in the ARCH context are unknown. This is
particularly true when the validity of the distributional assumptions underlying the likelihood are in doubt.

Most model selection problems focus on estimation of means and evaluate loss functions for alternative models
using either in-sample criteria, possibly corrected for fitting by some form of cross-validation, or out of sample
evaluation. The loss function of choice is typically mean squared error.

When the same strategy is applied to variance estimation, the choice of mean squared error is much less clear.
A loss function such as,

(7.1) L= Y€ - 0%

will penalize conditional variance estimates which are different from the realized squared residuals in a fully
symmetrical fashion. However, this loss function does not penalize the method for negative or zero variance
estimates which are clearly counter factual. By this criterion, least squares regressions of squared residuals on past
information will have the smallest in-sample loss.

More natural alternatives may be the percentage squared errors,

(72) L= Yl - 0%)°0",

the percentage absolute errors, or the loss function implicit in the gaussian likelihood

(7.3) L= Y.i4In(0%) + €507

A simple alternative which exaggerates the interest in predicting when residuals are close t&'zero is
(7.4) L= Yqn(E0?).

The most natural loss function, however, may be one based upon the goals of the particular application. West,

21Pagan and Schwert (1990) used the loss functigrend L, to compare alternative parametric and non-parametric estimators with in-sample
and out-of-sample data sets. As discussed in section 1.5, tilesample comparisons favored the non-parametric models, whereas the out-of-
sample tests and the loss functiopih both cases favored the parametric models.
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Edison and Cho (1991) developed such a criterion from the portfolio decisions of a risk averse investor. In an
expected utility comparison based on the forecast of the return volatility, ARCH models turn out to fare very well.
In a related context, Engle, Hong, Kane, and Noh (1993) assumed that the objective was to price options, and
developed a loss function from the profitability of a particular trading strategy. They again found that the ARCH

variance forecasts were the most profitable.

8. Alternative Measures for Volatility

Several alternative procedures for measuring the temporal variation in second order moments of time series
data have been employed in the literature prior to the development of the ARCH methodology. This is especially
true in the analysis of high frequency financial data, where volatility clustering has a long history as a salient
empirical regularity.

One commonly employed technique for characterizing the variation in conditional second order moments of
asset returns entails the formation of low frequency sample variance estimates based on a time series of high
frequency observations. For instance, monthly sample variances are often calculated as the sum of the squared daily
returns within the monf; examples include Merton (1980) and Poterba and Summers (1986). Of course, if the
conditional variances of the daily returns differ within the month, the resulting monthly variance estimates will
generally be inefficient; see French, Schwert and Stambaugh (1987) and Chou (1988). However, even if the daily
returns are uncorrelated and the variance does not change over the course of the month, this procedure tend to
produce both inefficient and biased monthly estimates; see Foster and Nelson (1992).

A related estimator for the variability may be calculated from the inter-period highs and lows. Data on high
and low prices within a day is readily available for many financial assets. Intuitively, the higher the variance, the
higher the inter-period range. Of course, the exact relationship between the high-low distribution and the variance
is necessarily dependent on the underlying distribution of the price process. Using the theory of range statistics

Parkinson (1980) showed that a high-low estimator for the variance in a continuous time random walk is more

2Since many high frequency asset prices exhibit low but significant first order serial correlation, two times the first order autocovariance is often
added to the daily variance in order to adjust for this serial dependence.
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efficient than the conventional sample variance based on the same number of end-of-interval observations. Of
course, the random walk model assumes that the variance remain constant within the sample period. Formal
extensions of this idea to models with stochastic volatility are difficult; see also Wiggins (1991), who discusses many
of the practical problems, such as sensitivity to data recording errors, involved in applying high-low estimators.
Actively traded options currently exist for a wide variety of financial instruments. A call option gives the
holder the right to buy an underlying security at a pre-specified price within a given time period. A put option gives
the right to sell a security at a pre-specified price. Assuming that the price of the underlying security follows a
continuous time random walk, Black and Scholes (1973) derived an arbitrage based pricing formula for the price of
a call option. Since the only unknown quantity in this formula is the constant instantaneous variance of the
underlying asset price over the life of the option, the option pricing formula may be inverted to infer the conditional
variance, or volatility, implicit in the actual market price of the option. This technique is widely used in practice.
However, if the conditional variance of the asset is changing through time, the exact arbitrage argument underlying
the Black-Scholes formula breaks down. This is consistent with the evidence in Day and Lewis (1992) for stock
index options which indicate that a simple GARCH(1,1) model estimated for the conditional variance of the
underlying index return provides statistically significant information in addition to the implied volatility estimates
from the Black-Scholes formula. Along these lines Engle and Mustafa (1992) find that during normal market
conditions the coefficients in the implied GARCH(1,1) model which minimize the pricing error for a risk neutral
stock option closely resemble the coefficients obtained using more conventional maximum likelihood estimation
methods? As mentioned in section 4 above, much recent research have been directed towards the development of
theoretical option pricing formulas in the presence of stochastic volatility; see for instance Amin and Ng (1992),
Heston (1991), Hull and White (1987), Melino and Turnbull (1990), Scott (1987), and Wiggins (1987). While closed
form solutions are only available for a few special cases, it is generally true that the higher the variance of the
underlying security, the more valuable the option. Much further research is needed to better understand the practical

relevance and quality of the implied volatility estimates from these new theoretical models, however.

SMore specifically, Engle and Mustafa (1992) estimate the parameters for the implied GARCH(1,1) model by minimizing the risk neutral option
pricing error defined by the discounted value of the maximum of zero and the simulated future price of the underlying asset from the GARCH(1,1)
model minus the exercise price of the option.
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Finance theory suggests a close relationship between the volume of trading and the volatility; see Karpoff
(1987) for a survey of some of the earlier contributions to this literature. In particular, according to the mixtures
of distributions hypothesis, associated with Clark (1973) and Tauchen and Pitts (1983), the evolution of returns and
trading volume are both determined by the same latent mixing variable that reflects the amount of new information
that arrives to the market. If the news arrival process is serially dependent, volatility and trading volume will be
jointly serially correlated. Time series data on trading volume should therefore be useful in inferring the behavior
of the second order moments of returns. This idea has been pursued by a number of empirical studies, including
Andersen (1992b), Gallant, Rossi and Tauchen (1992), and Lamoureux and Lastrapes (1990). While the hypothesis
that contemporaneous trading volume is positively correlated with financial market volatility is supported in the data,
the result that a single latent variable jointly determines both is easily rejected; see Lamoureux and Lastrapes (1992).

In a related context, some market micro structure theories also suggest a close relationship between the
behavior of price volatility and the distribution of the bid-ask spread though time. Only limited evidence is currently
available on the usefulness of such a relationship for the construction of variance estimates for the returns; see e.g.
Bollerslev and Domowitz (1993), Bollerslev and Melvin (1993) and Brock and Kleidon (1992).

The use of the cross sectional variance from survey data to estimate the variance of the underlying time series
has been advocated by a number researchers. Zarnowitz and Lambros (1987) discuss a number of these studies with
macroeconomic variables. Of course, the validity of the dispersion across forecasts as a proxy for the variance will
depend on the theoretical connection between the degree of heterogeneity and uncertainty; see Pagan, Hall and
Trivedi (1983). Along these lines it is worth noting, that Rich, Raymond and Butler (1992) only find a weak
correlation between the dispersion across the forecasts for inflation and an ARCH based estimate for the conditional
variance of inflation. The availability of survey data is also likely to limit the practical relevance of this approach
in many applications.

In a related context, a number of authors have argued for the use of relative prices or returns across different
goods or assets as a way of quantifying inflationary uncertainty or overall market volatility. Obviously, the validity
of such cross sectional based measures again hinges on very stringent conditions about the structure of the market;

see Pagan, Hall and Trivedi (1983).
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While all of the variance estimates discussed above may give some idea about the temporal dependencies in
second order moments, any subsequent model estimates should be carefully interpreted. Analogously to the problems
that arise in the use of generated regressors in the mean, as discussed by Pagan (1984, 1986) and Murphy and Topel
(1985), the conventional standard errors for the coefficient estimates in a second stage model that involves a proxy
for the variance will have to be adjusted to reflect the approximation error uncertainty. Also, if the conditional mean
depends non-trivially on the conditional variance, as in the ARCH in Mean model discussed in section 1.4, any two
step procedure will generally result in inconsistent parameter estimates; for further analysis along these lines we refer

to Pagan and Ullah (1988).

9. Empirical Examples
9.1. U.S. Dollar/Deutschemark Exchange Rates

As noted in section 1.2, ARCH models have found particularly wide used in the modeling of high frequency
speculative prices. In this section we illustrate the empirical quasi-maximum likelihood estimation of a simple
GARCH(1,1) model for a time series of daily exchange rates. Our discussion will be brief. A more detailed and
thorough discussion of the empirical specification, estimation and diagnostic testing of ARCH models is given in
the next section, which analyzes the time series characteristics of more than one hundred years of daily U.S. stock
returns.

The present data set consists of daily observations on the U.S. Dollar/Deutschemark exchange rate over the
January 2, 1981 through July 9, 1992 period, for a total of 3006 observatiohsroad consensus has emerged
that nominal exchange rates over the free float period are best described as non-stationary, or I(1), type processes;
see e.g. Baillie and Bollerslev (1989). We shall therefore concentrate on modeling the nominal percentage returns;
i.e., y =100[In(s) - In(s.,)], where sdenotes the spot Deutschemark/U.S. Dollar exchange rate at day t. This is the
time series plotted in figure 2 in section 1.2 above. As noted in that section, the daily returns are clearly not
homoskedastic, but characterized by periods of tranquility followed by periods of more turbulent exchange rate

movements. At the same time, there appears to be little or no own serial dependence in the levels of the returns.

2The rates were calculated from the ECU cross rates obtained through Datastream.
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These visual observations are also borne out by more formal tests for serial correlation. For instance, the Ljung and
Box (1978) portmanteau test for up to twentieth order serial correlation égyals 19.1, whereas the same test
statistic for twentieth order serial correlation in the squared retugnsgyals 151.9. Under the null of i.i.d. returns,

both test statistic should asymptotically be the realization of a chi-square distribution with twenty degrees of freedom.
Note, that in the presence of ARCH, the portmanteau test for serial correlatiomilh generally be conservative.

As discussed above, numerous parametric and non-parametric formulations have been proposed to model the
volatility clustering phenomenon. In the sake of brevity, we shall here concentrate on the results for the particularly
simple MA(1)-GARCH(1,1) model,

Ye=Ho+ 08 + &
(9.1

O'% S0yt (JL)1Wt - (.01(01 + Bl)Wt-l + 018%_1 + Blo-f'l'

where W denotes a weekend dummy equal to one following a closure of the market. The MA(1) term is included
to take account of the weak serial dependence in the mean. Following Baillie and Bollerslev (1989), the weekend

dummy is entered in the conditional variance to allow for an impulse effect.

Table 1: Quasi-Maximum Likelihood Estimates

Jan. 2, 1982 Jan. 2, 1982 Oct. 7, 1986

Coefficient July 9, 1992 Oct. 6, 1986 July 9, 1992
Ho -0.002 0.014 -0.017
(0.009) (0.018) (0.016)
[0.009] [0.018] [0.016]
{0.009} {0.018} {0.017}
6, -0.056 -0.058 -0.055
(0.014) (0.030 (0.027)
[0.013] [0.027] [0.027]
{0.013} {0.027} {0.027}
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Wy 0.028 0.024 0.035
(0.005) (0.009) (0.011)
[0.004] [0.007] [0.011]
{0.003} {0.006} {0.010}
W, 0.243 0.197 0.281
(0.045) (0.087) (0.087)
[0.031] [0.062] [0.061]
{0.022} {0.046} {0.042}
a, 0.068 0.076 0.063
(0.009) (0.022) (0.017)
[0.007] [0.014] [0.014]
{0.005} {0.010} {0.011}
B, 0.880 0.885 0.861
(0.015) (0.028) (0.033)
[0.012] [0.020] [0.031]
{0.010} {0.016} {0.030}

Notes: Robust standard errors based on equation (2.21) are reported in parenthesis, (). Standard errors calculated
from the Hessian in equation (2.18) are reported-in [ ]. Standard errors from on the outer product of the sample
gradients in (2.19) are given in { }.

The quasi-maximum likelihood estimates (QMLE) for this model, obtained by the numerical maximization of
the normal likelihood function defined by equations (2.7), (2.8) and (2.12), are contained in table 1. From the first
row in the table, thex; and 3, coefficients are both highly significant at the conventional five percent level. The
sum of the estimated GARCH parameters also indicate a fairly strong degree of persistence in the conditional
variance process. Consistent with the stylized facts discussed in section 1.2.iv, the conditional variance is also
significantly higher following non-trading periods.

The second and third rows of table 1 report the results with the same model estimated for the first and second
half of the sample respectively; i.e. January 2, 1981 through june 6, 1986 and June 7, 1986 through July 9, 1992.
The parameter estimates are remarkably similar across the two sub-gériods.

In summary, the simple model in equation (9.1) does a remarkably good job of capturing the own temporal

2‘LSReparameterizing the conditional variance in termscgf3,) anda,, the t-test statistic for the null hypothesis thgt-3,=1 equals 3.784,
thus formally rejecting the IGARCH(1,1) model at standard significance levels.

ZEven though the assumption of conditional normality is violated empirically, it is interesting to note that the sum of the maximized normal quasi
log likelihoods for the two sub-samples equals -1727.750 - 1597.166 = -3324.916, compared to -3328.984 for the model estimated over the full
sample.
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dependencies in the volatility of the exchange rate series. For instance, the highly significant portmanteau test for
serial correlation in the squares of the raw seriésdyops to only 21.687 for the squared standardized residuals,
£6,2. We defer our discussion of other residual based diagnostics to the empirical example in the next section.

While the GARCH(1,1) model is able to track the own temporal dependencies, the assumption of conditionally
normally distributed innovations is clearly violated by the data. The sample skewness and kurtgéis fequial -

0.071 and 4.892, respectively. Under the null of i.i.d. normally distributed standardized residuals, the sample
skewness should be the realization of a normal distribution with a mean of 0 and a variang8aff5%# 0.1009,

while the sample kurtosis is asymptotically normally distributed with a mean of 3 and a variance/80@a/=

0.438.

The standard errors for the quasi-maximum likelihood estimates reported in () in table 1 are based on the
asymptotic covariance matrix estimator discussed in section 2.3. These estimates are robust to the presence of
conditional excess kurtosis. The standard errors reported in [] and {} are calculated from the Hessian and the
outer product of the gradients as in equations (2.18) and (2.19), respectively. For some of the conditional variance
parameters, the non-robust standard errors are less than one half of their robust counterparts. This compares to the
findings in the Monte Carlo experiment reported in Bollerslev and Wooldridge (1992), and highlights the importance
of appropriately accounting for conditional non-normality when conducting inference in ARCH type models based

on the normal likelihood function.

9.2. U.S. Stock Prices

We next turn to modelling heteroskedasticity in U.S. stock index returns data, drawing on the optimal filtering
results of Nelson and Foster (1991, 1992) summarized in section 4 as a guidance in the model selection. In this
section, very rich parameterizations are introduced for a variety of data sets.

From 1885 on, the Dow Jones corporation has published various stock indices daily. In 1928, the Standard
Statistics company began publishing daily a wider index of 90 utility, industrial and railroad stocks. In 1953, the

Standard 90 index was replaced by an even broader index, the Standard and Poor’'s 500 composite. The properties



of these indices are considered in some detail in Schwert ($990)The Dow data has one substantial chronological
break, from July 30 1914, through December 11, 1914, when the financial markets were closed following the
outbreak of the First World War. The first data set we analyze is the Dow data from its inception on February 16,
1885 until the market closure in 1914. The second data set is the Dow data from the December 1914 market
reopening until January 3, 1928. The third data set is the Standard 90 capital gains series beginning in January 4,
1928 and extending to the end of May 1952. The Standard 90 index data is available through the end of 1956, but
we end at the earlier date because that is when the New York Stock Exchange ended its Saturday trading session,
which presumably shifted volatility to other days of the week. The final data set is the S&P 500 index beginning
in January 1953 and continuing through the end of 1990.
i. Model Specification

Our basic capital gains series, is derived from the price index data, Bs

(9.2) r=100In[R/P.].

Thus, [ corresponds to the continuously compounded capital gain on the index measured in percent. Any ARCH
formulation for  may be compactly written as

(9.3) r=p(r,,07) +¢&,

and

(9.4) ¢&=2z0, zOiid, E[z1=0, E[zZ]=1,

where(r,,,0,>) andag, denote the conditional mean and the conditional standard deviation, respectively.

In the estimation reported on below we parameterized the functional form for the conditional mean by
(9.5) H(rp,07) = Ho + Tually + K eXp(o/u)] + U0,
This is very close to the specification in LeBaron (1992). As is well known, stock index data exhibit significant,
albeit small, first-order autocorrelation. Théterm denotes the sample mean 8f which is essentially equal to

the unconditional sample variance @f $As noted by LeBaron (1992), serial correlation seems to be a decreasing

27G. William Schwert kindly provided the data. Schwert’s indices differ from ours after 1962, when he uses the CRSP value weighted market
index. We continue to use the S&P 500 through 1990.
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function of the conditional variance, which may be captured by equation (9.5) thyouwgl®. The parameteu,
is an ARCH-M term.
We assume that the conditional distributiongpiven o, is generalized; see, e.g., McDonald and Newey

(1988). The density for the generalizedistribution takes the form

n

(96 TEID = o pyB(ain ) (1 + EPIWHTG) )

where B(1A,p) = I(A/Mn)F)r(ln+y) denotes the beta function, B [ (W) (L) (@M (Y-2M)]1¥ and gn
>2,n>0,andy > 0. The scale factor b makes Va[§,) = 6.

One advantage of this specification is that it nests both the Studeaiid the GED distributions discussed
in section 2.2 above. In particular, the StudentBstribution sets) = 2 andy = 1/2 the degrees of freedom. The
GED is obtained forp = . Nelson (1989, 1991) fit EGARCH models to U.S. Stock index returns assuming a GED
conditional distribution, and found that there were many more large standardized resjdeals,? than would
be expected if the returns were actually conditionally GED with the estinratefihe GED has only one "shape"
parameten, which is apparently insufficient to fit both the central part and the tails of the conditional distribution.
The generalized distribution has two shape parameters, and may therefore be more successful in parametrically
fitting the conditional distribution.

The conditional variance functiong?, is parameterized using a variant of the EGARCH formulation in
equation (1.11),

L+al+...+al9

(1—p~;1L—...—p~szp()J

9.7) @) = w + (2.1,0%.),

where the deterministic component is given by,

(9.8) @ = oy + IN[1 + W, + @S + wH].

As noted in section 1.2, trading and non-trading periods contribute differently to volatility. To also allow for
differences between weekend and holiday non-trading perigdgivé's the number of weekend non-trading days

between trading days t and t-1, whilg ¢lenotes the number of holidays. Prior to May 1952, the NYSE was open
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for a short trading session on Saturday. Since Saturday may be a "slow" news day, and the Saturday trading session
was short, we would expect low average volatility on Saturdays. Tler8my variable equals one if trading day
t is a Saturday and zero otherwise.

Our specification of the news impact function; g(, ), is a generalization of EGARCH inspired by the optimal
filtering results of Nelson and Foster (1992). In the EGARCH model in equation (1.1d))nis homoskedastic
conditional ong?, and the partial correlation betweep and In@Z,,) is constant conditional ow?. These
assumptions may well be too restrictive, and the optimal filtering results indicate the importance of correctly
specifying these moments. Our specification of,g(? therefore allows both moments to vary with the level of
ol

Several recent papers, including and Engle and Ng (1992), have suggested that GARCH, EGARCH and similar
formulations may make? or In(c,?) too sensitive to outliers. The optimal filtering results discussed in section 4

leads to the same conclusion whgris drawn from a conditionally heavy tailed distribution. The final from that

we assume for g(, ) was also motivated by this observation,

26

o elzt ZV(EVJZJP E yl‘zt‘p

O
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They, and 6, parameters allow both the conditional variance obfp) and its conditional correlation with, o

(9.9) 9@zo) = o,

vary with the level ofa? If 8, < 0 In(g?,,) and z are negatively correlated; the "leverage effect”. The EGARCH
model constraing, =y, = 0, so that the conditional correlation is constant, as is the conditional variancesgy.In(
Thep, y,, andB, parameters give the model flexibility in how much weight to assign to the tail observations. For
example, ify, and8, are both positive, the model downweighs largps|z The second term on the right hand side
of equation (9.9) was motivated by the optimal filtering results in Nelson and Foster (1992), designed to make the
ARCH model serve as a robust filter.

The orders of the ARMA model for lo%), p and g, remains to be determined. Table 2 gives the maximized
values of the log likelihoods from (2.7), (2.8) and (9.6) for ARMA models of order up to ARMA(3,5). For three
of the four data sets, the information criterion of Schwartz (1978) selects an ARMA(2,1) model, the exception being

the Dow data for 1914-1928, for which an AR(1) is selected. For linear time series models, the Schwartz criterion
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has been shown to consistently estimate the order of an ARMA model. As noted in section 7, it is not known
whether this result carries over to the ARCH class of models. However, guided by the results in table 2, table 3
reports the maximum likelihood estimates (MLE) for the models selected by the Schwartz criterion. Various Wald
and conditional moment specification tests are given in tables 4 and 5.
ii. Persistence of Shocksto Volatility

As in Nelson (1989, 1991), the ARMA(2,1) models selected for three of the four data sets can be decomposed
into the product of two AR(1) components, one of which has very long lived shocks, with an AR root very close
to one, the other of which exhibits short-lived shocks, with an AR root very far from one; i.B,L{B-L?) = (1-
AL)(1-AL), where p[2|A,]. When the estimated AR roots are real, a useful gauge of the persistence of shocks in
an AR(1) model is the estimated "half life"; that is the value of n for whiiél 1/2. For the Dow 1885-1914, the
Standard 90, and the S&P 500 the estimated half lives of the long lived components are about 119 days, 4 1/2 years,
and 329 days respectively. The corresponding estimated half lives of the short-lived components are only 5.2, 3.7,
and 6.2 days, respectivel}?°
iii. Conditional Mean of Returns

The estimatedl;, terms strongly support the results of LeBaron (1992) of a negative relationship between the
conditional variance and the conditional serial correlation in returns. In partigylarsignificantly positive in each
data set, both statistically and economically. For example, for the Standard 90 data, the fitted conditional first order
correlation in returns is 0.17 whesy’ is at the 18 percentile of its fitted sample values, but equals -0.07 whén
is at the 9¢ percentile. The implied variation in returns serial correlation is similar in the other data sets. The
relatively simple specification di(r,,,0,°) remains inadequate, however, as can be seen in the conditional moment

tests reported in table 5. The " hrough 22* conditions test for serial correlation in the fittegszat lags one

2This is consistent with recent work by Ding, Engle and Granger (1993), in which the empirical autocorrelations of absolute returns from several
financial data sets are found to exhibit rapid decay at short lags and much slower decay at longer lags. These results are also closely related to
the permanent/transitory components ARCH model introduced by Engle and Lee (1992, 1993), and the fractionally integrated ARCH models
recently proposed by Baillie, Bollerslev and Mikkelsen (1993).

29Volatility in the Dow 1914-1928 data shows much less persistence. The half life associated with the AR(1) model selected by the Schwartz
(1978) criterion is only about 7.3 days. For the ARMA(2,1) model selected by the AIC for this data set, the half-lives associated with the two
AR roots are only 24 and 3.3 days, respectively.
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through six. In each data set, substantial serial correlation is found at the higher lags.
iv. Conditional Distribution of Returns

Figure 3 plots the fitted generalizédiensity of the Zs against both a standard normal and a nonparametric
density estimate constructed from the fitted zising a Gaussian Kernel with the bandwidth selection method of
Silverman (1986, pp.45-48). The parametric and nonparametric densities appear quite close, with the exception of
the Dow 1914-1928 data, which exhibits strong negative skewnegs iRutther aspects of the fitted conditional
distribution are checked in the first three conditional moment specification tests reported in table 5. These three
orthogonality conditions test that the standardized residijais £6,* have mean zero, unit variance, and no
skewnes$? In the first three data sets theseries exhibit statistically significant, though not overwhelmingly so,
negative skewness.

The original motivation for adopting the generalizedistribution was that the two shape parametg@nd
Y would allow the model to fit both the tails and the central part of the conditional distribution. Table 6 gives the
expected and the actual number ¢§ in each data set exceeding N standard deviations. In the S&P 500 data, the
number of outliers is still too large. In the other data sets, the tail fit seems adequate.

As noted above, the generalizeddistribution nests both the Studentts(n=2) and the GED {=c).
Interestingly, in only two of the data sets does a t-test of the null hypothesigt2ateject at standard levels, and
then only marginally. Thus, the improved fit appears to come front toenponent rather than the GED component
of the generalized distribution. In total, the generalizeddistribution is a marked improvement over the GED,
though perhaps not over the usual Studentisstribution. Nevertheless, the generalized t is not entirely adequate,
since it does not account for the fairly small skewness in the fitfedand appears not to have sufficiently thick
tails for the S&P 500 data.

v. News Impact Function
In line with the results for the EGARCH model reported in Nelson (1989, 1991), the "leverage effect" term

0, in the g( ;) function is significantly negative in each of the data sets, while the "magnitude effecty,tésm

3%ore precisely, the third orthogonality condition tests thgiz,Bz|] = O rather than [z’] = 0. We use this test because it requires only the
existence of a fourth conditional moment fqrrather than a sixth conditional moment.
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always positive, significantly so except in the Dow 1914-1928 data. There are important differences, however. The
EGARCH parameter restrictions thptl, y, =y, = 6, = 6, = 0 are decisively rejected in three of the four data
sets. The estimated g(?) functions are plotted in figure 4, from which the differences with the piecewise linear
EGARCH g(2) formulation is apparent.

To better understand why the standard EGARCH model is rejected, consider more closely the differences
between the specification of the g@) function in equation (9.9) and the EGARCH formulation in equation (1.11).
Firstly, the parameterg, and 6, allow the conditional variance of laf®) and the conditional correlation between
In(c?) and [ to change as functions af?. Secondly, the parametefs Y, and 6, give the model an added
flexibility in how much weight to assign to large versus small values,.of z

As reported in table 4, the EGARCH assumption tpat 6, = 0 is decisively rejected in the Dow 1885-1914
and 1914-1928 data sets, but not for either the Standard 90 or the S&P 500 data sets. For none of the four data set
is the estimated value @f significantly different from O at conventional levels. The estimated valug &f always
negative, however, and very significantly so in the first two data sets, indicating that the "leverage effect" is more
important in periods of high volatility than in periods of low volatility.

The intuition that the influence of large outliers should be limited by sefiiywg 0 andy, > 0 receives mixed
support from the data; the estimated valuey,aind three of the estimatéJ's are positive, but only the estimate
of y, for the S&P 500 data is significantly positive at standard levels. We also note, that if the data is generated
by a stochastic volatility, as opposed to an ARCH, model with conditionally generdlidestributed errors, the
asymptotically optimal ARCH filter would sat{=p andy, = 'b™. The results in table 4 indicate that thep
restriction is not rejected, but thgt = Y'b™ is not supported by the data; the estimated valueg afe "too low"

relative to the asymptotically optimal filter for the stochastic volatility model.
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Table 2: Log Likelihood Values for Fitted Models

Fitted Model Dow Dow Standard 90 S& P 500
1885-1914 1914-1928 1928-1952 1953-1990
White Noise -10036.188 -4397.693 -11110.120 -10717.199
MA(2) -9926.781 -4272.639 -10973.417 -10658.775
MA(2) -9848.319 -4241.686 -10834.937 -10596.849
MA(3) -9779.491 -4233.371 -10765.259 -10529.688
MA(4) -9750.417 -4214.821 -10740.999 -10463.534
MA(5) -9718.642 -4198.672 -10634.429 -10433.631
AR(1) -9554.352 -4164.093¢ -10275.294 -10091.450
ARMA(1,1) -9553.891 -4164.081 -10269.771 -10076.775
ARMA(1,2) -9553.590 -4160.671 -10265.464 -10071.040
ARMA(1,3) -9552.148 -4159.413 -10253.027 -10070.587
ARMA(1,4) -9543.855 -4158.836 -10250.446 -10064.695
ARMA(1,5) -9540.485 -4158.179 -10242.833 -10060.336
AR(2) -9553.939 -4164.086 -10271.732 -10083.442
ARMA(2,1) -9529.904¢ -4159.011° -10237.527 -10052.32%¢
ARMA(2,2) -9529.642 -4158.428 -10235.724 -10049.237
ARMA(2,3) -9526.865 -4157.731 -10234.556 -10049.129
ARMA(2,4) -9525.683 -4157.569 -10234.429 -10047.962
ARMA(2,5) -9525.560 -4155.071 -10230.418 -10046.343
AR(3) -9553.787 -4159.227 -10270.685 -10075.441
ARMA(3,1) -9529.410 -4158.608 -10237.462 -10049.833
ARMA(3,2) -9526.089 -4158.230 -10228.704"° -10049.044
ARMA(3,3) -9524.644'° -4157.730 -10228.263 -10042.710
ARMA(3,4) -9524.497 -4156.823 -10227.982 -10042.284
ARMA(3,5) -9523.375 -4154.906 -10227.958 -10040.547¢

otes: The AIC and SC indicators denote the models selected by the information criteria of Akaike (1973),

and Schwartz (1978), respectively.
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Table 3: Maximum Likelihood Estimates

Dow Dow Standard 90 S& P 500
Coefficient 1885-1914 1914-1928 1928-1952 1953-1990
ARMA(2,1) AR(1) ARMA(2,1) ARMA(2,1)
Wy -0.6682 -0.6228 -1.2704 -0.7899
(0.1251) (0.0703) (2.5894) (0.2628)
W, 0.2013 0.3059 0.1011 0.1286
(0.0520) (0.0904) (0.0518) (0.0295)
W, -0.4416 -0.5557 -0.6534 *
(0.0270) (0.0328) (0.0211)
w, 0.5099 0.3106 0.6609 0.1988
(0.1554) (0.1776) (0.1702) (0.1160)
U] 3.6032 2.5316 4.0436 3.5437
(0.8019) (0.5840) (0.9362) (0.7557)
n 2.2198 2.4314 1.7809 2.1844
(0.1338) (0.2041) (0.1143) (0.1215)
Ho 0.0280 0.0642 0.0725 0.0259
(0.0112) (0.0222) (0.1139) (0.0113)
My -0.0885 -0.0920 -0.0914 0.0717
(0.0270) (0.0418) (0.0243) (0.0260)
H,p 0.2206 0.3710 0.2990 0.2163
(0.0571) (0.0828) (0.0387) (0.0532)
Mg 0.0006 0.0316 0.0285 0.0050
(0.0209) (0.0442) (0.0102) (0.0213)
Yo -0.1058 0.0232 -0.0508 0.1117
(0.0905) (0.1824) (0.0687) (0.0908)
A 0.1122 0.0448 0.1356 0.0658
(0.0256) (0.0478) (0.0327) (0.0157)
A 0.0245 0.0356 0.0168 0.0312
(0.0178) (0.0316) (0.0236) (0.0080)
p 2.1663 3.2408 1.6881 2.2477
(0.3119) (1.5642) (0.3755) (0.3312)
6, -0.6097 -0.5675 -0.1959 -0.1970
(0.0758) (0.1232) (0.0948) (0.1820)
6, -0.1509 -0.3925 -0.1177 -0.1857
(0.0258) (0.1403) (0.0271) (0.02867)
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0, 0.0361 0.3735 -.0055 0.2286
(0.0828) (0.3787) (0.0844) (0.1241)
A, 0.9942 0.9093 0.9994 0.9979
(0.0033) (0.0172) (0.0009) (0.0011)
A, 0.8759 * 0.8303 0.8945
(0.0225) (0.0282) (0.0258)
a, -0.9658 * -0.9511 -0.9695
(0.0148) (0.0124) (0.0010)

otes: Standard errors are reported in parentheses. The parameters indicated by a * were not estimated.
The AR coefficients are decomposed as(1)(1-A,L) = (1-B,L-B,L?), where L [2|A,].
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Table 4: Wald Hypothesis Tests

Dow Dow Standard 90 S& P 500
Test 1885-1914 1914-1928 1928-1952 1953-1990
ARMA(2,1) AR(1) ARMA(2,1) ARMA(2,1)

V,=0,=Y,=6, 97.3825 63.4545 10.1816 51.8152
=p-1=0: %2 (0.00000) (0.00000) (.0703) (0.00000)

3.3867 .0006 9.8593 0.3235

W =Wy X (.06572) (.9812) (.0017) (0.5695)

0,=Y,=0: X3 67.4221 21.3146 4.4853 2.2024

(0.00000) (2.3528 10) (.1062) (0.3325)

B5=Yo: X2 17.2288 7.4328 1.7718 1.7844
(3.1370 10) (.0064) (.1832) (0.1816)

n=p: X3 0.0247 0.2684 0.0554 0.0312
(0.8751) (0.6044) (0.8139) (0.8598)

v=b"t X3 14.0804 10.0329 14.1293 14.6436
(0.00018) (0.0015) (0.00017) (0.00013)

n=p, =0 x3 18.42 10.4813 22.5829 16.9047
(0.00010) (0.0053) (0.00001) (0.00021)
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Table 5: Conditional Moment Specification Tests

Orthogonality Dow Dow Standard 90 S& P 500
Condition 1885-1914 1914-1928 1928-1952 1953-1990
ARMA(2,1) AR(1) ARMA(2,1) ARMA(2,1)

(1) E[z] =0 -0.0147 -0.0243 -0.0275 -0.0110
(0.0208) (0.0319) (0.0223) (0.0202)

(2) E[z7 =1 0.0007 0.0007 0.0083 0.0183
(0.0382) (0.0613) (0.0503) (0.0469)

(3) Elz,1z]1=0 -0.0823 -0.1122 -0.1072 -0.06576
(0.0365) (0.0564) (0.0414) (0.0410)

(4) Elg(z,0)]=0 0.0007 0.0013 0.0036 0.0003
(0.0046) (0.0080) (0.0051) (0.0035)

(5) El(z*1)(z.,>1)]=0 -0.0050 -0.0507 -0.0105 0.1152
(0.0714) (0.0695) (0.0698) (0.0930)

(6) El(z>1)(z,>-1)]=0 -0.0047 0.0399 -0.0358 -0.0627
(0.0471) (0.0606) (0.0815) (0.0458)

(7) E[(z2-1)(z.,*1)]=0 0.0037 -0.0365 0.0373 -0.0171
(0.0385) (0.0521) (0.0583) (0.0611)

(8) El(z*1)(z.,>-1)]=0 0.0950 -0.0658 -0.0018 -0.0312
(0.0562) (0.0403) (0.0543) (0.0426)

(9) El(z>1)(zs>-1)]=0 0.0165 0.0195 0.0710 0.0261
(0.0548) (0.0486) (0.0565) (0.0731)

(10) E[(z*-1)(z>1)]=0 -0.0039 0.0343 0.0046 -0.0557
(0.0309) (0.0602) (0.0439) (0.0392)

(11) E[(z*1)z,]=0 -0.0338 -0.0364 -0.0253 -0.0203
(0.0290) (0.0414) (0.0367) (0.0413)

(12) E[(z*1)z,]=0 0.0069 -0.0275 -0.0434 -0.0378
(0.0251) (0.0395) (0.0315) (0.0278)

(13) E[(z*1)z4=0 0.0110 0.0290 0.0075 0.0292
(0.0262) (0.0352) (0.0306) (0.0357)

(14) E[(z*1)z.,]=0 -0.0296 0.0530 -0.0103 -0.0137
(0.0275) (0.0340) (0.0292) (0.0238)

(15) E[(z*1)z.4=0 -0.0094 0.0567 0.0153 0.0064
(0.0240) (0.0342) (0.0287) (0.0238)

(16) E[(z>-1)z.¢=0 0.0281 0.0038 -0.0170 0.0417
(0.0216) (0.0350) (0.0253) (0.0326)
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(17) E[z,2,,]=0 0.0265 0.0127 0.0383 0.0188
(0.0236) (0.0346) (0.0243) (0.0226)
(18) EJz,z,,]=0 0.0133 -0.0176 -0.0445 -0.0434
(0.0157) (0.0283) (0.0174) (0.0158)
(19) E[z,2,4=0 0.0406 0.0012 0.0019 0.0140
(0.0158) (0.0262) (0.0175) (0.0152)
(20) EJz,,.,]=0 0.0580 0.0056 0.0211 0.0169
(0.0161) (0.0253) (0.0172) (0.0153)
(21) E[z,2.=0 0.0516 0.0164 0.0250 0.0121
(0.0163) (0.0251) (0.0174) (0.0158)
(22) Ejz,2,=0 -0.0027 0.0081 -0.0040 -0.0211
(0.0158) (0.0261) (0.0172) (0.0150)
(1)-(16): X3 39.1111 45.1608 31.7033 25.1116
(0.0010) (1.311 10) (0.011) (0.0679)
(1)-(22): Y2, 94.0156 52.1272 67.1231 63.6383
(0.00000) (3.0021 10) | (1.8609 1) | (6.3685 10)
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Table 6: Frequency of Tail Events

Dow Dow Standard 90 S& P 500

1885-1914 1914-1928 1928-1952 1953-1990

N ARMA(2,1) AR(1) ARMA(2,1) ARMA(2,1)
Expected Actual | Expected Actual | Expected Actual | Expected Actual

2 421.16 405 180.92 177 369.89 363 458.85 432
3 63.71 74 31.11 33 76.51 81 72.60 57
4 11.54 12 6.99 10 18.76 23 13.83 14
5 2.61 4 2.01 3 5.47 4 3.27 6
6 0.72 2 0.70 1 1.86 1 0.94 5
7 0.23 1 0.28 0 0.71 1 0.31 3
8 | 9.5610 0 0.13 0 0.30 1 0.12 2
9 | 3.8910 0 0.06 0 0.14 0 0.05 2
10 | 1.73 10 0 0.03 0 0.07 0 0.02 2
11 | 8.251C¢ 0 0.01 0 0.04 0 0.01 1

otes: The table reports the expected and the actual number of observations exceeding N conditional
standard deviations.
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10. Conclusion

This chapter has focused on a wide range of theoretical and empirical properties of ARCH models. It has
presented several new empirical examples but has not attempted to survey the literature on applications, a recent
survey of which can be found in Bollerslev, Chou and Kroner (199ZFhree of the most active lines of inquiry
are prominently surveyed here, however. The first concerns the general parameterizations of univariate discrete time
models of time varying heteroskedasticity. From the original ARCH model, the literature has focussed upon
GARCH, EGARCH, IGARCH, ARCH-M, AGARCH, NGARCH, QARCH, QTARCH, STARCH, SWARCH, and
many other formulations with particular distinctive properties. Not only has this literature been surveyed here, but
it has been expanded by the analysis of variations in the EGARCH model. Second, we have explored the relations
between the discrete time models and the very popular continuous time diffusion processes that are widely used in
finance. Very useful approximation theorems have been developed, which hold with increasing accuracy when the
time interval becomes very short. The third area of investigation is the analysis of multivariate ARCH processes.
This problem is more complex than the specification of univariate models because of the interest in simultaneously
modeling a large number of variables, or assets, without having to estimate an untractable large number of
parameters. Several multivariate formulations have been proposed, but no clear winners have yet emerged, either

from a theoretical or an empirical point of view.

310ther recent surveys of the ARCH methodology are given in Bera and Higgins (1992) and Nijman and Palm (1992).
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