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Abstract. Traditionally, financial theory and in particular asset pricing models
have assumed (implicitly or explicitly) a certain probabilistic structure for
speculative prices. The probabilistic structure is usually defined in terms of
specific statistical models and relates to the dependence, heterogeneity and the
distribution of such prices. The primary objective of this paper is to trace the
development of various statistical models proposed since Bachelier (1900), in an
attempt to assess how well these models capture the empirical regularities
exhibited by data on speculative prices.
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1. Introduction

Financial theories are often based on explicit or implicit assumptions concerning
the probabilistic structure of the stochastic processes underlying the speculative
price data (e.g. stock returns, exchange rates, interest rates etc.). For instance, the
notion of the efficient market hypothesis presupposes that speculative prices can
be modelled as random walks (Bachelier, 1900; Fama, 1970) or martingale
processes (Mandelbrot, 1967; Samuelson, 1965). Moreover, theoretical asset
pricing models, such as:

(1) the Mean-Variance Theorem (Markowitz, 1952),
(ii) the Capital Asset Pricing Model (CAPM) (Sharpe, 1964; Lintner, 1965,
Mossin, 1966; Merton, 1973),
(iii) the Consumption CAPM (Lucas, 1978; Breeden, 1979),
(iv) the non-expected utility CAPM (Epstein and Zin, 1991), and
(v) the Black-Scholes options pricing model (Black and Scholes, 1973),
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188 ANDREOU, PITTIS AND SPANOS

are based on probabilistic assumptions such as Normality, uncorrelatedness and
stationarity, relating to the returns (log-price changes). Despite that, the empirical
evidence accumulated over the last few decades indicates departures from these
probabilistic assumptions. Data on speculative prices often exhibit bell shape
symmetry, leptokurticity, non-linear temporal dependence and erratic behaviour of
sample second moments (e.g. Kendall, 1953; Mandelbrot, 1963; for a recent
summary see Bollerslev ez al.,1994 and Pagan, 1996).

The primary objective of the paper is to discuss the various empirical models of
speculative price data since Bachelier (1900), with particular attention to how well
the various statistical models were able to capture the empirical regularities as
perceived at the time. We note at the outset that a statistical model in this context
is considered to be simply a consistent set of probabilistic assumptions. In order to
present a coherent account of the empirical literature we adopt the basic
taxonomy of probabilistic assumptions into

[1] Distribution, [2] Dependence, [3] Heterogeneity. (1)

We examine how these assumptions relate to the empirical regularities of asset
returns (see Spanos,1986,1999) and how they assist in specifying the relevant
models for stock returns. It is shown below that several empirical regularities
either went largely unnoticed or were misinterpreted.

In relation to the modelling of speculative prices, one can identify three distinct
periods since the early twentieth century. The Bachelier-Kendall (1900—1960) era
commenced in 1900 with the Brownian motion (Bachelier, 1900,1914) and
continued with the Normal random walk model. The stylized facts of
‘approximate’ Normality and uncorrelatedness were found in certain data on
returns (see for instance Kendall, 1953). The Mandelbrot (1960—1980) era
revisited the stylized facts of the previous period and brought out three
interrelated inconsistencies within the Normal Random Walk model: leptokurti-
city, erratic behaviour of the sample variance and volatility clustering. In an attempt
to deal with the first two inconsistencies, the Normality assumption was replaced
by that of the Pareto-Levy family of distributions. Finally, the dynamic volatility
era commenced in the early eighties with the introduction of the Autoregressive
Conditional Heteroscedasticity models (Engle, 1982) and concentrated mostly on
modelling volatility dynamics. In this respect, a number of alternative functional
forms of the conditional variance were proposed, thus giving rise to a new family
of time series models (surveyed in Bollerslev ef al., 1992, 1994).

2. The Bachelier-Kendall era (1900—-1960)

A collection of some of the early classic and influential papers in financial market
analysis is presented in the book edited by Cootner (1964). The first period of
research in speculative prices (1900—1960) is called after the French mathema-
tician Bachelier (1900, 1914), who contributed the theoretical random walk model
for the analysis of speculative prices. The empirical modelling of speculative prices
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data begins in the mid thirties with a study by Working (1934) which concludes
that stock returns behave like ‘numbers from a lottery’. The unpredictability of
stock returns was taken up again in the 1950s (see for instance, Kendall, 1953;
Roberts, 1959; Working, 1960; Cowles, 1960; Moore, 1962; Granger and
Morgenstern, 1970). Cootner summarizes the general consensus among academics
about the unpredictability in stock prices as follows:

‘The time (spent on analysing stock prices) might just as well be spent in
analysing the results of a fair roulette wheel’ (ibid. p. 232).

From the theory point of view, the unpredictability of returns (lack of patterns)
was later justified by the efficient market hypothesis (Fama, 1965,1970,
Samuelson, 1965), which utilizes the assumption of instantaneous adjustment of
prices to new information. Let {p, =1n P,, t € T} and {r,, ¢ € T} denote the stock
price and returns processes, respectively, where changes in log-prices, Ap,, are by
definition equal to returns:

F=EAp;=pi—pi-1, teT. ()

The early literature (see Kendall, 1953 and Roberts, 1959) views the Random
Walk formulation as a system which generates the stock price process via:

Di=Di—1+ T4, ’ﬁINIID(Ov 0_2)’ teT, (3)

where r; is an Independent and Identically Distributed (IID) process with zero
mean and constant variance o>. In view of the randomness of the sample, this
literature often calls (3) the ‘random sample model’ or the ‘chance mechanism’. This
relationship implies that prices can be viewed as partial sums of returns in the
sense that:

1
pi=> 1 L€ 4)
k=1

Two things are worth noting at this stage. First, this early literature makes no
explicit distributional assumption. Second, by construction {p,, t€T} is a
Markov-dependent process whose first two moments exist. In the literature of
this period, however, it is often implicitly assumed that the underlying distribution
of returns is Normal. Hence, the statistical model is the Normal Random
Walk:

Di=Di—1+7s, VYNNIID((), 0—2), teT, (5)

where N denotes Normality. For this model, the process {p;, t € T} is Markov
with a probabilistic structure given by:

0'2 0'2 —
A DN 0, ! = . 1€l (6)
Pi-1 0 oX(t—1) o*(t-1)
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This is the discrete-time equivalent to the Brownian motion process proposed by
Bachelier (1900, 1914). Bachelier was the first to provide the law of probability for
stock market fluctuations. His analysis begins with the definition of the ‘total
mathematical expectation’ of a player, as the sum of the products of the uncertain
gains with the corresponding probabilities of their occurring. Then the game is fair
if the total mathematical expectation for the representative player is zero; this is
based on Bachelier’s intuition that prices follow a martingale. Bachelier’s analysis
is based on the following assumptions:

(1) Stock returns follow a fair game: ‘the market, at a given instant, considers
not only currently negotiable transactions, but even those which will be
based on a subsequent fluctuation in prices as having a zero expectation’
(Bachelier, 1900; see Cootner (1964), p. 28).

(i) The probability that the price p,;, will be quoted at a given future
moment, ¢+ n, is a function of the current price, p,. This assumption
introduces a Markov-type dependence into the process of prices. Note that
neither the notion of Markovness nor that of a martingale existed at the
time.

(iii) Bachelier also assumes that transactions are fairly uniformly spread across
time, the distribution of price changes between successive transactions has
finite variance and the number of transactions within a particular time
interval is very large. The latter assumption is needed for the utilization of
the Central Limit theorem to call upon Normality.

Under these conditions, Bachelier proves the following: First, the conditional
probability that price, p, 1 », will be quoted at the moment ¢ + n, given that price p
has been quoted at the moment ¢, is governed by the Gaussian law. Second, the
unconditional probability, as a function of time, is also Gaussian and
proportional to the square root of time. This result was rediscovered five years
later by Einstein in a different context.

The analogy between the temporal behaviour of stock prices and the kinetic
molecular theory was also demonstrated by Osborne (1959) in a rigorous way. In
particular, Osborne showed that the logarithms of stock prices can be thought of
as an ensemble of decisions in statistical equilibrium and that this ensemble of
logarithms of prices is analogous to the ensemble of coordinates of a large number
of molecules. More specifically, the steady state distribution function of the first
differences of the logarithms of prices was shown to be precisely the probability
distribution of a particle in Brownian motion. Sufficient but not necessary
conditions to derive this distribution require prices to be related to the subjective
sensation of values by the Weber-Fechner law and the opportunity to profit to be
equal between buyers and sellers.

The Brownian motion theory has gone through several phases in the
continuous-time financial models and continues to this day (for a full
classification of continuous time — financial models, see Sawyer, 1993). The
most important modifications include the following: (i) The Geometric Brownian
motion, first proposed by Samuelson (1965), which constitutes the basis for the
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Black-Scholes option pricing model, (ii) the Arithmetic Brownian motion,
adopted by Vasicek (1977) in his model of the term structure, (iii) the Brownian
bridge, used by Ball and Touros (1983) to price default-free discount bonds,
(iv) the Square Root process, put forward by Cox, Ingersoll and Ross (1985) in
their study of interest rates, (v) the heteroskedastic process, adopted by Schaefer
and Schwartz (1987) in the pricing of bond options and (vi) the stochastic
volatility process in which the variance of the process itself is modelled as a
Brownian motion (see, for example, Chesney and Scott, 1989), (vii) the Fractional
Brownian motion which accounts for long-range dependence usually observed in
the actual stock price data.

The Random Walk model (3) for stock prices has been the cornerstone of all
empirical analysis in the Bachelier era and the early foundation of the efficient
market hypothesis (EMH). In relation to the latter Fama (1965,1970) argues
that:

‘In the early treatments of the efficient market model, the statement that the
current price of a security fully reflects available information was assumed
to imply that price changes or one-period returns are independent. In
addition it was usually assumed that returns are identically distributed.
Together the two hypotheses constitute the random walk model’, (Fama,
1970, p. 386).

Kendall (1953) related the IID assumptions to the lack of any pattern in the
sequence of returns as follows:

‘...changes in security prices behaved nearly as if they have been generated by
a suitably designed roulette wheel for which each outcome was statistically
independent of past history and for which relative frequencies were
reasonably stable over time’, (ibid. p. 754).

In the 1950s the empirical literature on speculative prices confronted the
Random Walk model (3) with data on speculative price by raising three important
inconsistencies:

2.1. Non-Identically Distributed

The first inconsistency was the departure from the identically distributed
assumption due to an apparent changing variance in stock returns data. In
particular, Kendall (1953) divided the sample of the Chicago Wheat series into
two sub-samples to examine homogeneity over time. Comparison of the variance
of the two sub-samples suggested that:

‘there has been an increase in variability since World War I’ and that returns
are a ‘rather unusual case of a time-series for which the mean remains
constant but the variance appears to be increasing’ implying that the sample
mean is z-invariant whereas the variance is 7-dependent (Kendall, 1953, in
Cootner, 1964 p. 89).
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This observation led to the rejection of the Random Walk model in favour of
the Heterogeneous ‘Random Walk’ model:

Pt:Ptfl +”f7 VINNI(07 U?)7 te-l]—7 (7)

where r, is Independent but non-Identically Distributed. Note that the name
‘Random Walk’ is somewhat misleading because the probabilistic literature
retains the term only when the process {r;, t € T} is IID.

The time dependence of the empirical variance was first noted by Kendall
(1953) and subsequently by Mandelbrot (1963). More recently, Schwert (1989),
Phillips and Loretan (1994) and Campbell et al., (1997) argued that the
assumption of ID increments is not plausible for financial asset prices over long
time spans. This may be attributed to the countless changes in economic,
technological and institutional environment of stock prices. Note that according
to the model specified by (7) the variance of returns is time-variant (e.g. see
Schwert, 1989), but not heteroskedastic, because the relevant distribution for
returns is the marginal and not the conditional. In the context of the Random
Walk models, returns is an independent process which does not allow the
existence of dynamic conditional moments.

2.2. Temporal dependence

The core assumption of the statistical models during this period is the temporal
independence of the returns process. Tests for independence were carried out in a
Gaussian framework, thus making independence equivalent to uncorrelatedness.
Indeed, Kendall (1953), Cowles (1960), Moore (1962), Granger and Morgenstern
(1970) test the independence assumption focusing on serial correlations.

Kendall (1953) found that stock returns were serially uncorrelated in the case of
the Chicago Wheat weekly series. However, he finds that the British Industrial
weekly share index prices were serially correlated and the New York cotton
monthly prices seemed to follow a Markov process. The last piece of evidence is
dismissed by arguing that:

‘In some cases the general picture of independence was presented, but in
others there were signs of dependence as reflected in the serial correlations’.
Yet, ‘such serial correlation as is present in these series is so weak as to
dispose at once of any possibility of being able to use them for prediction’
(Kendall, 1953, in Cootner, 1964, p. 92).

All these ‘stylized facts’ of stock returns were also systematically reviewed by
Moore (1962) who finds that autocorrelation coefficients were ‘uniformly small’
and usually ‘quite insignificant’. At the same time, Moore also argues that:

‘...successive changes of the logs of S&P stock price index evidence slight
positive dependence’ (see Tables 1 and 2 in Moore, 1962, presented in
Cootner, 1964 p. 145-6.)
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Similarly, Cowles and Jones (1937) found significant evidence of serial correlation
in averaged time series indices of stock prices. The presence of this serial
correlation has already been explained by Slutsky (1937) who showed that this
averaging may produce ‘spurious correlation’. In fact, this point was also made by
Alexander (1961) who showed that Kendall’s finding about significant auto-
correlation was actually spurious, due to the fact that each monthly observation
of the cotton price series was an average of four or five weekly observations of the
corresponding month. He also pointed out another factor which may introduce
spurious correlations into the price changes, namely the fact that the probability
of a rise is not necessarily equal to a half. He suggests that any deviations between
the random walk model and the actual behaviour of stock prices are totally
spurious:

‘It must be concluded that the month to month movement of stock prices, at
least in direction, is consistent with the hypothesis of a random walk with
about a 6 to 4 probability of a rise. Evidence to the contrary was spurious,
arising from the correlations introduced by monthly averaging or neglect of
the unequal probability of rise and fall’ (Alexander, 1961, p. 214).

Similarly Working (1960) showed that the serial correlation in monthly returns
could be explained by the averaging of the series from weekly to monthly
observations, and from individual stocks to indices. Therefore, Cowles (1960)
revisits the previous results (in Cowles and Jones, 1937) using weekly indices based
on Wednesday closing prices for each week and monthly indices of middle-of-the-
month or beginning-of-the-month prices. Using the sequences and reversals test
he still finds mixed temporal dependence results. Cootner’s conclusion is typical of
this blurred picture:

‘...some of the evidence supported randomness of stock price changes, while
other evidence indicated correlations which suggested that the market was less
than perfect’ (Cootner, 1964, p. 80—81).

Cootner (1962) also presents some tentative evidence against the independence
hypothesis by showing that a specific decision rule does substantially better than
random buying of stocks. This rule is based on the assumption of the presence of
two disparate groups of market participants. The first group is characterized by a
low degree of knowledgeability of the market, whereas the second group consists
of professional investors. This asymmetry in the possession of information
accompanied with some rigidity in the expectations of professionals give rise to
the ‘random walk with reflecting barriers’ model for stock prices. This model
implies the presence of tendencies (trends) near the maximum and minimum for
price changes to move toward the mean. In addition, for such a process the
kurtosis coefficient should be greater than 3. Cootner also shows that the kurtosis
coefficient will approach that of a rectangular distribution (a platykurtic
distribution) in the limit, if a single trend is involved. These results, however,
are subject to the caveat that are purely descriptive, since there is no indication for
their statistical significance. This limitation was dealt with by Steiger (1964) who
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builds on Cootner’s idea that stock prices follow a constrained diffusion process.
He compares the actual prices with those produced by a simulated random walk
with reflecting barriers and provides a formal test for ‘randomness within barriers’
which is based on the Kolmogorov-Smirnov test for a common distribution. He
finds that the actual and simulated distributions are significantly different at the
2.5% level. It must be noted, however, that the presence of ‘sophisticated traders’
in the market is sometimes used in favour of the random walk hypothesis. In
particular, their actions are assumed to neutralize the dependence in the noise-
generating process, which might arise because of self-fulfilling prophecies about
the intrinsic value of the stock from the uninformed group (see Fama, 1965).

In an important paper, Osborne (1962) reexamines the general topic of
deviations of stock prices from a simple random walk along several new
directions. The most important result from his analysis is based on the rejection of
the null hypothesis of uniform volume of transactions over time. In fact, it is
shown that some intervals of time have a much greater probability to contain
transactions than others of equal length. Osborne interpreted this evidence as ‘a
tendency for stock to be traded in concentrated bursts’ (p. 273). This evidence is
consistent with Mandelbrot (1963) although the interpretation is quite different.
In particular, Osborne interprets these bursts of occurrences as evidence against
the random walk hypothesis, whereas Mandelbrot maintains the independence
assumption and puts forward the idea of independent returns which are
distributed according to the Stable family of distributions (to be discussed in
the next section).

The issue of the presence or absence of correlation in speculative price data
remained unresolved until the early 1980s when the presence of higher order
temporal dependence was also detected. A retrospective criticism of the
temporal dependence testing strategy during this period, is that dependence
and correlation were viewed as equivalent, ignoring the possibility of higher-
order temporal dependence. The latter possibility, however, presupposes
departure from the Normality assumption, and movement towards a non-
standard regression-based statistical territory. It was not until the beginning of
the eighties that such a task was seriously pursued. Nevertheless, Alexander
(1961) implicitly acknowledges that non-correlation does not necessarily imply
independence and tests the null hypothesis of ‘randomness’ using a runs test.
Being unable to reject the null, he concluded that the random walk model best
fits the data. Retrospectively, we can interpret the various attempts to
rationalize the presence or absence of serial correlation as ex post theory
rationalisations of nebulous statistical evidence.

2.3. Leptokurticity

The third inconsistency concerned the distribution of returns. Kendall (1953)
found that the bivariate frequency distribution of weekly price changes (of the
Chicago Wheat series) is described by:
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‘nearly perfect symmetry and an appearance of approximate normality’ since
‘the distributions are accordingly rather leptokurtic...’” (Kendall, 1953, in
Cootner, 1964, p. 87).

As confirming evidence he used the sample skewness and kurtosis coefficients:
a3 =0.219, a4 = 8.506; compared with a3 =0, as = 3 in the case of the Normal
distribution. This apparent departure from the Normal distribution was largely
ignored by the early literature, due to a misinterpretation of the Central Limit
Theorem (CLT) effect. For instance, Kendall (1953) finds that the frequency
distribution of the monthly average of the Chicago wheat series, was also
symmetric and leptokurtic (given &3 = 0.002 and &4 = 5.701, p. 91). Nevertheless,
he states:

‘The distribution is nearer to normality as one might expect under the central
limit effect’. Therefore, he infers that ‘there is nothing to be gained by taking
averages of the monthly figures to obtain an annual figure. Under the Central
Limit effect the resulting series would be nearly normal; and successive values
would almost certainly be independent’, (Kendall, 1953, in Cootner, 1964,
p- 91-2).

Calling upon the CLT to justify the use of Normality when going from weekly
to monthly and annual data is inappropriate because the summation involves only
a finite number of terms which does not go to infinity (see Spanos, 1999). Also
note that this averaging is inappropriate because, as pointed above, it creates
spurious correlation (Slutsky, 1937; Working, 1960). Indeed, during the latter part
of the Bachelier-Kendall period emphasis was placed on the question of presence
or absence of temporal dependence.

In conclusion, the Bachelier period ended leaving largely unresolved three
empirical issues concerning the stock returns process:

(i) Is the distribution Normal?
(i1) Is the temporal independence assumption valid?
(i) Is the identically distributed assumption justified?

The available evidence pointed towards the inappropriateness of the Normal
Random Walk model. The presence of leptokurticity calls into question the
Normality assumption. The ‘blurred’ picture relating to the presence of temporal
correlation, when viewed in conjunction with non-Normality, calls into question
the assumption of temporal independence. The apparent non-stationarity of the
variance of returns implies that the assumption of identically distributed returns
also seems inappropriate.

3. The Mandelbrot era (1960—1980): stable paretian and martingale models

In the 1960s, Mandelbrot published several influential papers on speculative
prices shifting the interest away from temporal dependence to the distributional
features of such data series. Mandelbrot (1963) showed that Bachelier’s Brownian
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motion model was incompatible with the ‘revised’ stylized facts on speculative
prices.

3.1. Non-Normality

First, the histograms of returns showed bell-shape symmetry but more peakedness
relative to the Gaussian distribution:

‘The empirical distributions of price changes are usually too ‘peaked’ to be
relative to samples from Gaussian populations ... the histograms of price
changes are indeed unimodal and their central bells remind the ‘Gaussian
ogive’ ... But there are typically so many ‘outliers’ that ogives fitted to the
mean square of price changes are much lower and flatter than the distribution
of the data themselves.’, (Mandelbrot, 1963, p. 394).

An empirical illustration of the leptokurtic distribution exhibited by stock
return data is provided. We use daily data on the U.S. Standards and Poors 500
index (SP500) and the U.K. Financial Times All Share (FT-ALL) stock index.
The sample period is 8/1/1988 — 30/5/1997 and the sample size is T = 2348
observations. (Datastream is the data source.) The return on the market portfolios
was taken as the log differences of the respective daily stock price index (excluding
dividends).

The distributional characteristics of the FT-ALL and SP500 returns series are
examined. (Note that the particular day effects encountered in stock returns data
have been dummied out.) The descriptive statistics reported in Table 1 do not
support the marginal Normality hypothesis on the basis of excess kurtosis. Note
that the FT-ALL is also skewed (an empirical regularity also addressed in the
recent literature, see, for instance, Mills, 1995). Similarly, the D’Agostino and
Stephen (1986) skewness-kurtosis Normality test does not provide support for the
Normality assumption in the SP500 and FT-ALL series due to excess kurtosis. In
addition, the univariate nonparametric kernel estimates (e.g. Silverman, 1986) of

Table 1. Descriptive Statistics for the US & UK Stock Market Returns

Standard D’Agostino  D’Agostino
Mean Deviation Skewness Kurtosis Skewness Kurtosis
SP500 0.0005 0.007 -0.074 5.255 —1.299 10.895
(0.097) (0.000) **
FT-ALL  0.0003 0.0068 —0.100 4.465 —2.153 8.684

0.016)**  (0.000)**

Notes:

1. The mean, standard deviation, skewness & kurtosis refer to sample statistics.

2. The D’Agostino skewness kurtosis Normality test is performed and the numbers in brackets refer to
p-values.

3. (**) refer to rejection of the null hypothesis at the 5% significance level.
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the stock return indices shown in Figures 1 and 2 deviate from the standard
Normal, N(0, 1), distribution since they appear relatively more peaked. The
kernels are symmetric and the sample skewness coefficients are close to zero.

3.2. Infinite variance and volatility clustering

The second stylized fact observed by Mandelbrot (1963,1969) refers to the infinite
variance syndrome of stock returns which was called the Noah effect
(Mandelbrot,1969) suggesting that:

*...the tails of the distributions of price changes are in fact so extraordinarily
long that the sample second moments typically vary in an erratic fashion’,
(Mandelbrot, 1963, p. 395).

Normal kernel density estimates
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

-6 -4 -2 0 2

4 6
FT—ALL Returns
Figure 1. Kernel for FT-ALL.
o
0
3
8
g <
£ 3[
2.
® o
5
3
5
=z
;, 4
S -4 ~2 [) 2 4 6

SP500 Returns
Figure 2. Kernel for SP500.
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This is examined using the sample recursive variance:

1 k
S i—n k=23, T
i=1

=

On the basis of the sample recursive variance behaviour, Mandelbrot (1963)
advocates that:

‘...the second moment ... does not tend to any limit even though the sample
size is enormous and even though the series which it applies is presumably
stationary’, (Mandelbrot, 1963, p. 395).

For both the FT-ALL and SP500 the recursive sample variance (shown in the
figures below) seems to be time-varying. This evidence does not necessarily imply
that it is non-convergent or infinite.

RLS estimates of the FT—ALL variance
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Figure 3. RLS of the FT-ALL variancers.
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Figure 4. RLS of the SP500 variance.
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Mandelbrot (1963, 1964) proposed the Stable Paretian family of distributions
(Levy, 1925) as being more appropriate in capturing the empirical regularities of
symmetry, leptokurticity and infinite variance:

‘independence in successive increments [could be] combined with a distribu-
tion other than the Gaussian’ (Mandelbrot, 1964, p. 243).

The Stable Paretian family is usually specified using the characteristic function
given by:

t uge’
log ¢(1) =ibt —~|t]“. 1+ig ﬁ tan 7
t

This family is quite flexible, given that it is described by four parameters; « is the
Pareto’s exponent which determines the peakedness, (0 < « <2), and smaller «
gives thicker tails; G measures the skewness, (—1<(G<1) and for =0 the
distribution is symmetric; «y is the scale parameter (—1 <~ < 1); and finally 6 is the
location parameter. Given this flexibility, the empirical regularities of leptokur-
ticity, symmetry and infinite variance can be adequately modelled using this
family. In addition, this family is closed (or stable) under linear transformations
(e.g. summations) of IID random variables. The stability or invariance property
implies that each stable distribution has an ‘index of stability’ (shape parameter)
which remains the same regardless of the scale (sampling interval) adopted.
Originally the stability concept was associated with the operations over IID
random variables. However, due to this property, IID assumptions can be relaxed
as a result of the CLT for non-ID random variables in the domain of attraction of
the stable laws and the CLT for dependent random variables (e.g. Mittnik and
Rachev, 1993a,b).

The use of the Pareto-Levy family of distributions in modelling returns was
later called into question on several grounds. A number of studies find that the
invariance property of the characteristic exponent is violated (e.g. Officer, 1972;
Blattberg and Gonedes, 1974; Akgiray and Booth, 1988). These authors show that
the characteristic exponent does not remain constant when going from weekly to
monthly returns. Moreover, Praetz (1972) points out that the distribution
functions of this family are unknown, except in several special cases, and that the
estimation methods for their parameters are not very satisfactory. Furthermore,
DuMouchel (1973) notes that the rate of convergence to the stable law may be
very slow, implying that the stability property may not be very useful in practice.
Lastly, Mandelbrot (1963) and Fama (1965) note that the infinite variance
characteristic of Stable Paretian distributions makes statistical techniques based
on the traditional asymptotic theory of finite-variance distributions, inappropri-
ate. Moreover, financial analysis relies on the existence of both the mean and
variance representing return and risk. The fact that some members of this family
do not have a variance renders them inconsistent with most theoretical financial
models.
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Implicit in Mandelbrot’s observations relating to the stylized facts, and explicit
in his Stable Paretian model, is the assumption of temporal independence of
returns. The author often notes that ‘...successive daily changes of log prices are
independent’ (Mandelbrot, 1964, p. 243), and in specifying his model he substitutes
the Gaussian distribution (in Bachelier’s model) with the Stable Paretian
distribution. Hence, the probability model of the stock returns process is still a
marginal rather than a conditional model. At the end of his paper, however,
Mandelbrot (1963) observes that his model does not capture the observed
alternation of small and big changes in fluctuations:

‘Large price changes are not isolated between periods of slow change; they
rather tend to be the result of several fluctuations, some of which ‘overshoot’
the final change. Similarly, the movement of prices in periods of tranquillity
seem to be smoother than predicted by my process. In other words, large
changes tend to be followed by large changes — of either sign — and small
changes tend to be followed by small changes’, (ibid. p. 418).

Along the same lines, Fama (1970) shows that:

‘...large price changes are followed by large price changes, but of an
unpredictable sign. This suggests that important information can not be
evaluated immediately’, (ibid. p. 396).

The time-plots of the returns for the market indices considered (in Figures 5
and 6) provide information about the temporal behaviour of the processes. It is
shown that large and small changes (of either sign) in returns tend to be clustered
together over time.

This was later diagnosed as second-order temporal dependence (see, for
example, Engle, 1982; Brock et al., 1991), or volatility clustering of the returns
process. This evidence implies that both the Random Walk and Heterogeneous
‘Random Walk’ models specified in the 1950s were inappropriate. Nevertheless,
this regularity, although observed, cannot be modelled by the Stable Paretian
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1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

Daily observations

Figure 5. t-plot of FT-ALL returns.
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Figure 6. t-plot of SP500 returns.

models. The evidence of second-order dependence in returns has also important
implications for the infinite variance inferred by Mandelbrot (1963). The time-
dependent or divergent unconditional recursive variance does not necessarily
imply that this moment is infinite. This behaviour might be due to higher-order
temporal dependence and/or time-heterogeneity. The presence of such features is
well documented in the literature on speculative prices (e.g. Bollerslev et al., 1994).

The literature in the 1970s attempted to deal with the presence of leptokurticity
and the divergence of the second moment, largely ignoring the non-linear
temporal dependence. DuMouchel (1973) proposes a mixture of independent
Normal distributions, whereas Praetz (1972) and Blattberg and Gonedes (1974)
consider two continuous mixture-of-Normal distributions models. They assume
that the variance of the Normal distribution follows an inverted gamma
distribution, the resulting posterior distribution is Student’s ¢. They show that
the non-Normal Stable Paretian distribution is obtained when the variance of the
Normal distribution follows a strictly positive stable distribution with character-
istic exponent between 0 and 1. Hence, Blattberg and Gonedes (1974) indicate that
the Student’s ¢ distribution provides a better empirical description of stock returns
than the Stable Paretian model (also see Hagerman, 1978; Lau et al., 1990;
Tucker, 1992). Some other recent studies (e.g. Akgiray and Booth, 1988; Phillips
and Loretan, 1994) have found evidence against the Stable model. The Paretian
tail index is estimated from the tail observations, using the Pareto distribution and
its generalization. The results of these studies show a tail index significantly
greater than 2. McCulloch (1997) criticises this inference advocating that the
previous studies overlook the implications of the intermediate value theorem.
Given the moderate sample sizes often used, tail-index estimates in excess of 2 are
to be expected for IID Stable samples with exponent as low as 1.65. Therefore, an
exponent greater than 2 is consistent with a stable distribution for asset returns.
Maximum Likelihood estimation for the full-sample is recommended for tail-
index estimators if the distribution is assumed to be Stable. Nevertheless, this
analysis largerly relies on the IID assumption of returns.
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Recently, Mittnik and Rachev (1993a,b) propose an alternative distribution in
the Pareto family, the double Weibull distribution, generated from geometric
sums of IID random variables. Their empirical results show that the Weibull
distribution dominates the Stable distribution in terms of fit (for the S&P500 daily
and monthly returns, 1982—87). Their work has been criticized for the following
reasons: (i) Although numerous distributions have been found to have an
adequate fit for speculative price data, the essence of a statistical model is to
capture the data generating mechanism and to give rise to reliable statistical
inference results (Phillips, 1993). (ii) There is no empirical support of the
covariance stationarity assumption for stock returns (e.g. Phillips and Loretan,
1994). (iii) The IID assumption ignores the conditional density function that
incorporates important systematic, temporal dependence information of the
returns process (Diebold, 1993; Baillie, 1993).

The Mandelbrot era ended in the early 1980s with the Normality assumption of
the Random Walk model replaced by a variety of leptokurtic distributions.
Although the presence of second-order dependence was inconsistent with the
Heterogeneous Random Walk model, this issue was left unaddressed.

3.3. The Efficient Market Hypothesis

In the 1970s the literature faced the challenge of respecifying the theoretical model
consistent with the notion of market efficiency. By the mid 1960s Mandelbrot
(1967), Samuelson (1965) and Fama (1970) acknowledged the fact that a market
could be efficient even if returns were not an IID process. What was really
required for efficiency was the lack of any rule of buying and selling that has an
expected return greater than the average return of the market. In other words, the
game of speculation should be fair or (excess) returns should follow a martingale
difference process. The statistical definition of a fair game implies that the
conditional expectation of returns at time ¢, based on all past information on
returns, should be zero:

E(ri|o(ri—1, ..., 11)) =0, teT. (8)

Equivalently, in an efficient market the best forecast for today’s prices is
yesterday’s price:

E(pl|0(pl—la "'7p1)):pl—17 IET (9)

From the economic theory viewpoint, the switch from the random walk to the
less restrictive martingale model was based on the need to link the behaviour of
prices with more fundamental economic quantities, the role of anticipation and
expected utility and the concept of an efficient market. The random walk model
implies that stock prices were exempt from the supply and demand laws and look
like the casino or musical chairs that Keynes (1936) chose as a metaphor for the
stock market. Hence, the random walk model was inconsistent with the
traditional theory of competition. Moreover, the probabilistic independence
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between successive price increments, as assumed by the random walk model, is
quite restrictive when looked upon from a broad class of optimizing problems.
Mandelbrot (1966) demonstrates that the martingale model may arise in the
context of a ‘fundamental analysis’ in which the price attempts to follow
‘something that can be described as value’.

Samuelson (1965) also provided a formal proof of a theorem which states that
properly anticipated prices fluctuate randomly iff some specific restrictions hold.
These restrictions require agents to have common and constant time preferences,
have common probabilities and be risk neutral. Samuelson restricts his analysis to
the case of ‘futures pricing’, but his arguments can be extended to the spot-price
case as well.

The martingale process has become a powerful tool in probability and statistics
(see Doob, 1953), and modern theories of asset prices. For example, once asset
prices are properly adjusted for risk, the martingale property does hold (see Lucas,
1978; Harrison and Kreps, 1979) and the combination of this risk-adjustment and
the martingale property has led to the pricing of complex financial instruments
such as options, swaps and other ‘derivatives’ (Merton, 1990). The Martingale
formulation (9) has also certain advantages from the statistical viewpoint. Note
that the literature of the Bachelier-Kendall era viewed model (3) as a system
driven by the IID process for {r,, t € T}. The probabilistic structure of the process
{p:, t € T} was indirectly determined by contemplating (3) from right to left. The
Martingale formulation (9) reverses the role and considers {p;, t € T} as the
primary process, contemplating (3) from left to right as an orthogonal
decomposition of the form:

pi=E@: | o(pi—1, s P1)) + 14, teT.
The process {r,, t € T} constitutes the unmodelled component defined by:
V:Pt_E(Pr‘U(szlwnaPl))» te-ﬂ—a

which is by ‘design” a Martingale difference process, denoted by r, ~ MD(0), with
properties:

® Elr]) <oo, }tev. (10)

@) E(r|o(ri-1, ..., 1)) =0,

It is well known that the probabilistic structure of a Martingale difference process
is much weaker than either an IID (with moments up to order two) or an
Independent but non-Identically distributed process with f-dependent variance.
The IID assumption may alternatively be expressed as:

D(@ri|ri—1, .oy 11; 8) = D(ry; 0), forall teT. (11)

In terms of the conditional moments (assuming they exist), (11) can be expressed
in the form of:

EG*|o(ry 1, .y )= EGY),  k=1,2,.., foral teT. (12)
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In contrast, a Martingale difference process assumes the existence of the first
moment only (i.e. for k =1 in (12)). This point was also made by Mandelbrot as
far back as 1966, when he first introduced the martingale model for stock prices.
He explicitly states that:

‘It should be stressed that the distribution of r,, 7, conditioned by known
values of r, and of r, _;, may very well depend upon the past values r,_;: the
expectation alone is unaffected by r, _;’ (ibid, p. 244).

3.4. Higher order martingale difference

One can extend a martingale difference process to include higher conditional
moments (see Spanos, 1999). In particular, higher order dependence may arise
through higher conditional moments (assuming they exist):

E(re|rizq, .., 1) =0,

B }IET. (13)
E(r[ |I’1717 ceey rl):gk(rtfhrtha ceey rl)a for k:2a37 ceey

A second order martingale difference process is defined by (10) and the
conditional variance:

E(V? | U(Vf, 1y ooy ”l)) = f(l’t, 1y =ooy rl)' (14)

It is interesting to note that Mandelbrot (1964, 1969) has alluded to such a
possibility:

‘... no policy exists for buying and selling that has an expected return greater
than the average return of the market. On the other hand, the martingale
model does allow the actual distribution of [p; — p; _ 1] to depend on past and
present prices, and therefore it does not deny that past and present prices can
serve in the selection of portfolios of different desired degrees of riskiness’, as
represented by the second conditional moment (Mandelbrot, 1969, p. 227).

Note that in the case of a homoskedastic conditional variance:
E(r[2|r,,1, ey rl)zoz, t>2,

a second order martingale difference process becomes an innovation process.
The most direct empirical tests on the appropriateness of (13) amount to
determining whether there exist significant conditional mean effects (LeRoy,
1989). As noted above, however, the martingale difference model does not
preclude any significant effects in higher order conditional moments (e.g. the
conditional variance). Indeed, the temporal dependence puzzle, observed by
Mandelbrot (1963) and Fama (1970), is consistent with the martingale difference
model since the latter can accommodate any non-linear dynamic effects via
higher-order conditional moments. A higher-order martingale difference model
can also be considered as a useful framework for specifying a model with
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conditional skewness and kurtosis (e.g. k = 3, 4), where there are a function of the
conditioning information set (see for instance, Hansen, 1994).

4. The dynamic volatility era (1980— present)

By the early 1980s it was clear that the existing empirical models could not
account for the non-linear temporal dependence exhibited by speculative price
data. To illustrate that, let us consider the temporal dependence structure of the
SP500 and FT-ALL stock returns series. Table 2 presents the results from three
alternative temporal dependence tests on the residuals of an AR(1) model for each
series. The Ljung-Box (1979) (LB) tests the null hypothesis that the residuals is an
uncorrelated process, whereas the McLeod-Li (1981) (ML) and the BDS (Brock et
al., 1987, 1991, 1996) test for the existence of higher order dependence.

The results show that the SP500 and FT-ALL returns do not reject the
martingale difference hypothesis. Both the McLeod-Li and BDS tests present
evidence of non-linear dependence in both series. Hence, there is no empirical
support of the random walk model with independent increments.

Second-order dependence may be modelled via a quadratic dynamic hetero-
skedastic function. The first attempt in the direction of modelling the conditional
variance was made by Engle (1982), who proposed the AutoRegressive
Conditionally Heteroskedastic (ARCH) model (note 1) specified in terms of the
first two conditional moments:

E(rt|R1;,1):gf(rt717rt727 ey }’,,p)7 (15)
Var(r; | R[:f 1) = E{[r, — E(r, | Rf7 1)]2 | thl 1} =h(ri—1, ..., Vr—p)~ (16)

P -
where R _ | ={r;_(, ri_2, .., 11— p}.

Table 2. Temporal Dependence tests for US & UK Stock Market Returns

LB(5) LB(10) LB(15) ML(5) ML(10) ML(15)
SP500  4.960 14.129 24.696 35.553 76.692 116.096
(0.421) (0.167) (0.054) (0.000)**  (0.000)**  (0.000)**
FT-ALL 8.224 11.805 22.464 96.202 131.478 205.877
(0.144) (0.298) (0.096) (0.000)**  (0.000)**  (0.000)**

BDS(1,2) BDS(0.25,5) BDS(0.25,10) BDS(0.5,2) BDS(0.5,5) BDS(0.5, 10)

SP500 89.644** 6.264* 8.980** —0.091 0.088 1.593
FT-ALL 59.798*%* 7.020%* 8.984 ** 9.409** 9.884 %% 7.719%*
Notes:

1. LM = Lagrange Multiplier test, LB = Ljunx-Box test, ML = McLeod-Li test, BDS = Brock et al.
test. The numbers in brackets refer to p-values.
2. (**) refer to rejection of the null hypothesis at the 5% significance level.
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This model is equivalent to an extended martingale difference process if
E(r; |R?_,)=0. Given this, second-order stationarity holds if:

Var(r;) = E{Var(r, | RY_,} = constant.

A number of models with dynamic heteroskedasticity have been proposed in the
literature using alternative parameterizations of Var(r, | R?_)). Initially, Engle
(1982) expressed the conditional variance in the ARCH model as a p” order
weighted average of past squared disturbances:

2

var(r, |RY_ ) =ao + aie] |+ -+ +ape;_,

(17)

where ¢, =r, — E(r, |RY_)), ap >0, a; >0, i=1,..,p.

Early empirical studies using the ARCH model found that the number of lags in
(17) was rather sizeable. Therefore, in their attempt to reduce the number of
parameters in ARCH, they imposed ad hoc linearly declining lag structures
such as:

alp+1—1i)
P N
plp+1)

for some a>0, (Engle, 1982). Motivated by the problem of long lags an
alternative parameterization of the dynamic conditional variance was proposed by
Bollerslev (1986) known as the Generalized ARCH. Using the analogy with
ARMA(p, ¢) models, Bollerslev specified the conditional variance to be:

i q
Var(r, | RY_ ) =ap + Z bih7_ + Z el
i=1 i=1

oy >0, 0<a;<1, i=1,..q4, 0<bhi<1, j=1,..,p, (18

known as the GARCH(p, ¢) model. These models provide a more parsimonious
representation than a higher-order ARCH model, and thus they are easier to
identify and estimate.

In the ARCH model, for the second moment to exist, we need to impose the
additional restriction: (1 — Y ?_,a;) >0, (Engle, 1982). For the existence of higher
moments, such as the kurtosis coefficient, more stringent restrictions are often
needed. The GARCH model imposes similar restrictions for the variance to exist,
given by 07 i + Zf _by) < 1. Of particular interest in the empirical literature
is the case for which the sum of the variance coefficients is one, i.e.
(OCf_yei+ 227 by =1. This gives rise to what is known as the Integrated
GARCH (IGARCH) model (Engle and Bollerslev, 1986a,b). Volatility in such
processes is highly persistent. Although the IGARCH(], 1) process is often seen as
analogous to a linear random walk type conditional variance, Nelson (1990)
shows that this analogy is misleading. A linear random walk is nonstationary in
two respects. First, it has no stationary distribution implying that the process is
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strictly nonstationary. Second, the first two unconditional moments do not exist
i.e. it is second-order non-stationary. On the other hand, the IGARCH(1,1)
model is paradoxical in the sense that the implied process is strictly stationary
even though its distribution does not have the necessary second (unconditional)
moments. Note that such integrated models agree with Mandelbrot’s assertion
about an infinite second moment.

In Tables III and IV we present the estimation and misspecification test results
of the ARCH(p) and GARCH(p, ¢) models, respectively. The misspecification test
results suggest that the Normal ARCH models do not account for the
leptokurticity of the conditional distribution (as shown by the D’Agostino
kurtosis test) and do not capture all the second-order dependence in higher-order
lag lengths (as shown by the ARCH and McLeod-Li tests). Therefore,
GARCH(1,1) models are estimated which present a more parsimonious
representation for stock returns than the ARCH(p) models. Generally, the
Normal GARCH(1, 1) models seem to perform better on statistical adequacy
grounds than the ARCH(p) models, since the former capture all the non-linear

Table 3. Estimation results of GARCH-type models

ARCH N-GARCH t-GARCH

SP500 FT-ALL SP500 FT-ALL SP500 FT-ALL

Y 0.049 0.039 0.056 0.048 0.075 0.058
(0.020) (0.020) (0.019) (0.019) (0.016) (0.018)

ol 0.045 0.101 0.027 0.096 0.009 0.074
(0.023) (0.023) (0.021) (0.022) (0.019) (0.021)

a 0.921 0.885 0.003 0.038 0.005 0.020
(0.033) (0.031) (0.001) (0.011) (0.003) (0.014)

a 0.081 0.103 0.015 0.075 0.026 0.047
(0.026) (0.023) (0.003) (0.013) (0.006) (0.017)

by — — 0.981 0.888 0.971 0.932
(0.004) (0.021) (0.007) (0.029)

v 4.708 8.263
(0.496) (1.189)
In L —3316.9 —3296.4 —32223 —3229.3 —1761.7 —1839.8
ap + b — — 0.996 0.963 0.997 1.010

H()Z

ar +by =1 — — 3.326 4.077 0.959 2.131

[0.068] [0.043] [0.327] [0.144]

Note: The s refer to the linear AR model parameters. The rest of the coefficients refer to the
GARCH model parameters. The numbers in brackets refer to standard errors. The numbers in square
brackets refer to p-values
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Table 4. Misspecification Tests Results of GARCH-type Models

ARCH N-GARCH t-GARCH

SP500 FT-ALL SP500 FT-ALL SP500 FT-ALL

D’Ag. Sk.  —9.381 1320 —10.519 ~2.004  —10.010  —4.130
(0.000)**  (0.093) (0.000)**  (0.023) (0.000)**  (0.000)**
D’Ag. Krt.  16.736 13.105 16.008 8.111 16.429 6.977
(0.000)**  (0.000)**  (0.000)**  (0.000)**  (0.000)**  (0.000)**
KG2 2.235 0.909 3.898 0.079 3.849 0.002
(0.135) (0.340) (0.048) (0.778) 0.050)  (0.969)
ARCH(1)  0.176 0.030 0.002 0.008 0.088 0.524
(0.675) (0.862) (0.964) (0.931) 0.767)  (0.469)
ARCH(5)  8.629 5.922 0.549 9.642 0.435 0.871
(0.000)**  (0.000)**  (0.739) (0.000)**  (0.825)  (0.499)
ARCH(10)  9.746 5.597 1.321 6.314 1.198 0.509
(0.000)**  (0.000)**  (0.213) (0.000)**  (0.287)  (0.885)
ARCH(15)  6.352 5.492 1.214 6.954 1.145 1.126
(0.000)**  (0.000)**  (0.253) (0.000)**  (0.309)  (0.326)
LM (1) 1.152 0.021 0.144 0.896 0.511 0.018
(0.283) (0.885) (0.704) (0.344) 0475  (0.892)
LM (5) 1.124 1.602 1.055 2.241 1.190 1.382
(0.345) (0.156) (0.383) (0.048) 0.311)  (0.228)
LM (10) 1.489 1.747 1.095 1.596 1.143 1.099
(0.137) (0.156) (0.362) (0.102) 0.325)  (0.358)
LB (10) 11.300 6.912 5.184 13.696 12.549 10.427
(0.335) (0.227) (0.394) (0.187) 0.249)  (0.404)
LB (15) 20.034 15.803 9.697 23.825 24211 17.426
(0.170) (0.105) (0.467) (0.068) 0.062)  (0.294)
LB (20) 22.808 23.348 26.020 33.424 29.433 24.777
(0.298) (0.077) (0.165) (0.030) 0.079)  (0.210)
ML (10)  55.426 31.965 4.672 82.957 3.974 5.077
(0.000)**  (0.000)**  (0.912) (0.000)**  (0.948)  (0.886)
ML (15)  82.474 68.798 8.383  148.724 7.301 16.847
(0.000)**  (0.000)**  (0.907) (0.000)**  (0.949)  (0.328)
ML (20)  90.789  109.926 9252 180.398 8.208 21.041

(0.000)**  (0.000)**  (0.979) (0.000)**  (0.990)  (0.394)

Notes:

1. D’Ag. Sk. and Kurt. = D’Agostino Skewness, Kurtosis test. KG2 = Linearity test (Kolmogorov-
Gabor polynomials). ARCH test. LM = Lagrange Multiplier test. LB = Ljunx-Box test,
ML = McLeod-Li test.

2. The numbers in brackets refer to p-values.

3. (**) refer to rejection of the null hypothesis at the 5% significance level.
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dependence left unmodelled by the latter. Nevertheless, the empirical results
suggest that the Normal GARCH models do not seem to account for conditional
leptokurticity (as shown by the rejection of the D’Agostino kurtosis test). Hence,
although the unconditional distribution of the errors in the Normal
GARCH(p, ¢), has fatter tails than the Normal distribution it does not adequately
account for the leptokurtosis in the SP500 and FT-ALL returns data.

To summarize, the stochastic process for returns which satisfies certain
theoretical requirements and captures the stylized facts exhibited by data on
stock returns, can be adequately described by an extended martingale difference
process with dynamic heteroskedasticity effects. Clearly, such a process cannot be
Gaussian. In view of this, alternative conditional distributions, D(r, | R‘t’ _ 1), have
been proposed. Initially, Engle (1982) assumed conditional Normality, with a
leptokurtic unconditional distribution. In the empirical studies that followed, it
was realized that the resulting unconditional distribution did not account for all
the leptokurtosis in the observed data (see inter alia Bollerslev, 1987). Bollerslev
replaced the Normal distribution of the error with that of a ¢-distribution of the
form:

P + 1) i
SV 1 e
< w-2r72 |1+ d

Dless €)= iy (v —2)h?
2 t

(19)

As shown in McGuirk et al., (1993) and Spanos (1994), this formulation does not
represent the conditional Student’s ¢ D(r,|RY_)), derived from the joint
distribution D(ry, ra, ..., r7; ¥). We proceed to estimate and test the ¢-
GARCH(1, 1) model (Bollerslev, 1987) for the SP500 and FT-ALL stock returns
data. The results in Table III show that this model can account for leptokurtosis
more adequately than the Normal GARCH model. Similarly, the conditional
variance coefficients are significant and the misspecification tests show that it
adequately captures second-order dependence of the SP500 series.

Another distributional assumption, proposed by Nelson (1991), results to the
Exponential GARCH (EGARCH) model which accounts for the empirical
evidence that stock returns are negatively correlated with changes in return
volatility (Black, 1976). This effect suggests that volatility tends to rise in response
to ‘bad news’ (when excess returns are lower than expected) and fall in response to
‘good news’ (when excess returns are higher than expected). The reason for this
behaviour of returns is financial and operating leverage (Nelson, 1991). The
GARCH models disregard this regularity since they assume that only the size and
not the sign of unanticipated excess returns determines the conditional variance.
On the other hand, the EGARCH model responds asymmetrically to positive and
negative effects on the conditional variance:

q P
In(h) = o+ Y GO+l — Elnx D+ Y s Inth ), =1,
k=1

k=1 =
(20)
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where 1, =r;/o,. The term ~[n,_; — E|n,—4 |] represents a magnitude effect
(which is the relevant effect in GARCH models) and the term 6r, represents the
sign effect which can account for the regularity observed by Black (1976). Note
that unlike the GARCH(p, ¢) model the EGARCH model does not impose
any nonnegativity constraint on the parameters §; and d; of the conditional
variance, since the latter model deals with the logarithm of the variance. (Also
see note 2.)

The non-Normality in the distribution of returns is introduced by assuming that
r; is drawn from the Generalized Error Distribution density (or equivalently the
exponential power distribution):

vexp[—() | e;/N ]| ]
D(es; 0) = plkalial .,  e€R,  0<wv<oo,
A20+1/9T(1 fv)

where T() is the gamma function and X = [2C2“T(1/v)/T'(3/v)] /2.

Stochastic volatility models is another class of parameterizations that have been
utilized to capture the mechanism of speculative prices (for a recent survey, see
Ghysels et al., 1996). Their continuous time aspect implies that they are closely
related to theoretical models of finance as compared to GARCH-type models. In
addition, stochastic volatility models regard volatility as being driven by a process
separate from returns per se. They are based on an EGARCH functional form but
the process driving the conditional variance is a NID(0,1) process, that is
independent of r,. Such a model has the format:

log O'? =ao+ G log 0’?,1 + oy

A variant of the stochastic volatility model that has been extensively used by
Hamilton (1990) is to relate o2 to an unobserved state variable z, that can take
either the value 0 or 1, with this variable evolving according to a first order
Markov process. This model differs from the standard stochastic volatility model
in two ways: The innovations driving the conditional variance are a discrete
random variable with four states and the conditional variance of the innovations
depends on o?_,.

An attempt to link the GARCH and stochastic volatility models has arisen as a
result of the high degree of estimated persistence observed after fitting GARCH or
stochastic volatility models. Parameter instability has been regarded as one of the
reasons for volatility persistence (e.g. Lamourex and Lastrapes, 1990) and
Markov switching ARCH model (Hamilton and Susmel, 1994; Cai, 1994) have
been specified as a response.

To sum up, since the early 1980s the literature dealt with the stylized facts of
non-linear dynamics and leptokurticity of speculative price data by postulating
functional forms for the conditional variance and associating that with conditional
leptokurtic distributions. The particular functional forms have been justified in
terms of apparent analogies with the corresponding ARMA type models for the
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conditional mean. Although plausible, these functional forms are ad hoc and their
only justification lies with their empirical validity. Statistical adequacy is a
necessary justification for a statistical model; Yet the theoretical justification for
conditional variance functional forms is still an open question.

One of the main messages drawn from the discussion so far is that the
empirical literature has concentrated at certain points in time on postulating
statistical models to deal with some empirical regularities, giving more
emphasis in one or another such regularity. During the Bachelier era the
emphasis was placed on modelling first-order temporal dependence. The
Mandelbrot era emphasized the distributional aspect of modelling having
interpreted the erratic behaviour of the sample recursive variance as a symptom
of an infinite unconditional variance. The dynamic volatility era emphasized
the modelling of the conditional heteroskedasticity as a way to capture the
higher order temporal dependence. The other aspects of empirical modelling,
such as the distribution, are seen only through the prism of dynamic
heteroskedasticity. Nevertheless, all three probabilistic aspects, namely
distribution, dependence and heterogeneity, are equally important for
specifying the relevant statistical model.

An all encompassing approach which attempts to deal with all the observed
empirical regularities has been made in the context of the Probabilistic
Reduction approach; see Spanos (1986,1995). This approach views models as
reductions from the joint distribution of the observable random variables
involved. In the case of a single stochastic process {r;, t € T} the postulated
statistical models can be viewed as simplifications of the joint distribution
via the imposition of probabilistic assumptions which restrict the sequential
conditioning:

T
D(rlv ra, oy, I'T ,(/)):D(rh 901) H D(I‘, | R(t)fl)a v(rh , ..., rT) S RT'
=2

The idea is to choose the reduction assumptions from the three basic categories
in (1) in such a way so as to allow for the possibility of accommodating all the
observed empirical regularities.

An example of a statistical model specified in the context of this approach is the
Student’s ¢ AutoRegressive model with dynamic heteroskedasticity (Spanos,
1991,1994). By assuming that the joint distribution is Student’s t and stationary
and allowing for weak dependence, this model accounts (i) for joint and marginal
leptokurticity, (ii) second order temporal dependence, (iii) the erratic behaviour
of the sample recursive variance. The reduction process ensures the internal
consistency of the model assumptions and requires no additional parameter
restrictions, such as those needed for the GARCH family of models. This model
takes the form:

0
Fr="0 + Z’Yi"t—lfJFuta (>0, reN, (21)

i=1
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v

wi=|————= [ 1+ D D (Gl —pllr_j—pl} |, (22
v+t—3 i=1 iz

where, ¢; =0 for all |i—j|>p, u,=r, — E(r, | o(RY_))) ~ St(0, w?; v), w? is the
conditional variance, p= E(r;), v>2 is the degrees of freedom, and a(R?_])
denotes the sigma-field (the conditioning information set) generated by
R?fl =(r;,_1, i —2, ..., r'1). From (21) the conditional mean is a linear function
of the conditioning variables and resembles the simple Normal AR(() process.
Nevertheless, the conditional variance (22) is heteroskedastic and thus able to
encapsulate the observed second-order dependence. Specifically the conditional
variance is a quadratic function of all the past conditioning information, but is
parameterized with only p + 1 unknown 6]’-5.

There are numerous recent developments for modelling speculative prices. We
choose to focus on only two of those that are related with the dynamic
heteroskedastic volatility models: The evidence of fractional integration and long
memory in returns and the modelling of higher order conditional moments.
Recent research examines whether speculative prices are fractionally integrated
and can be described as long memory processes. A fractionally differenced process
{p:, t € T}, satisfies the following difference equation:

(1— L)dpt =g, &~ 1ID(0, U?)

and d may be noninteger powers that define a fractionally series of order, d, I(d).
For the early and significant work on ARFIMA processes see Granger (1981),
Granger and Joyeux (1980), and Hosking (1981). When d € (-0.5,0.5), p; is
stationary and invertible and exhibits a unique kind of dependence that depends
on the sign of d: For 0 <d < 0.5, the autocorrelation coefficients are all positive
and decay at a hyberbolic rate, so that the process belongs to the class of long-
memory processes (see Hurst, 1951, for the origin of interest in long memory
processes in the hydrology field) (see note 5). For —0.5<d<0, the sum of
absolute values of the process autocorrelations tends to a constant; hence it has a
short memory. For a recent comprehensive survey of long memory and
fractionally integrated processes that reviews the models developed under this
class, various tests, estimation methods for fractional integration and a wide range
of applications, see Baille (1996).

The original statistical measurement of long memory due to Hurst (1951) and
used by Mandelbrot (1972) is the rescaled (R/S) statistic, defined as:

T T
Ry = max Z ¥ —Jj¥) p — min Z ;=)
i1

0<j<T | = 0<j<T

where R = range, y is the sample mean. Hurst (1951) showed that:
p im{(T) 7 (Ry/S7) = constant, (23)
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where S7 is the sample standard deviation:

. , 1/2
p Y 0i-»

Jj=

Sr=

Following (23) we obtain:
log[E(R7/ST)] = constant + H[log(T)],

and the Hurst coefficient, H, can be estimated either as the ratio of
log(R7/St)/log(T) or the regression coefficient of log(R7/S7) on log(s), for
different ¢ (Baille, 1996, presents alternative methods of estimating H). Since a
short memory process would have H=0.5, an estimated value of H>0.5 is
interpreted as evidence of long memory. Lo (1991) modified the R/S statistic in
the presence of short memory and heteroskedasticity. Applying the two statistics
to CRSP stock returns indices, Lo finds that the original R/S statistic gives
significant results whereas the modified R/S gives insignificant results. This
constitutes evidence against the existence of long memory in the returns process.

Recently Ding et al. (1993) have shown the presence of long memory in higher
moments of returns series. This has led to the development of Fractionally
Integrated GARCH and EGARCH models (see Baille et al., 1996 and Bollerslev
and Mikkelsen, 1996, respectively) to capture long memory in volatility. It is
found that the FIEGARCH model which allows for nonsymmetry of shocks
provided a good representation of the SP500 volatility. Ding and Granger (1996)
extend the concept of long memory processes and define generalized fractionally
integrated models which may arise from aggregation, time-changing coefficient
models and nonlinear models. They show that certain useful transformations of a
returns process may produce long memory, even though the actual returns series
has no such property. These transformations refer to absolute returns and power
transformations of the daily SP500 stock market returns. Research in this area
shows that econometric models are extended to allow for evidence of fractional
integration. They seem to focus in either of the first two conditional moments.
Although it would be interesting to integrate the two, the appropriate tests to
distinguish between 1(0), /(1) and I(d) is an equally important open area.

The analysis so far has centred on modelling the conditional mean and variance
of asset returns. Higher-order conditional moments of a bivariate process
{w, =y, x;), t € T}, (other than the mean and variance) may be needed to
describe the conditional distribution. For instance, modelling the conditional
skewness and kurtosis is important for efficient estimation, prediction and complete
specification of asset pricing models. In Hansen (1994) the conditional density
depends upon a low-dimensional ‘parameter vector’ and is allowed to vary as a
function of the conditional variables. This generates a class of models called the
Autoregressive Conditional Density (ARCD) models. Their distribution is given by:

d
D(y/a(x,, 0)) =— P(y; <y/x1)
dy
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where 6 is a finite-dimensional parameter vector and «, = a(x;,0) is a low-
dimensional time-varying parameter which fully describes the influence of x; upon
the conditional distribution. For example, it is assumed that a, = (1, o2, 1,) where
1 is the conditional mean, Jf is the conditional variance and 7, denotes the
additional shape parameters that are time-variant.

A flexible density function is chosen that can generate a range of shapes (e.g. fat
tails, skewness). In addition, a closed form density function is required for using
Quasi-MLE. Hansen (1994) generalizes the conditional Student’s ¢ density
function to allow for skewness. Hence the conditional distribution of the
normalised error, z, is:

2\ —(n+1)/2
1 bz+a
be| 1+—— z< —a/b
n—2\1-2AX
;A =
gz/n, N N —n D72
| bz+a
be| 1+ —— z2—a/b
n—2\14+2A

where 2 < v < o0, and —1 < A< 1. The constants a, b, ¢ are given by:

n+1

2

a=4x[ —— |, pP=1-3)\*—-d> =

AT =T g

This ‘skewed Student’s ¢ distribution specializes to the traditional Student’s ¢
(with unit variance) if A = 0. If A > 0, the mode of the density, (—a/b), is to the left
of zero and the variable is skewed to the right, and vice-versa when A <0.
Following the ARCH approach, 7, is also modelled as a function of lagged
residuals:

N =n(e;—1, €2, ..., €1).

Parameter constraints allow 7, to lie within a region [L, U], where the relationship

between 7, and A, is given by the logistic transformation:
(U-L)
m=L+—————
1 +exp(—AX)

and ), is allowed to vary over the entire real line. The applications of the ‘skewed
Student’s ¢’ conditional density show that the shape parameters are statistically
significant at the 5% level. The approach adopted in this study points to a
direction of extending statistical parameterizations to higher-order conditional
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moments beyond the conditional variance. Yet, the question still remains open in
bridging the gap between statistical and theoretical models for asset returns.

5. Conclusions

The review of the empirical modelling of speculative price data since the early 20th
century suggests that the choice of statistical models can be best described as a
dialectic process between empirical regularities and appropriate probabilistic
assumptions. In view of the apparent leptokurticity exhibited by the histograms of
such data the Normality distribution was replaced by other leptokurtic
distributions. The detection of higher order temporal dependence in such data
led to the abandonment of correlation as the sole form of dependence. This
eventually led to the adoption of a martingale difference process with higher order
dynamics. The erratic behaviour of the sample recursive variance, which was
initially interpreted as evidence of an infinite variance, was later re-evaluated in
the context of the GARCH family of models.

The search for better statistical models which capture all empirical regularities
exhibited by speculative price data is still ongoing and the challenge lies in
specifying a statistical model that is able to capture the mechanism of speculative
price data in a unifying and consistent framework. A promising approach to
statistical model specification seems to be the probabilistic reduction approach. In
relation to this approach, the comments made by an anonymous discussant on
Kendall’s 1953 paper are clearly prophetic:

‘the possibility that price changes might be dependent but not correlated, a
possibility that might arise in cases of nonlinear relationships or where
underlying distributions are nonnormal’. (Cootner, 1964; Introduction,

p. 81.)

At the same time it is interesting to re-examine the relationship between the
statistical models and certain theoretical issues such as the weak-EMH and major
asset pricing models. The EMH can be considered consistent with extensions of
the martingale difference process that allow for dynamic heteroskedasticity and
non-linear dependence. The results for SP500 and FT-ALL weekly returns
provide empirical support for the martingale difference assumption of the EMH.
The dynamic volatility of both the US and UK stock market indices can be
regarded as forecastable. Nevertheless, one should always bear in mind that
market efficiency implies a lot more than a martingale difference returns process
(such as rational agents, risk neutrality, linecar expected utility, perfect
competition) and all we are merely testing is the validity of the statistical
mechanism of returns for the stock indices considered. Certain asset pricing
models such as the Mean-Variance theorem and the Capital Asset Pricing Model
(CAPM) have been generalized to elliptically distributed returns (e.g. Chamber-
lain, 1985; Owen and Rabinovich, 1985; Ingersoll, 1989). A member of this family
of distributions is the Student’s ¢ distribution which seems to be both empirically
appropriate (as shown by the review of empirical literature) and theoretically
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appropriate since Student’s ¢ distributed returns are completely specified by the
mean and variance and is closed under linear transformations.

Notes

1. This section focuses on parametric dynamic heteroskedastic models. There is also a vast
influential literature on non- and semi-parametric models that attempt to capture the
stylized facts of speculative prices. Examples of nonparametric model estimation include
for instance kernel regression, orthogonal series expansion, artificial neural networks
(see Gourieroux and Monfont, 1992; Pagan and Schwert, 1990, inter alia).

2. There is a large number of univariate ARCH parameterizations based on certain
modifications of the initial ARCH model, such as the non-linear ARCH, quadratic
ARCH, asymmetric ARCH, threshold ARCH, structural ARCH and switching ARCH
(see, for instance, Bollerslev ez al., 1994). Moreover, (G)ARCH in mean models specify
expected returns as a function of conditional volatility. The paper does not make an
attempt to evaluate empirically every single ARCH model. Instead the focus of the
paper is in dealing with the core of these models (i.e. the ARCH and GARCH
parameterizations).
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