
 

 

 
 
 

Non-parametric methods of option pricing 
 
 

Pawel Radzikowski 
 
 

Bertelsmann 
PawelR@aol.com 

 
 
 ABSTRACT 
 
Non-parametric and computational methods of option pricing have recently attracted attention of researchers.  These 
typically include highly data intensive, model-free approaches that complement traditional parametric methods.  
Non-parametric and computational methods of option pricing typically include highly data intensive, model-free 
approaches that complement traditional parametric methods.  One characteristic of such methods is their 
independence of the assumptions of continuous-time finance theory.  It is their great strength and a weakness.  
Strength since it presumes no complex models from which prices are deduced, rather it induces the structure of the 
problem from data.  Weakness as there is no guarantee that the prices obtained from these models will conform to 
rational pricing.  The presentation reviews the current state of non-parametric option pricing, covering; parametric 
and non-parametric adjustments to Black-Sholes model and purely non-parametric methods. 
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 1. Problems with traditional parametric option pricing 
 
The Black-Sholes formula presented the first, pioneering tool for rational valuation of options.  It was a first option 
pricing model with all measurable parameters.  It is still constantly being adapted for valuation of many other 
financial instruments. However it and its derivatives show systematic and substantial bias e.g. Galai [1983].  To 
improve pricing performance, Black-Sholes formula has been generalized to a class of models referred to as the 
modern parametric option pricing models – outlined below.  
 
 
 
 2. The assumptions of Black-Sholes model 
 
The first approach to improve the pricing results is to relax and make more realistic the assumptions Black-Sholes 
model is based on. Black [1990] himself considered the assumptions of his model to be unrealistically simple.  
There are several assumptions, used to derive the original model Black, Sholes [1973], relaxation of which had been 
reported in the literature: 
 
No dividends  Relaxed by Merton [1973] 
No taxes nor transaction costs   
Constant interest rates  Merton [1973] 
No penalties for short sales   
Continuous market operation  Merton [1976] 
Continuous share price  Cox, Ross [1976] 
Lognormal terminal stock price return  Jarrow, Rudd [1982] 



 

 

 
In addition, Black-Sholes model assumes; continuous diffusion of the underlying, normal distribution of returns, 
constant standard deviation/volatility, and no effect on option prices from supply/demand. 
 
 
 2.1. Continuous diffusion of the underlying.   
 
Relaxation of this assumption produced various jump-diffusion models, e.g. Merton [1973], McCulloch [1987].  
Ball et. al [1985] concluded that Merton’s model improved Black-Sholes only for out-of-money options with less 
than a month to maturity.  A related, recent factor is the long-term memory in asset valuation that complicates model 
parameter estimation.  For example, the market crash of October 1987 significantly altered the markets to make 
option prices account for another similarly extreme event Evans [1996].  While October 1987 effect still persists in 
the market option pricing, most parametric model use historical data spanning time windows much too short to 
account for it. 
 
 
 2.2. Normal distribution of returns.   
 
In practice this assumption seldom holds.  Various methods of introducing distributions closer to real ones were 
investigated, e.g. Corrado [1997], Jarrow, Rudd [1982], Brown [1997].  It appears that the deviations from normality 
are more complex that these investigated and attempts to introduce a more realistic return distribution are not yet 
successful Bates [1996]. 
 
 
 2.3. Constant standard deviation/volatility.   
 
This assumption too is only a very rough approximation of reality.  For example, volatility of SP500 for period 
1857-1987 varies between 2% - 20% a month Schwert [1989].  The consequence of this realization is a series of 
model of volatility.  The first type of models assume a deterministic explanation of volatility in terms of: constant 
elasticity of variance (CEV), displaced-diffusion or treat option as a compound option on the value of the firm.   
 
For the CEV option-pricing model: 
 

dS = φφφφSdt+σσσσS p-1 dWs  where  0<p<1 
 

S is the underlying price, W is the Wiener process, φφφφ is the drift and σσσσ the diffusion.  CEV model is intended to 
model observed negative correlation between the underlying’s price and it’s volatility. Beckers [1980], Gibbons et 
al. [1988] estimated CEV parameters on stock prices from 1962-85.  MacBeth and Merville [1980]  found CEV to 
be more accurate than the Black-Scholes model.  However, there are two problems with CEV model; CEV option 
prices will approach either zero or infinity in the long run, and CEV model allows a positive probability of an 
underlying’s price going down to zero (which makes it unsuitable for index pricing where this seems highly 
unlikely).   
 
Compound option model derives the negative relationship between stock option price and volatility from capital 
structure of the firm.  The stock is considered a call option on the value of the firm.  Accordingly, a call option on 
the stock is an option on an option.  
 
Displaced-diffusion model derives the relation between volatility of the stock return and the stock price Rubinstein 
[1981].  This model assumes that volatility and underlying price are positively correlated.  MacBeth and Merville 
[1980] found it more accurate than CEV model. 
 
Deterministic models offer a promise of: reflecting exactly the empirical smiles Bates [1996], capturing the 
empirical regularities like clustering of volatilities, correlation between volatility and underlying.  In addition, under 
such models markets are dynamically complete so derivative securities can be priced using no-arbitrage arguments 
without need for general equilibrium and risk-premium models Burashi et al. [1999].  However in literature, specific 
deterministic models are simplistic and fail to deliver on much of their promise Lajbcygier [1999a]. 
 



 

 

 
 
 3. Stochastic volatility models 
 
There are several reasons for the interest in stochastic volatility models.  The math for stochastic volatility option-
pricing models is an extension of conventional option-pricing mathematics.  In principle, such models can explain 
option-pricing biases.  And, finally, research has shown that volatility explains more of option prices than other 
stochastic variables, such as interest rates. 
 
Bivariate diffusion Both underlying’s price and volatility are diffusions.  Works in this area include; Hull, White 
[1987], Scott [1987], Wiggins [1987]. In Stein, Stein [1991] it is assumed a zero correlation between volatility and 
underlying.  Heston [1993] extended the work on non-zero correlation and derived a closed form formula for option 
prices.  Over time, it became apparent that the complexities of stochastic volatility models often result in problems 
chosen for analysis for their are tractability, and less for their ability to well explain an empirical volatility process.  
Additionally such processes cannot explain extremely large implied volatility values observed in the market Gallant 
et al. [1997], e.g. in currency market Bates [1996]. One promising recent approach to enhance bivariate model, 
introduces a functional dependency of a suitable form between underlying and volatility processes, and calculates 
from it correction factors to Black-Sholes prices. Basu [1999] 
 
Bivariate Diffusion with Jumps These models are intended to explain the significant negative skew of implied return 
distributions observed after the 1987 stock market crash.  Volatility models alone attribute the skew to the tendency 
of volatility to fall as stock market rises.  Jump models see the skew as result of fears of another crash.  Also, 
volatility models predict a direct relationship between skewness and option maturity – with little skewness for short 
maturity options.  On the other hand, jump models assume finite volatility shocks that are independently distributed 
and predict inverse relationship between skewness and maturity – with little skewness for long maturity options.  
Combining the two models Bates [1997] finds that actual, flat-to-declining relationship declines more slowly than 
that predicted by jump model, and the empirical data lie somewhere in between both models’ prices.  
 
Trivariate Diffusion: Underlying, Volatility and Interest Rates A first such model was presented by Bailey et al. 
[1989]. Amin et al. [1992] added a systematic component in the stock returns. Saez [1997] evaluated the 
performance of trivariate models and concluded that they generally overpriced near-the-money options and 
underpriced all other.  The only significant difference between trivariate and Black-Sholes prices was in near-the-
money options. 
 
Supply/Demand Effect Most of work on modern parametric option pricing assumes that the bias of the conventional 
parametric option-pricing models can be explained by correct specification for the underlying process.  However. 
Heynen [1994] concludes that observed smile patterns cannot be explained on by alternatively specified asset 
processes.  Including supply/demand into model Follmer et al. [1986], Schweizer [1991] leads to option price biases 
similar to market ones.   
 
 
 
 4. Problems with modern parametric option pricing 
 
Modern parametric option-pricing models were expected by many to: 
 
• Be well-specified, 
• Consistently outperform other models, 
• Be statistically consistent with underlying asset return dynamics, 
• Provide a statistical theory of option pricing error, and 
• Be elegant and not difficult to estimate 
 
They failed to deliver. Arguably Lajbcygier [1999b], generalizations to Black-Sholes didn’t succeed and the 
resulting models are too complex, have poor out-of-sample performance, and use implausible and/or inconsistent 
implied parameters. While parametric models provide internal consistency, they do not out-perform simplistic 
approaches out-of-sample.  Even the most complex modern parametric models are imperfect and are outperformed 



 

 

by simple, less general models.  They often produce parameters inconsistent with underlying time series and inferior 
hedging and retain systematic price bias they were intended to eliminate Bakshi [1997], Bakshi [1998]. 
 
 
 
 5. Naïve smile models 
 
Several models, popular with traders do not rely on theoretical arguments.  One approach, relative smile prediction, 
states that implied volatilities of a shorter-term option equal volatilities of a corresponding longer-term option with 
the same moneyness ratio.  In the absolute smile prediction, a short-term option with given strike price has an 
implied volatility equal to corresponding longer term option with the same strike price. Jackwerth and Rubinstein 
[1998] showed that implied volatility smiles can describe the relationship between; 
 
• Option prices at the same point in time and the same time to expiry but different strike prices,  
• Option prices at the same point in time and the same strike prices but different time to expiry, 
• Option prices with the same strike price and time to expiry but at different points in time, and 
• Option prices at the same point in time and the same strike price and time to expiry but with different 

underlying assets. 
 
According to Jackwerth and Rubinstein [1998] the ultimate objective is to find a single model that can explain all 
four relationships simultaneously.   Based on series of tests applied to variety of models, they conclude that naïve 
approaches are consistently the best, stochastic deviation models are next best, then there are deterministic volatility 
models and finally the traditional parametric models. 
 
 
 
 6. Non-parametric option-pricing models 
 
Prompted by shortcomings of modern parametric option-pricing, new class of methods was created that do not rely 
on pre-assumed models but instead try to uncover/induce the model, or a process of computing prices, from vast 
quantities of historic data.  Many of them utilize learning methods of Artificial Intelligence.  Non-parametric 
approaches are particularly useful when parametric solution either; lead to bias, or are too complex to use, or do not 
exist at all.   
 
 
 
 7. Model-Free Option-Pricing 
 
The purest version of non-parametric option-pricing methods, are model-free methods.  They involve no finance 
theory but estimates option prices inductively using historical or implied variables and transaction data.  Although 
some form of parametric formula usually is involved, at least indirectly, it is not the starting point but a result of an 
inductive process.  There are several methods in this group: 
 
Model-free option pricing with Genetic Programming (GP) In a version most closely following its biological 
inspiration, a model is represented by a (long) bit string, whose parts are interpreted as coefficients of certain 
computational process or an option-pricing formula.  A set of bit-strings, individuals/option-pricing processes, is 
then subjected to an iterative process that eliminates the worst performing ones.  Surviving bit-strings are mutated 
(having some bits flipped at random) and crossed-over, i.e. creating new bit-strings by randomly selecting bits from 
two (or more) others.  In some approaches, the length of bit-strings is extended on occasion, by adding at random a 
new term/component to the process.  The mapping of bit-strings into option-pricing processes determines the space 
within which the best process is selected by Genetic Programming.  A version of GP represents its process space as 
a tree and uses a heuristic walk over this tree, instead of random mutation, to find the best pricing method.  An 
example of work from this category is Keber [1998] which found a GP solution for American put pricing, to be 
better than any analytical approximation.   
 
Model-free oprion-pricing with kernel regression include ‘smoothers’ – sophisticated processes of averaging data to 
reduce error, Hardle [1993]. Ait-Sahalia et al. [1995]. Found that kernel methods can provide accurate pricing.  Use 



 

 

of kernel methods for American option pricing with stochastic dividends and stochastic volatility was shown to be 
consistently more accurate than conventional models. 
 
Model-free option-pricing with Artificial Neural Networks (ANN) Malliaris and Salchenberger [1993] trained an 
ANN that included amongst inputs; a same-day, at-the-money implied volatility, the underlying price and the option 
price lagged by a day.  This ANN was reported to outperform Black-Sholes for out-of-money options but not for the 
in-the-money options.  In another  work Hutchinson et al. [1994] used historical volatility over a 60-day window 
with similar conclusions regarding pricing performance of SP500 options.  Qi and Maddala [1995] replaced 
volatility with previous day’s open interest.  Hanke [1997] used ANN for assets whose volatility follows a GARCH 
process.  No exact option-pricing model exists for GARCH, however ANN can learn the pricing function very 
accurately. Anders et al. [1996] compared implied and historical volatilities as ANN input variables and found the 
use the former  to result in much more accurate pricing.  They also used a statistical inference White [1989] to prune 
not-significant connections.  Galindo [1998] found ANN to consistently outperform multivariate regression 
techniques. 
 
ANN option-pricing was shown able to outperform conventional techniques in many different markets.  The two 
problem areas are;  
• ANN’s inability to model deep-in-the-money options, due to infrequent transactions in that area, and 
• Shortest maturity/at-the-money options due to discontinuity of transactions in that region. 
 
 
 
 8. Non-parametric approaches 
 
The independence of model-free approaches from any finance theory means prices produced by them may not 
conform to rational pricing and/or may not capture restrictions implied by arbitrage Ghysels [1997].  To improve 
model-free approaches in this respect, needed constraints have to be introduced Barucci [1997].  There are several 
ways used to enforce rational pricing into model-free pricing; 
 
The Equivalent Martingale Measure (EMM) adjusts prices to reflect a preference-free, risk-neutral market.  
Campbell et al. [1997]  In risk-neutral economy all assets must earn the same return.  Under the risk-adjusted 
probability distribution the stock price follows a Martingale (a stochastic process where the best forecast of 
tomorrow’s price is today’s) and is arbitrage-free. 
 
Non-parametric adjustments to Black-Sholes  estimate a portion of the option-pricing model non-parametrically 
while retaining the conventional option-pricing framework to guarantee rational-pricing. 
 
Generalized Deterministic Volatility estimates unknown volatility either parametrically or non-parametrically and 
inserts this estimate into a conventional model.  The three sample approaches in this category are: 
 
• Implied Binomial Tree Rubinstein [1994], Shimko [1993], 
• Generalized Deterministic volatility functions Dumas et al. [1996], and  
• Kernel approach Ait-Sahalia te al. [1998] Gourieroux et al. [1994] 
 
Generalized volatility approaches have their costs and benefits.  The implied tree approach for example can help 
with estimation of exotic, path dependent options where no analytical formula exists. 
 
 
 
 9. Conclusion 
 
Since no perfect option-pricing method was found yet, the interest in finding one continues unabated.  There a host 
of conflicting criteria a perfect option pricing should satisfy; it should reliably out-perform competing methods, it 
should be simple, elegant.  It should provide no arbitrage, rational pricing.  It should be well defined and validated… 
 
The traditional models of the Black-Sholes family show biases and their assumptions are unrealistic.  The attempt to 
relax their assumptions often leads to implausible values of implied parameters.  The complementary non-parametric 



 

 

approach, where no model is presumed but prices are induced from historic data, doesn’t guarantee rational, 
arbitrage-free prices unless suitable constraints are added.  The ideal may be in between, in hybrid or semi-
parametric models combining both approaches. Whether such ideal method can ever be found, the quest produces 
much of very insightful research advancing our understanding of valuation of many financial instruments. 
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