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A hybrid neural network is used to predict the difference between the conventional option-pricing model
and observed intraday option prices for stock index option futures. Confidence intervals derived with
bootstrap methods are used in a trading strategy that only allows trades outside the estimated range
of spurious model fits to be executed. Whilst hybrid neural network option pricing models can improve
predictions they have bias. The hybrid option-pricing bias can be reduced with bootstrap methods. A
modified bootstrap predictor is indexed by a parameter that allows the predictor to range from a pure
bootstrap predictor, to a hybrid predictor, and finally the bagging predictor. The modified bootstrap
predictor outperforms the hybrid and bagging predictors. Greatly improved performance was observed
on the boundary of the training set and where only sparse training data exists. Finally, bootstrap bias
estimates were studied.

1. Introduction

Conventional option-pricing modeling is founded on

the seminal work of (Black and Scholes, 1973).

Claims that the Black-Scholes valuation model no

longer holds are appearing with increasing and

alarming frequency (Dumas et al., 1996; Bates,

1997a). Persistent, systematic and significant option

pricing biases exist. This work is concerned with im-

proving the option-pricing accuracy of the conven-

tional option-pricing approach.

The failure of the conventional model has mo-

tivated a new ‘modern’ option pricing literature de-

termined to reconcile these option-pricing anomalies.

Researchers have explored a number of directions.

The underlying assumptions of the Black-Scholes

model have been systematically generalised. Extend-

ing conventional analytical approaches by incorpo-

rating stochastic option pricing parameters (other

than underlying returns) has been a natural place to

begin (Hull and White, 1987; Johnson and Shanno,

1987; Ball, 1994). Considering market frictions (such

as transaction costs) has also been explored. Whilst

generalising the underlying assumptions is obvious it

often leads to intractable mathematics and compli-

cated parameter estimation. In fact, (Bates, 1997b)

claims that “most postulated processes can be ruled

out a priori as inconsistent with observed . . . biases.”

These difficulties have motivated different direc-

tions. When developing their model (Black and

Scholes, 1973) knew that price return distributions

were not lognormal, however they decided to use

this assumption for the sake of analytical tractability.

Option-pricing theory permits the estimation of the

underlying distribution. This can be used to price

options in a very intuitive manner. However, the

approach has its problems. A prior distribution is

required (Rubinstein, 1994). The empirical underly-

ing distribution can only have positive probabilities.

The tails of the distribution can be difficult to es-

timate due to sparse data. The method has been

shown not to work well out-of-sample (Dumas et al.,

1996). Market practitioners often think in terms of
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implied volatility. Therefore, modeling the implied

volatility is another intuitive approach (Ncube, 1996;

Derman et al., 1996; Heynen, 1994a; Ait-Sahalia and

Lo, 1995). Whilst intuitive, the approach often as-

sumes that the volatility is stationary. In general,

this is not true.

Those approaches that hold the most promise

are those which are simplest and make minimal as-

sumptions. The hybrid approach is one such ap-

proach. The hybrid option pricing approach pre-

dicts the residuals between conventional model price

and actual transaction price using an artificial neural

network (ANN). These residual predictions are used

to augment the optimal conventional option-pricing

model out-of-sample. This work shows that sta-

tistically and economically significant out-of-sample

pricing performance is possible using the hybrid

neural network approach.

Re-sampling techniques are used to:

• estimate hybrid confidence limits which identify

profitable trading strategies;

• consider methods of bias reduction by using a

novel combination of bootstrap and bagging;

• study the quality of the hybrid model by estimat-

ing hybrid model bias as a function of option input

parameters.

A number of similar approaches have been at-

tempted. The most similar is (Gultekin et al., 1982),

who modeled the residuals with linear regression for

Chicago Board Options Exchange (CBOE) call op-

tions during 1975–1976. They found statistically sig-

nificant out-performance when modeling the residu-

als. More recently, (Jacquier and Jarrow, 1996) used

a Bayesian approach for modeling the residuals for

options transacted on the US share Toys R Us from

December 1989 to 1994. They found that the Black-

Scholes model performed well after taking into ac-

count model specification errors.

This paper is organised into six sections.

Section 2 provides all the necessary finance required

for an understanding of the work. Section 3 intro-

duces the hybrid neural network approach. Section

4 utilizes bootstrap confidence limits in static op-

tion trading strategies. Section 5 introduces a novel

mixture of bootstrap and bagging to minimize model

bias. Finally, Sec. 6 examines the bias of the hybrid

model as a function of the option-input parameters.

2. Finance Background

2.1. Futures and options

A futures contract is an obligation to either buy or

sell a specific commodity — known as the underly-

ing — at an agreed price at some time in the future.

Futures have an expiry time. At expiry the holder

of the future must either buy or sell the underlying

at the price specified in the futures contract. The

futures market is a no net gain market. For each

investment there will always be an equal and op-

posite investment. This implies that for every dol-

lar that one investor makes, another investor, who

took the opposite trade makes an equal and opposite

loss.

Stock market indices are designed to reflect over-

all movements in a large number of equity (i.e. share)

securities. The performance of an equity index is im-

portant because it represents the performance of a

broadly diversified stock portfolio and gives insights

into the broad market risk/return profile.

Index futures are contracts that commit the user

to either buy (go long) or sell (go short) the stocks in

the index at the currently determined market price

at some point in the future. If the investor believes

the index to be going down he should sell/go short.

If, on the other hand, the investor believes that the

index is going up he should buy/go long.

Whereas futures are the obligation to buy or sell

the underlying at a particular price in the future,

options are the right (not the obligation) to buy or

sell the underlying at a particular price in the fu-

ture. There are two types of options analogous to

long/short futures. The right (not the obligation)

to buy is a call. The right (not the obligation) to

sell is a put. An investor who uses his right to buy

or sell the underlying is said to have exercised the

option and takes delivery of the underlying at the

price specified in the option contract — the exercise

or strike price. For a call option, if the underlying is

greater than the strike price the option is said to be

in-the-money. If the underlying price is less than the

strike price the option is said to be out-of-the-money.

If the underlying price is similar to the strike price

the option is said to be at-the-money. An option, like

a future, has a lifetime. The option has a price or

value known as a premium. After an option expires

its premium is worthless and the option cannot be
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exercised. An option on a future is the right but not

the obligation to purchase the future at the strike

price before the expiry.

One final distinction is between American and

European style options. American style options can

be exercised at any time prior to expiration, whilst

European style options can only be exercised at

expiry.

2.2. The Australian options on

futures market

Stock market indices are designed to reflect the over-

all movement in a broadly diversified equity port-

folio. The Australian Stock Exchange (ASX) All

Ordinaries Share Price Index (SPI) is calculated

daily and represents a market value weighted index of

firms that consist of over 95% by value all firms cur-

rently listed on the ASX. A future written on the SPI

is traded on the Sydney Futures Exchange (SFE).

The SFE is the world’s ninth largest futures market

and the largest non-computer traded market in the

Asia-Pacific region. The 1995 average daily volume

for SPI futures was 9,795 contracts.

The SPI futures option is written on the SPI

futures contract. Exercise prices are set at intervals

of 25 SPI points. Options expire at the close on the

last day of trading in the underlying futures and may

be exercised on any business day prior to and includ-

ing expiration day. Upon exercise, the holder of the

option obtains a future’s position in the underlying

future at a price equal to the exercise price of the

option. When the future is marked to market at the

close of trading on the exercise day the option holder

is able to withdraw any excess. To give an indication

of liquidity, in 1995 there were, on average, 3,100 SPI

options on futures contracts traded daily.

The role of the clearing-house is to guarantee that

investors can meet their trading obligations. A sys-

tem of cash deposits known as margins is used by the

clearing house to guarantee that traders can meet

their obligations.

The SFE is peculiar in that both the option writer

and the option buyer must post a margin with the

clearing-house. The option buyer does not have to

pay a full premium to the writer. Instead, a portion

of the premium from both the buyer and the writer

is deposited with the clearing-house. The clearing-

house provides the writer with credit for any market

move in his favor and vice versa. The full premium

may not be given to the writer until the option is

exercised or expires (Martini and Taylor, 1995).

2.3. Conventional option pricing

for the SFE

(Black and Scholes, 1973) created parametric models

to price call options using the assumption that the

underlying follows a random diffusion process.

The SFE uses a system of deposits and margins

for both long and short option positions which re-

quires a modification of the standard diffusion pro-

cess, see (Martini, 1995). This modification reflects

the fact that no interest can be earned on a premium

that has not been paid fully up front. Essentially the

interest rate, r is set to zero in the Black solution.

The relative option price or premium, C/X,a is given

by the modified Black model as

fMB(x) = (F/X)N(d1)−N(d2) (1)

where d1 = (In(F/X) + (σ2/2)(T − t))/σ
√
T − t,

d2 = d1−σ
√
T − t, F is the underlying futures price,

T − t is the time to maturity (in years), σ is the

Fig. 1. The modified Black option-pricing surface.

aThe use of F/X and C/X in place of F , X and C has been used see (Hutchinson et al., 1994) and (Merton, 1973). Although the
use of this result has been criticized by (Ait-Sahalia and Lo, 1995), because it assumes that the volatility and underplying price
are independent, it is still used because it offers the ANN information about strike bias in an explicit manner. It was shown in
(Lajbcygier and Flitman, 1996) that the use of ratios in this manner improved results slightly and is argued that the ratio approach
helps the ANN to learn the moneyness bias, that is the bias due to F/X.
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standard deviation of the underlying, (·) is the stan-

dard normal cummulative distribution function, and

the set of inputs are denoted by x = (F/X, T−t, σ).

The modified Black pricing surface is shown in

Fig. 1. The modified Black model is the accepted

standard at the Sydney Futures Exchange; all mar-

gin requirements imposed by the exchange are de-

rived from it.

2.4. Weighted implied standard

deviation

Only one option pricing parameter is not known ex-

actly prior to option transaction time — the stan-

dard deviation, σ. Prior to the option transaction

this cannot be known, an estimate is required.

After the transaction, it is possible to determine

the standard deviation implied (ISD) by the option

transaction price.b

There are a number of ways of obtaining an esti-

mate of the standard deviation:

• model the ISD using a time seriesc approach.

• choose the standard deviation that minimizes the

option pricing error from previous transactions.d

• calculate a weighted average of ISDs from previous

transactions — Weighted Implied Standard Devi-

ation (WISD).

WISD’s are considered the optimal standard devia-

tion estimation approach in this work.

It is possible to consider any individual ISD as

consisting of:

• primarily, the market’s realized standard deviation

predictione

• less significantly, a combination of bias (due to

moneyness and maturity)f

• noise (due, for example, to bid-ask spread, sup-

ply/demand).

The reason that WISD’s are considered the optimal

standard deviation approach is because they can mit-

igate the option pricing biases, minimize the effect of

noiseg and therefore obtain the most accurate esti-

mate of the markets standard deviation.
(Figlewski, 1997) has criticized the use of

WISD’s. He argues that suppressing ISD differences

across different options by an averaging process can-

not be appropriate when systematic and persistent

option pricing biases exist. Figlewski argues that

the biases imply that the market is using a different

option-pricing model.
Consistent with Figlewski’s argument a new

option-pricing model is estimated in this work (see

Sec. 3). Nevertheless, an estimate of standard de-

viation is required. Although WISDs provide the

optimal standard deviation estimation approach, it

is not clear which WISD in particular is best. There

are three separate requirements which determine

the choice of optimal WISD. The first is that the

choice of WISD must be one that minimizes option-

pricing error.h The second is that the WISD provides

bThe implied standard deviation (ISD) of options on futures contracts is defined as the standard deviation which equates the
modified-Black model price with the observed option price given (C/X, T − t, F/X).
cIt is also possible to forecast future market implied volatility using time series models. In this work, a WISD approach is preferred
to a time series approach for the forecasting of standard deviation, for numerous reasons: First, the AO SPI options on futures are
reasonably illiquid, so few transactions are available to model ISD; second, strong hourly auto-correlation and mean reversion has
been noted on illiquid option markets such as the Spanish IBEX 35 by (Refenes and Miranda, 1996) and on the Paris stock exchange
by (Jacquillant et al., 1993). In such markets liquidity is thin and buy/sell imbalances have an accentuated effect. Finally, (Roll,
1984) has shown that that because each transaction must take place at either the bid or the ask level, random movements between
the bid-ask–‘bid-ask bounce’ cause significant negative serial correlation. Nevertheless, previous work has attempted not only to
make comparisons between historical standard deviation time series modeling (Park and Sears, 1985) but also to model the ISD
using various time series techniques (Christensen and Prabhala, 1994; Diz and Finucane, 1993; Refenes and Miranda, 1996; Engle
and Mustafa, 1992).
d(Martini and Taylor, 1994) show that this approach cannot work for the SFE options data because there are not enough valid
transactions.
eThe underlying’s realized stardard deviation is the standard deviation calculated over the life of the option.
fThe moneyness and maturity biases refer to the empirical fact that there exist persistent and systematic biases which are a function
of the ratio of the underlying price/strike price and time to maturity of the option respectively.
g(Figlewski, 1997) argues that the bid-ask spread can have a large effect on ISD. Furthermore, he argues that WISD’s mitigate
bid-ask spread effects due to the consideration of options on both the bid and ask side of the spread used in the averaging process.
h“. . . the implied volatility need have little to do with the best possible prediction for the price variability of the underlying asset
from the present through option expiration, while it has everything to do with the current and near term supply and demand . . . .”
(Figlewski, 1997)
iIt is possible to apply arbitrage arguments, which imply that they must be identical. (Figlewski, 1997) argues that arbitrage
arguments do not necessarily hold because option arbitrage strategies are particularly prone to being expensive and risky.
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an accurate predictor of realized underlying stan-

dard deviation.i Finally, we desire that the WISD

must be a plausible predictor of realized standard

deviation.j

Those WISDs that weigh at-the-money ISDs most

heavily fulfil each of the above requirements. Those

WISD schemes which give more weight to at-the-

money options tend to be the most accurate for price

prediction. The reasons for this accuracy are that

these options trade with much greater liquidity than

others and therefore their ISD’s contain more reliable

information; also, at-the-money option premiums are

most sensitive to changes in the standard deviation

(Figlewski, 1997). Previous studies which show that

at-the-money WISD’s are optimal for price predic-

tion include (Turvey, 1990) and (Martini and Taylor,

1994).

Those WISD schemes that give more weight to

at-the-money options tend to be the most accu-

rate for realized standard deviation prediction too.

(Corrado and Miller, 1996a) prove theoretically that

at-the-money WISD’s are the most efficient (and also

‘nearly’ unbiased) predictors of realized standard de-

viation. This is verified by various empirical studies

(Canina and Figlewski, 1993; Chiras and Manaster,

1978).

Finally, at-the-money WISDs provide plausible

realized standard deviation estimates. This is not

true of WISDs which use ISD estimates from those

transactions which are have the most similar money-

ness to the one under consideration. These WISD’s

provide non-unique realized standard deviation esti-

mates. Therefore, this type of WISD is not a plau-

sible predictor of realized standard deviation.

A number of WISD’s are compared empirically

in (Lajbcygier, 1998). Not surprisingly it is shown

that an at-the-money WISD–DERISD, is the optimal

WISD. DERISD = σ̂imp = (
∑K
i=1 σ

2
imp,iΛ

2
imp,i)

1/2/

(
∑K
i=1 Λ2

imp,i)
1/2 and σimp,i are the ISD’s from K

previous same dayk options and Λ = ∂fMB(x)/∂σ

(i.e. the sensitivity of the option price with respect

to the standard deviation). Same day intraday trans-

action data are used for the calculation of the WISD.l

The input vector used in Eqs. (1), (2) and the

rest of this paper is changed to reflect this estimated

data to x = (F/X, T − t, σ̂Derisd).

3. The Hybrid-Artificial Neural

Network Approach

Motivated by the good initial fit to the data pro-

vided by the modified Black model, we use a hybrid

approach in which non-parametric regression tech-

niques model the residuals between the option trans-

action prices and the modified Black model prices.

The fundamental advantage of non-parametric

regression is that it makes very few assumptions

about the unknown function to be estimated.

jThe (Black and Scholes, 1973) model assumes constant standard deviation. This cannot be known a priori, a forecast must be
made. Either historical standard deviation, implied standard deviation (ISD) or a combination of both must be used to provide
a forecast. Historical standard deviation is calculated using an arbitrary rolling window of the log returns of the underlying. ISD
is defined as the standard deviation that equates the conventional model price with the observed model price. The ‘pricing ISD
hypothesis’ states that the ISD is a better predictor of option price than historical standard deviation. This is supported by most
empirical studies. The ‘realized ISD hypothesis’ states that ISD is a better predictor of realized standard deviation than historical
standard deviation. This hypothesis is not supported clearly by the empirical option pricing literature. The early literature found
ISD to be better at forecasting future standard deviation (Latane and Rendleman, 1976; Chiras and Manaster, 1978). However,
(Canina and Figlewski, 1993) found evidence against the hypothesis for S&P 100 options (although additional research by (Geske
and Kim, 1994) and (Christensen and Prabhala, 1994) cast doubts on (Canina and Figlewski, 1993) results). (Day and Lewis, 1992a),
(Fleming et al., 1995), (Jorion, 1995), (Xu and Taylor, 1995) and (Guo, 1996) all provide evidence in favor of the hypothesis. Overall
the empirical literature supports the ISD hypothesis. Therefore, in this paper, we also use ISD. However, due to this ambiguity
historical volatility has also been considered elsewhere (Lajbcygier, 1998).
kOthers have suggested the use of intraday data. (Figlewski, 1997) states that it is possible to “extract(ing) more information from
a set of option prices by averaging across multiple intraday observations on the same options, in order to reduce the impact of
price noise from the bid-ask spread,” (Brenner and Galai, 1981) also found that additional forecasting power can be achieved by
calculating WISD’s intraday. We are not aware of any other study which utilizes same day WISD. There are strong intuitive reasons
for using the same day ISDs to calculate WISDs. Firstly, overnight effects in overseas markets can be quite large. Secondly, it seems
sensible to use the most up-to-date ISD estimate rather than to rely on the previous days. Finally, T − t will be exactly the same for
each option since the options are separated by maturity date — this would not be the case if the previous day’s options were used.
lIn principle bid-ask spread mid-point prices should be used and not transaction prices as in this study. However, as (Figlewski,
1997) has noted “This is not often done, however, due to lack of intraday bid and ask price data. The value of using such quotes when
they are available also depends upon the quality of the data. While transactions are real market events, in the absence of trades,
posted quotes may become stale and no longer representative of where the market really is. Thus attempting to eliminate noise
by employing bid and ask quote data may simply substitute one form of noise for another, without producing much improvement
overall.”
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(Lajbcygier and Flitman, 1996) has compared ar-

tificial neural networks (ANN’s) with a method

from each of the general classes of non-parametric

regression methods: global parametric methods

(i.e. linear regression), local parametric methods

(i.e. kernel regression) and adaptive computation

methods (i.e. projection pursuit regression). ANN’s

were among the most accurate regression techniques

compared.

The relationship between the option input

variables (i.e. F/X, T − tm,σn
Derisd) and the resid-

uals shows that there are persistent and systematic

(weakly) nonlinear biases. Furthermore, weak inter-

actions between the input variables are shown to ex-

ist. ANN’s are eminently suitable for modeling such

functions.

The hybrid model can be depicted mathemati-

cally as follows:

fhybrid(x) = fMB(x) − fNN(x) . (2)

Hybrid neural networks of the form in Eq. (2) were

shown to outperform hybrid linear models, for a sim-

ilar data set, by a factor of two in (Lajbcygier and

Flitman, 1996a).o

Intraday call option transactions were considered

from Jan 1993 to December 1993. The first half of

the data, January through June, was used as an esti-

mation set and the rest was reserved for out of sample

testing.

A three layer, fifteen hidden unit neural network

was estimated using backpropagation with a 20%

cross validation set used for network selection. What

follows is an analysis of the ANN-hybrid output.

The estimated hybrid option-pricing model is shown

in Fig. 3–5. They plot the output of the Modified

Black hybrid ANN as a function of F/X and T − t.
Figure 3 is the ANN output surface for the standard

deviation equal to 0.11 — the lowest standard devi-

ation for the in-sample data, while Fig. 5 is the same

surface for standard deviation equal to 0.28 — the

highest standard deviation in the in-sample set.

In general, the surfaces are complicated, smooth

and imply consistent mis-pricings in the conventional

models of between 2 and −2 points (approximately

$50 and −$50 per option respectively, if we assume

a strike of X = 2000).

The most striking feature of the hybrid ANN

output at all standard deviations is the ridge at

F/X ≈ 1. This divides the options into those that

have positive and negative value relative to the con-

ventional option-pricing model (see Table 1).

This is consistent with both the (Rubinstein,

1994) and (Derman and Kani, 1994) studies of

F/X

C/XModified-
Black

T-t

σDerisd

-+

+

-

Fig. 2. Training for the ANN-hybrid.

mIn this paper, to mitigate maturity bias, the options were classed by time to maturity. Different implied volatilities were calculated
for different times to maturity. Weighted σimp’s are calculated only from options transacted on the same day.
nIt was decided to extract the nearest recent SPI futures price that was recorded before the time that the option was transacted.
This resulted in underlying values that in most cases were recorded only seconds before the option was transacted. If the underlying
future was transacted more than 60 seconds prior to the option, the option transaction was discarded.
oWhen using a neural network on its own to model a call option there exists considerable discrepancy from the conventional model
as T − t approaches zero (Lajbcygier et al., 1995), (Hutchinson et al., 1994). This is understandable because the conventional model
becomes less and less smooth as expiry draws near. Furthermore, when F/X = 1 there is a discontinuity. It may be difficult for the
artificial neural network to model the sharp discontinuity with smooth sigmoid functions. So a hybrid approach could provide better
results as the time to expiry draws near at F/X = 1 because the residuals are much smoother than the option pricing function.
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Table 1. Positive (+) value above conventional model, (−) value below conventional model.

Short Maturity (0–0.15) Long Maturity (0.15–0.3)

In the Money (0.9–1) + +

Out of the Money (1–1.1) +/− −

Fig. 3. Hybrid ANN output, standard deviation

σ = 0.11.
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0.13
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0

0.0005

0.001

ERROR
(C/X)

F/X

T-t

0.96

0.87

0.90

0.93

0.99

1.02

1.05

Fig. 4. Hybrid ANN output, standard deviation

σ = 0.2.

the S&P 500 CBOE futures options. (Rubinstein,

1994) conjectures that this bias is caused by in-

vestors’ fear of a repeat of the 1987 crash. The shape

of the hybrid surface is almost identical to the devi-

ations noted by (Corrado and Miller, 1996a) for the

S&P 500. This is quite remarkable given the different

markets.

0.02

0.07

0.13

0.19

0.25

0.31

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.96

0.87

0.90

0.93

0.99

1.02

1.05

ERROR
(C/X)

T-t

F/X

Fig. 5. Hybrid ANN output, standard deviation

σ = 0.28.

For low standard deviation (see Fig. 3), out of

the money short time to maturity options are valued

more highly than the conventional model. This low

standard deviation effect has not been emphasized

in prior studies.

It is interesting to compare and contrast Fig. 3

and Fig. 5 to ascertain the interaction between the

surface variables: F/X and T − t, and σ. No large

differences in the surfaces exist, but there are five

subtle changes. Firstly, the top flat region in Fig. 3

has extended and moved forward. Secondly, the top

flat region in Fig. 3 has shifted up. Thirdly, the bot-

tom of the surface near T−t equal to zero has moved

up. Fourthly, the region between the flat top and

the steep wall on the right of the surface is smoother.

Finally, the dip at F/X equal to 1.02 and T−t equal

to 0.07 in Fig. 3 has become shallower in Fig. 5.

4. Trading Strategies Based on

Bootstrap Confidence Intervals

The large majority of the research in option-pricing

involves finding a model that fits the empirical data.

Very little research has been done on generating the

confidence intervals of the option-pricing model. The

confidence intervals will allow both choosing between
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Fig. 6. Out-of-the-money option price premium versus F/X: The Modified Black pricing model falls within the confidence
intervals of the “hybrid” model. The option pricing parameters are T − t = 0.1, σ = 0.15, X = 2000.

Fig. 7. At-the-money option price premium versus F/X: In some regions such as F/X = 0.98 the two models are
distinguishable. The option pricing parameters are T − t = 0.1, σ = 0.15, X = 2000.
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option pricing models and deciding when a trade
should be executed.

Due to neural networks nonlinearity and struc-
tural complexity, classical statistical theory pro-
vides little help in estimating confidence limits.
(Chryssolouris, 1996) requires unrealistic and strong
assumptions (i.e. normal errors) to estimate confi-
dence limits for neural networks.

In this work, confidence intervals for option pric-
ing models are generated by bootstrap methods. For
an introduction to bootstrap methods see (Efron and
Tibshirani, 1993) or in the context of neural networks
see (Tibshirani, 1996), (LeBaron and Weigend, 1998)
or (Pass, 1993).

Given a total of n options in the data-set, i boot-
strap data sets are generated. Bootstrap data sets

Li = {(c(i)j , xj), j = 1, . . . , n} are generated by

c
(i)
j = f̂hybrid(x) + e

(i)
j where e

(i)
j are drawn ran-

domly with replacement from the empirical distri-
bution p(e) = n−1

∑
i δ(e − êi), and êi are the

observed residuals from initial hybrid model fit.
This is known as a “bootstrap residual approach”
(Tibshirani, 1996).p Predictors, f̂ (i)(x), are esti-
mated on the bootstrap data sets, Li, in the same
manner as the hybrid predictor. The bootstrap as-
sumption for confidence intervals is

(f(x)−f̂hybrid(x))2≈ 1

N−1

N∑
i=1

(f̂hybrid(x)−f̂ (i)(x))2

(3)
where f(x) is the true function, and N is the num-
ber of bootstrap data series simulated, in this case
30. (Tibshirani, 1996) used N = 20, he argues this is
a lower limit on the number of bootstrap replications
but necessary due to the complicated ANN model. In
Fig. 6, confidence intervals computed in (3) and cen-
tred at the hybrid predictor are shown for +/− one
standard deviation. Bootstrap and bagging predic-
tors are also plotted in Fig. 6 and will be discussed in
Sec. 5. The width of the confidence intervals varies
over the input space. In the region of at-the-money
options, Fig. 7 confidence intervals are much tighter
than for deep out of the money options. The modi-

fied Black predictor often falls outside the confidence
intervals. In these regions, confidence can be placed
in the hybrid predictors.

Bootstrap confidence intervals allow the identifi-
cation of option prices, which both appear profitable
and are outside the range of model uncertainty. Since
the confidence intervals vary over the input space of
the model trading positions will be confined to areas
of greater certainty.

Identification of profitable tradesq is not the only
use for better option pricing models. The process of
limiting exposure of a financial position to changes
in underlying assets is known as hedging and is de-
termined by the option pricing model. Hedges are
incorporated into the option trading strategy by buy-
ing a position in the underlying futures equal to
−∂fhybrid(x)/∂F , known as the “delta”, of the op-
tion position which allows a small change in the op-
tion price to be offset by a change in the future price.

Typical delta surfaces are shown in Figs. 8–11
for both the hybrid neural network and the mod-
ified Black model. The two models yield slightly
different deltas, which implies that different hedg-
ing strategies will be employed. The hybrid delta
surfaces are not nearly as smooth as the modified
Black delta surfaces. Wrinkles in the delta surface
are especially evident for delta approximately equal
to half. Furthermore, there exists for T−t very small
and F/X close to one a negative delta value. This
is unrealistic.r This is one drawback of using a neu-
ral network derived delta. It is negative whereas the
Modified Black model always has a positive delta. It
does not seem likely that an ideal model would have
a negative delta, so this appears to be an artefact
due to a limited amount of training data.

In the trading strategies employed below, a hedge
in the futures position is incorporated with each op-
tion position. This allows the profitability of the
strategy to be stressed, instead of the variability of
the underlying. The point is that a better hedge will
lead to less volatile results.

In Table 2, the profitability of various trading
strategies is shown. All trading strategies are based

pWe have assumed that the residuals are homogeneous and hence the residual variation at any x, can be described by the distribution
of all of the residuals.
qThere is a subtle problem with using same day transaction data to calculate WISD’s — the ‘spread selection bias’. The spread
selection bias (Phillips and Smith, 1980) occurs if the spread is large (as it is on the SFE) — then what appear as overpriced options
really trade on the ask part of the spread and what appear as underpriced options trade on the bid. This confounds economic tests
of option pricing models. However, because the WISD (i.e. DERISD) we used averages across previous same day trades this problem
is mitigated. (Park and Sears, 1985) use only the previous day’s transactions to mitigate the spread-selection bias, it is not clear how
this approach works. Perhaps, by utilizing all the trades over the entire previous days, the noise due to the spread is diminished.
Nevertheless, (Lajbcygier, 1998) has shown that the error in the option price is smaller when using the same day ISD’s.
r(Jacquier and Jarrow, 1996) insure that option prices must always be greater than zero by utilizing logarithms of the price however
even they do not consider the delta.
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Fig. 8. Hybrid Delta surface when standard deviation
σ = 0.11.
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Fig. 9. Hybrid Delta surface when standard deviation

σ = 0.28.
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Fig. 10. Modified Black Delta surface when standard
deviation σ = 0.11.
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Table 2. Trading profitability of the Hybrid and Modified Black based strategies. Incorporating
confidence intervals allows the Hybrid model performance to increase by nearly a factor of 10.
Note the poor performance of all Modified Black based strategies.

# of Trades Equity/# of Trades Var. Sharpe Ratio

Hybrid 449 17.69 382 0.0463

Hybrid + sigma 240 10.00 289 0.0346

Hybrid + 2 sigma 109 61.17 205 0.2984

Hybrid + 3 sigma 51 48.66 159 0.3060

Modified Black 478 −7.24 405 −0.0179

Modified Black + sigma 275 −41.38 275 −0.1289

Modified Black + 2 sigma 142 −3.45 142 −0.0147

Modified Black + 3 sigma 68 −75.63 68 −0.4170

on taking a position on options that are one point be-

yond the confidence limits of the hybrid model and

simultaneously employing a one-time hedge. One in-

dex point is a reasonable approximation for the costs

associated with crossing the bid-ask spread and ex-

change costs associated with undertaking the option

transaction (Gilmore, 1997). Since all the options ex-

pire on the same date, only a single equity for each
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model is quoted. The confidence intervals performed

as hoped. As one begins to trade outside the re-

gion of uncertainty, dramatic improvements in the

Sharpe ratio begin and stay.s The Sharpe ratio is the

standard measure of trading performance, it is the

(equity per trade/standard deviation) of returns and

is a useful metric because it penalizes risky strate-

gies. This is why a trading strategy based on the

Hybrid + 3 sigma is comparable to the Hybrid + 2

sigma which makes more equity per trade.

There is an eight-fold improvement in Sharpe ra-

tio performance between the Hybrid + sigma and

Hybrid + 2 sigma bands. The two sigma standard

error bands capture most of the trading opportuni-

ties associated with the hybrid model, which explains

why the Sharpe ratio performance does not improve

dramatically for Hybrid + 3 sigma. Note the failure

of the standard Modified Black strategy.

5. Bias Reduction with Bootstrap

and Bagging Methods

The hybrid model can suffer from bias induced by

the neural network approximation. Neural networks

can suffer from bias due to fitting noise in the train-

ing set. Classical statistical theory offers little in

producing bias estimates for neural networks. In-

stead bootstrap methods are utilized. Furthermore,

(Breiman, 1994) suggests using bootstrap aggregate

“Bagging” predictors to reduce bias. Averaging the

predictors derived from bootstrap simulated data

sets creates bagging predictors.t Bagging can give

substantial gains in accuracy and therefore reduce

bias. This is especially true of techniques which are

unstable (i.e. performance is dependent upon train-

ing set choice) such as neural networks (Breiman,

1994; Weigend, 1997).

f̂bag(x) = N−1
N∑
i=1

f̂ (i)(x) . (4)

The bias of the hybrid option-pricing model can be

estimated with bootstrap methods. The bootstrap

assumption is that the difference between the true

surface, f(x), and the hybrid predictor equals the

difference between the hybrid predictor and the bag-

ging predictor

f(x)− fhybrid(x) = fhybrid(x)− fbag(x) . (5)

The bootstrap assumption can be rearranged to form

a bootstrap predictor,

fboot(x) = f̂hybrid(x) + (f̂hybrid(x) − f̂bag(x)) . (6)

(Baxt and White, 1995) have used bootstrap bias

reduction in the past on medical statistics generated

by a neural network model. Equation (5) is only

an assumption, in practice a slight relaxation of the

bootstrap assumption given by

f̂φ(x) = f̂hybrid(x) + φ(f̂hybrid(x) − f̂bag(x)) (7)

where −1 ≤ φ ≤ 1 will result in greatly improved

predictors. Choices of φ = −1, 0, and 1, in f̂φ(x)

correspond to the bagging, hybrid, and bootstrap

predictors respectively. The most important aspect

of the bootstrap bias reduction is the movement of

the predictor in a direction away from the modified

Black model for out of the money options as shown

in Fig. 6. Similar behavior occurs for in the money

options. This is in agreement with the common be-

lief that the modified Black model underprices when

the option is deep either in or out of the money. The

opposite occurs for at-the-money options shown in

Fig. 7. Since the modified Black model is considered

to work well in this region, this bias reduction is also

acceptable.

From the plots in Fig. 12 the optimal choice of

f̂φ(x) is always between the hybrid model, φ = 0, and

the bootstrap predictor, φ = 1. For the bulk of the

out of sample data, the best choice of φ is between

0.3 or 0.4. However for the first month after the

training set in Fig. 12(a), the bootstrap predictor,

φ = 1, does the best. This is partially because of the

slow degradation of the network, as the training set

becomes more distant. It is also due to expiry dates.

During the five-month period in Fig. 12(b), a set of

options expires. During periods of expiry and low

volatility, the option price is fairly well determined

and this is reflected by the lower mean absolute error

for this period.

sIt was not necessary to adjust the cash-flows when calculating the sharpe ratio as it was assumed that most options expired on the
same day and the premium is paid upon option expiry.
tThe relationship between bagging and bootstrap was not made explicit by (Breiman, 1994). (Efron and Tibshirani, 1993), p. 125
provides the relationship.
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(a) (b) (c)

Fig. 12. The mean absolute error of f̂φ(x) is shown as a function of φ. (a) First month (b) Next 5 months (c) Deep out
of the money. The average out of sample performance suggests that a model between the “hybrid” predictor and the
bootstrap predictor is best. At the edges of the input space, shown in plot (c) the bootstrap predictor is best.
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Fig. 13. The bagging hybrid surface when standard de-
viation σ = 0.11.

Deep-in or out-of-the-money pricing is not impor-
tant when options expire, but is very important at
other times. Deep-in or out-of-the-money options
are also interesting because they exist at the edge
of the input space in the training set. No technique
is good in providing accurate estimates at the edge of
the training set. The neural networks sigmoid func-
tions usually level out and under/over shoot posi-
tive/negative trends. This behavior is even worse
in bagging predictors derived from the original hy-
brid network. The bootstrap assumption works very
well at the edge of the data set as exemplified by
Fig. 12(c). The bootstrap predictor does best in this
region.
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Fig. 14. The bagging hybrid surface when standard de-
viation σ = 0.2.

The best choice for φ will vary over the input
space of the predictor, out-of-the-money options are
more biased than other options. In addition, model
fits at the edge of the data set, as demonstrated by
the deep out of the money options, appear to suffer
from the most bias; in these areas the bootstrap pre-
dictor, φ = 1, is very good. The steady decline as
φ goes from 0 to −1 reflects badly on the bagging
predictor.

Breiman (1994) suggests that bagging on stable
estimation procedures is not a good idea. A closer
look at the data sets investigated by Breiman shows
that in every case a greater number of input vari-
ables are used for a comparable number of training
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Fig. 15. The bagging hybrid surface when standard de-
viation σ = 0.28.

samples. In addition, the function we are learning is
nonlinear but very smooth. Our results suggest that
for an well-approximated function, bootstrap bias re-
duction methods are preferable to bagging.

It is interesting to make comparisons between the
hybrid pricing surfaces (Figs. 3–5) and the bagging
pricing surfaces (Figs. 13–15). The surfaces are very
similar, however there are some subtle differences.
The main difference is that the bagging hybrid sur-
faces are shifted up — the errors are almost all above
zero. This is very interesting and quite unexpected.

6. Estimation of Bias Using
Bootstrap Techniques

The large majority of option pricing research
involves finding a model that fits the data. Very
little research has been done on generating bias
estimates for new models. The bias of an estima-
tor θ is the difference between the expected value
of the estimator and the true value of the parame-
ter Bias(θ) = θ − E(θ). If θ is the hybrid ANN the
Bias(Hybrid ANN) = fhybrid − fbag from Eq. (5).
The bias estimate is useful because it can show the
regions of input space in which the bias becomes se-
rious. In these regions, the estimator is poor and an
alternative estimator may be considered.

The bootstrap estimate of bias for a hybrid neu-
ral network as a function of F/X, time to maturity,
and a low implied volatility is shown in Fig. 16. For
this particular implied volatility, the neural network
is showing a large bias for in the money options that
are near maturity. In this region, there is a rela-
tively sparse amount of training data because op-
tions are typically written out-of-the-money. This
region is also at the edge of the training set because

0.87
0.96

1.05
0.02

0.07

0.13
0.19

0.25
0.31

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

BIAS

F/X

T-t

Fig. 16. Estimate of the bias using bootstrap techniques
at standard deviation σ = 0.11.

of its nearness to expiry and is showing some of the
poor generalization that often occurs at the edge of
the data with nonparametric regression techniques.
This observation motivates further work which shall
utilize the inherent option pricing model boundary
conditions and utilize a novel ANN architecture so
to constrain the ANN at the option pricing bound-
ary conditions (Lajbcygier, 1998).

7. Summary

A hybrid neural network was created to predict the
difference between conventional parametric models
and observed option prices. Bootstrap methods al-
lowed trading strategies to be developed which avoid
spurious trades due to incorrect model fits. Mod-
ified bootstrap predictors based on a weakening of
the bootstrap assumption for bias was used to com-
pare bagging, hybrid and bootstrap predictors. It
was concluded that somewhere between the hybrid
and the bootstrap predictor is best for this option-
pricing problem. Bootstrap methods for bias reduc-
tion was shown to give good results at the edge of
input space where good extrapolation is critical.
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