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Abstract

We use a neural network to non-parametrically estimate the market valuation function for

American put options with real data. The neural network valuation function is twice di�er-

entiable, and provides an instantaneous approximation of the American put option using a

set of multiple state variables. We use the neural network valuation function to form hedged

portfolios for American put options against changes in the stock price, the delta of the stock

price, and interest rate.



1. Introduction

One of the early successes in option valuation theory is the Black-Scholes valuation function,

which gives a closed-form solution to the values of European call or put options (see Black

and Scholes, 1973). This solution cannot, however, price options such as the American put

option, because with the American put option exercise prior to the date of maturity may

be optimal. As a result, the present discounted value of the option must be calculated at

each point in time until maturity, and the decision of whether or not to exercise the option

must be continuously modi�ed. Currently, no closed-form theoretical solution exists for the

valuation of the American put option.

Without a closed-form theoretical solution, various authors have devised approximation

methods to value the American put option. For example, Cox, Ross, and Rubinstein (1979)

and others assume that the underlying stock price follows a binomial process at discrete time

intervals. This results in a tree of possible stock values. The value of the option at each

node in the tree is is determined by using backward dynamic programming. The binomial

process approaches the true value of the option as the discrete time intervals approach zero

in length.

Brennan and Schwartz (1977 and 1978) use �nite di�erences to value the American put

option. This method is similar to the binomial approximation method in its assumptions

and implementation of backward dynamic programming. Both the binomial approximation

method and the �nite di�erence method become more complex as the discrete intervals

become shorter. In addition, both methods become at least geometrically more complex as

more state variables are added. For practical purposes, then, these methods only value the

American put option with respect to the underlying stock price. Lastly, there is no statistical

measurement of error which could be used to determine the accuracy of either the binomial

or the �nite di�erence approximation method.

Geske and Johnson (1984) and Carverhill and Webber (1990) use a series of European

options to approximate the American option. The compound option pricing method requires

much less computation time versus the binomial approximation method. However, the com-

pound option pricing method still su�ers from computational costs, and again is derived
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with respect to one state variable. The compound option pricing method cannot provide

any sort of statistical error measurement.

In addition to computational speed, another desirable property of a given approximation

method is the ability to form portfolios hedged against changes in the underlying state vari-

ables. Such a hedge portfolio requires the partial derivatives of the approximation function

with respect to the state variables which are not well-de�ned in the above methods.

MacMillan (1985), Barone-Adesi and Whaley (1987), and others rely upon a quadratic

approximation of the American put option value. The quadratic approximation function is

di�erentiable almost everywhere and possesses statistical properties which allow hypothesis

testing.1 Whaley (1986) forms hedging portfolios using derivatives calculated from the dif-

ferentiable portions of the quadratic approximation function. The quadratic approximation

method is faster than the aforementioned approximation methods, but still has computa-

tional costs arising from the numerical approximation of probability density functions.

In this paper we present an analytical tool, the neural network, a non-parametric es-

timator which instantaneously values the American put option with a twice di�erentiable

function of a set of multiple state variables. Since the semi non-parametric approximation

is di�erentiable, the partial derivatives of the valuation function exist. Thus we construct

portfolios hedged against uncertain movements in the stock price, interest rate, and the delta

of the stock price. One can create portfolios hedged against time to maturity and volatility

analogously. Lastly, the semi non-parametric approximation is a consistent estimator. We

choose neural networks as the non-parametric estimator because the consistency results ex-

tend to the �rst derivatives of the estimator. That is, the �rst derivative of the estimator

converges to the true derivative of the option valuation function.

Asymptotic normality has only been established for iid environments, while here the

underlying stock price follows a random walk. However, asymptotic normality can be estab-

lished as the number of stocks approaches in�nity, if the stocks are independent. This would

allow construction of con�dence intervals around the estimates of the option value or tests

of the hypothesis that each state variable is relevant in determining the value of the option.

1The quadratic approximation function is discontinuous only at the stock price at which early exercise of
the American option becomes optimal.
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The neural network approximation method is similar to the approximation methods pre-

sented in Bossaerts (1989) and Hutchinson, Lo, and Poggio (1994). Bossaerts uses Simulated

Method of Moments estimation to �nd coe�cients for an option valuation function. After

estimation, the option valuation function is evaluated instantaneously with respect to mul-

tiple state variables. In addition, the estimated coe�cients possess well-de�ned statistical

properties which allow for con�dence intervals or hypothesis testing. However, the �nite

sample option valuation function is not a di�erentiable function of the state variables. Thus

it is not possible to form a hedged portfolio from the derivatives of the option valuation

function. Similarly, Hutchinson, Lo, and Poggio estimate the value of S&P call options non-

parametrically, and create delta hedged portfolios. In this case, the delta hedge created from

the estimator often performs better than hedge portfolios created from the Black-Scholes

formula.

The structure of the paper is as follows. Section 2 develops a model that values an

American put option given an optimal early exercise strategy, which can be estimated. In

Section 3, we show that there exists a consistent non-parametric estimator for the option price

developed in Section 2. Furthermore, we show that the derivatives of the non-parametric

estimator consistently estimate the derivatives of the option price.

Section 4 applies the neural network to real American put option data, and shows that

the neural network provides a close approximation of the true American put option value.

Section 5 constructs a portfolio delta-hedged against changes in the stock price and the

risk-free interest rate using the neural network approximation results from section 4. We

also construct a portfolio that is gamma-hedged against changes in the stock price and the

risk-free interest rate. Section 6 discusses some conclusions.

2. Valuation of the American Put Option Given Optimal Exercise

We �rst discretely model the movement of the stock price St and the interest rate rt as

random walks:

2
64 St

rt

3
75 =

2
64 St�1

rt�1

3
75+

2
64 �1t

�2t

3
75 �t � N

�
0; �2

�
(2.1)
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Here �2 is the variance-covariance matrix (we allow for correlation between the stock price

and interest rate). Let the expiration date be time t1, the exercise price X, and D = t1 � t

the time to maturity.

The payo� of a put option exercised at time i is X � Si. We assume risk neutrality,

therefore the present discounted value of the put option is then:

e
�
Pi

j=t
rj (X � Si) (2.2)

The investor invests the proceeds from exercise at the risk free rate after exercising the

option, which is then discounted back to the current period.

Let Zi = [X;D; �; ri; Si]
0. Following for example Boessarts (1989), we de�ne an early

exercise strategy function P : <5 ! f0; 1g such that:

P (Zi) =

8><
>:

1 if exercise is optimal

0 o.w.
(2.3)

We note that the function P is de�ned such that if Pi = 1, exercise prior to i is not optimal.

P therefore depends also on realizations of Z between t and i. P is the optimal early exercise

strategy (chosen by �nding the sup of the value of the option over the space of measurable

exercise strategy functions).

By combining equations (2.2) and (2.3) we obtain a discrete valuation function for an

American put option at time t, given realizations
h
~r; ~S

i
:

~V
�
~Z
�
=

t1X
i=t

e
�
Pi

j=t
rj (X � Si)P (Zi) (2.4)

Applying the risk neutral expectation operator gives:

V (Zt) = Et

"
t1X
i=t

e
�
Pi

j=t
rj (X � Si)P (Zi)

#
(2.5)

Note that we can also shrink the discrete time interval to zero. Then the stock price

and interest rate process (2.1) becomes a Brownian motion and we obtain a continuous time
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formulation of the valuation function:

V (Z (t)) = Et

�Z t1

t
e�
R i

t
r(j)dj (X � S (i))P (Z (i)) di

�
(2.6)

We assume the observed market options data �ts the pricing function V plus a noise

term. The noise comes from market micro structure issues (price discreteness), possible

noise trading, and the bid is an imperfect measure of the price. We also assume a limited

rationality on the part of the agents. Although the true optimal early exercise strategy is

unknown to the agents, the market valuation is equal to the true value plus a noise term.

Agents may make mistakes when estimating the optimal early exercise time, but the error

in the valuation function from these mistakes is mean zero normally distributed. Let O be

the observed market option price, then:

Ot = V (Zt) + �t �t � N
�
0; �2�

�
(2.7)

We assume that � is an iid random variable and is uncorrelated with �.

Equation (2.7) is a convenient representation of the option price. We could calculate

the option price using equation (2.7), except that the valuation function V is unknown

(speci�cally, the optimal early exercise strategy is unknown). Equation (2.7) is a standard

representation of a non parametric estimation problem. The idea is to use a function ap-

proximator to approximate V , and simultaneously estimate �.

We now introduce a function V̂ : <5 �
�
� � <7K+1

�
! < de�ned as:

V̂
�
Zt; �̂

�
=

KX
k=1

�̂k tanh

0
@ 5X

j=1

�̂kjZj;t + Îk

1
A+ Î0 (2.8)

�̂ =

2
64 �̂

Î

3
75 (2.9)

The size of �, which is determined by the value of K is a �nite number. Note that V̂ is C2.

Finally, we assume � is drawn from a compact set, �.

In this case, given a data set i = 1 : : : N , we estimate � by minimizing sum of squared
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errors:

�̂ = min
�2�

nX
i=1

h
Ot � V̂ (Zt)

i2
(2.10)

Hence V̂n;K is a neural network with statistical properties similar to non-linear least squares.

Our choice of neural networks is motivated by the consistency results of derivatives of neu-

ral networks with respect to the true derivatives (see Gallant and White, 1992), which is

important for the formation of hedged portfolios.

3. Statistical Issues.

In this section, we consider the appropriate choice for K, that is the number of parameters

used for estimation, and the resulting asymptotic properties of the estimator. Hornik, Stin-

chombe, and White (1989) show that since V is an element of the space of functions de�ned

by an Lp norm and tanh is an l-�nite squashing function, there exists a �0 such that in the

Lp norm:

lim
K!1

V̂ (�0)� V

p
= 0 (3.1)

Essentially, the neural network is a function approximator, like a polynomial approximation.2

However, since we cannot estimate an in�nite number of parameters with a �nite sample,

we let the number of parameters increase with the sample size. That is let K = Kn with

Kn !1 as n!1, then V̂ (Zt; �n;Kn) is a non-parametric estimator.

Next we establish consistency of the non-parametric estimator and the �rst derivative.

Following White (1992) chapter 12 theorem 3.3, we wish to show that V is an element of

a Sobolev space. We can then use the theorem to establish convergence of neural network

non-parametric estimators and functionals of the estimators. Let the Sobolev norm be:

kV k =

2
4 X
j�j�m

Z
Z

���D�V (z)
���p dz

3
5
p

(3.2)

2Neural networks use bounded functions, however, which reduces the variance of the estimate relative to
using unbounded functions like a polynomial approximation.
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D�V (z) =

 
@�V

@z1

!
� : : : �

 
@�V

@z5

!
(3.3)

The Sobolov space is then the set of all functions:

Vm;p;Z = fV jDmV 2 Lp (Z)g (3.4)

Let m = 1, since we are interested in the �rst derivative. Then the theorem requires that

we show:

V 2 V1+1+[ 5p ];p;Z
(3.5)

Here [�] represents the integer portion. Let p > 5 so that this term is zero. Essentially, since

the Sobolev spaces are nested, the theorem shows that the error converges almost surely to

zero in the norm k�k2;1;Z .

A well known su�cient condition for V to be an element of the Sobolov space is that (V )p

is di�erentiable of order m, in this case twice di�erentiable. Although time is discrete, we

can assume that the elements of Zt can take on continuous values. Given that the exercise

strategy is optimal, the valuation function is twice di�erentiable.3

Next we check the assumptions on the random variables to assure that a law of large

numbers exists. The error term � is iid and fZtgn converges almost surely from the martingale

strong law of large numbers. Hence, we have:

PROPOSITION 1 Let the estimator V̂ be de�ned by equation (2.8) and the vector �̂ be

de�ned according to equation (2.10). Let the random variables Zt and �t be de�ned as above.

Finally, assume that Kn !1. Then:

h
�
V̂ (Zt)

�
a:s:
! h (V (Zt)) (3.6)

3Let Zt approach a critical point where the decision about exercise in the current period changes. Then
the value of the option given that the option is exercised at t approaches the value of the option given that
the option is not exercised at t as Zt approaches the critical point.
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We apply the theorem by considering two functional choices for h:

h (V ) = V (3.7)

h (V ) =
dV

dZ
(3.8)

The consistency results do not specify growth rates for Kn. One method is to use a

deterministic rule, such as select Kn = n�, � 2 (0; 1), with � = 1
2
a common choice. A value

of � = 1
2 corresponds to about K = 5.

Another method of determining the appropriate size for Kn is a stochastic method, such

as cross validation (see White, 1992 p. 167). The procedure is to do a non-linear regression

for a given K, excluding m data points. Then compute the (out of sample) error for the m

data points. Repeat this procedure over all data points and select the K that minimizes the

total out of sample sum of squared error.

We performed the cross validation procedure with m = 10, which corresponds to 136

regressions per value of K. We tried values of K = 3 to K = 14. The results are shown in

Figure (1). As the value of K increases, the estimator is able to �t more complex functions.

However in practice as the value of K increases, the estimator can over �t simple functions,

erroneously attributing random noise as part of the function. Hence cross validation generally

gives a U-shaped errors as a function of K.

The K value that minimized the cross validation statistic was K = 5, equal to the

deterministic rule. However, we note that there is little di�erence over the the range K =

[4; 8].4 We set K equal to 5, which also gives a low standard deviation for the hedged

portfolios.

Asymptotic normality for non parametric neural networks has not been established. How-

ever, Andrews (1991) shows that for the iid case a non-parametric estimator estimated using

non-linear least squares has asymptotic normality properties similar to the case when the

model is fully parameterized. Therefore, we have some reason to believe that the estimator

4Since cross validation agreed with the deterministic rule, we did not statistically test the hypothesis that
the errors are di�erent.

8



has asymptotic normality properties similar to non-linear least squares.5

4. The Neural Network Approximation of the American Put Option

Consider an investor who wishes to value an American put option. Since there is no known

closed-form valuation function for the American put option, the investor uses an approxi-

mation technique. The investor wants the approximation technique to use as little compu-

tational time as possible, since the investor incurs costs while waiting for the approximation

to be calculated. To the investor, then, the approximation technique must be both accurate

and fast.

Suppose the investor uses a neural network to statistically approximate the American

put option. The investor periodically estimates the parameter set �̂ on real data to obtain

the valuation function V̂ . The evaluation of the neural network has no computational cost.

Following the investor's problem, we applied a neural network to American put option

data. Since in the market the actual option price is unknown, we use the bid price of the

option as a proxy. We collected closing daily bid data on American put options for four

di�erent common stocks: IBM, Chrysler, GM, and Merck. The total number of options on

these stocks was 18. Options on the same stock had di�erent exercise prices and/or time to

maturity. These stocks were selected because of large trading volume when in the money

and for a variety of volatility measures. The data was collected from October 1, 1993 to

April 13, 1994. The data set consisted of 1369 observations.

For the risk-free interest rate, we selected the three month treasury bill. For the volatility

we used the one year historical variance. We also tried other historical volatility measures,

with similar results. We note that these are not exact measures of the true risk free interest

rate and volatility.

For the choice of the number of parameters we selected K = 5, which corresponds to

� = :496. The search for the error minimizing �̂ was conducted using a quasi-Newton

5One can prove asymptotic normality for the non-parametric estimator under the condition that Zt is m-
dependent, however proof for Zt following a random walk is more di�cult. One possibility is that asymptotic
normality could be done with respect to the number of stocks (panel data) as opposed to the mixture of
panel and time series data examined here.
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algorithm (a second derivative method). We used the Nguyen and Widrow (1993) algorithm

for selection of initial conditions for the search for the error-minimizing vector �̂.

Descriptive statistics summarizing the estimation are given in table (2). Figure (2) gives

the predicted versus actual option prices. The estimation has a lower error when the option

is out of the money.6 However as seen from the R2 column, out of the money options

generally had less variance and were therefore easier to predict. The R2 increases as the

option becomes more in the money. Because of price discreteness, estimation is harder for

options that are out of the money, regardless of what approximation technique is used. Still,

the di�erence in the R2 amounts to only two percent between out of the money and in the

money options.

For comparison purposes we also applied the binomial approximation method to the same

real data as the neural network approximation. For each data point, we used the binomial

approximation method given in Cox, Ross, and Rubinstein (1979) to compute the estimated

price of the option. Descriptive statistics summarizing the results of the binomial exercise

are also given in table (2).

To summarize, in practice convergence to the true �0 is not certain. The correct choice

for K is unknown, proxies are used for the option price, risk-free rate, and volatility, there

is discreteness in the observed variables, and a search algorithm is used to �nd the error-

minimizing �̂. In spite of this, the neural network estimate explains the variance of the option

value well (R2 = :99).

5. Formation of Hedged Portfolios Using the Neural Network

5.1. Formation of a Delta-Rho Hedged Portfolio

One application of the neural network approximation technique is the formation of a hedged

portfolio. Suppose an investor desires to hedge one share of an American put option against

changes in the stock price (delta hedging) and interest rate (rho hedging). The investor

purchases � shares of the stock and � shares of the risk-free bond B to form the hedged

6An option was considered out of the money if the return from exercise was less than $-2. An option was
near in the money if the return from exercise was at least $-2 but less than $2. Options with a higher return
were considered in the money. There were 730, 303, and 336 observations, respectively.
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portfolio. Suppose that the valuation function of the American put option is known with

certainty. Then the hedged portfolio has a value of:

Q = V (X;D; �; rt; St) + �S + �B (5.1)

� = �
@V (X;D; �; rt; St)

@S
(5.2)

� = �
@V (X;D; �; rt; St)

@r

 
dr

dB

!
(5.3)

Unfortunately, the valuation function V is unknown to the investor. Suppose the investor

instead uses the neural network estimation of the American put option value from Section 4.

De�ne the neural network estimation by the function V̂ (X;D; �; rt; St). Then the estimate

of the hedged portfolio is:

Q̂ = V (X;D; �; rt; St) + �̂S + �̂r (5.4)

�̂ = �
@V̂ (X;D; �; rt; St)

@S
(5.5)

�̂ = �
@V̂ (X;D; �; rt; St)

@r

 
dr

dB

!
(5.6)

We empirically test the neural network ability to hedge by constructing a delta-rho hedged

portfolio for 18 options over at most 131 days. This provides 1348 one day tests. One

complication to this test is that we assume no transaction costs, allowing us to change the

portfolio on a day to day basis. The actual investor cannot exactly follow this strategy

because of transaction costs. Another problem is that the valuation function is non-linear.

Hence the quantity of stocks and bonds required to hedge against the option changes as

the option price changes. The investor must at the end of each day rebalance: sell the

old portfolio, which hedged the last day against the current day. Then the investor must

purchase a new portfolio hedged against the next day. By �nding the percentage pro�ts
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earned over each day, we obtain an overnight rate of interest.7 Since our data is daily, there

is hedging error because the investor cannot adjust the hedged portfolio during the day. The

investor additionally does not hedge against changes in the number of days to maturity.

Descriptive statistics summarizing the results of our test are shown in Table (3). Table

(3) compares the overnight rate of interest earned by the hedged portfolio each day to the

overnight risk free rate, which is theoretically mean zero and variance zero.8

The hedged portfolio had a mean overnight rate of interest of -.047%, with a standard

deviation of over 2%. The hedged portfolio still has substantial risk. However, the price of

one share of the option has a mean overnight rate of interest of 1% and a standard deviation

of over 27%. Thus the hedged portfolio reduces the risk of the option by over 90%, for both

in the money and out of the money options. This is evident in Figure (4).

Additionally, changes in the interest rate added substantially to the changes in the vari-

ance of the option price. The risk free rate varied almost one percent over the data set and

had a standard deviation of .22 percent. Hedging against changes in the interest rate was

essential to obtain a good hedge.

5.2. Formation of a Gamma-Hedged Portfolio

There are no theoretical results establishing convergence of the second derivative of the neural

network option valuation function to the true second derivative option valuation function.

However, the neural network valuation function is twice di�erentiable, therefore we can form

a portfolio hedged against changes in the delta of an American put option.

Suppose an investor desires to hedge against changes in the delta of an American put

option. A gamma hedged portfolio is a portfolio hedged against changes in the stock price,

and against changes in the delta of the option. This protects the investor from losses that

arise from having a nearly correct, but not exact, delta during the day.

7Whaley (1987) calculates the rate of interest only at the expiration of the option, because the error was
found to be in the same direction from one day to the next. However, this was not true generally for our
data set. Additionally, our data set does not consist of enough options to calculate the interest rate at only
the expiration dates.

8This is equivalent to a zero cost hedged portfolio: we short one share of the risk free bond to obtain a
zero cost portfolio that theoretically has zero mean return and variance.
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Again, since the true put option valuation function is unknown the investor uses the

neural network approximation to form the following portfolio:

Q̂ = V (X1;D1; �; rt; St) + ̂1S + ̂2V (X2;D2; �; rt; St) (5.7)

̂1 = �V̂s (X1;D1; �; rt; St) +

 
V̂ss (X1; S;D1; r; v)

V̂ss (X2;D2; �; rt; St)

!
V̂s (X2;D2; �; rt; St) (5.8)

̂2 = �
V̂ss (X1;D1; �; rt; St)

V̂ss (X2;D2; �; rt; St)
(5.9)

Here Vxx is the second partial derivative of V with respect to x.

We empirically test the ability of the neural network approximation to hedge by con-

structing a gamma hedged portfolio for 18 options over at most 131 days. This gives 3210

one day tests (using all possible sets of two options on the same stock). Again, we assume no

transaction costs, and have the same problems of daily data, non linearity, and discreteness

of the valuation function.

The results of our test are shown in Table (3). The mean di�erence between the hedged

portfolio and the risk free rate is .058% , well above zero. However, we again note that the

hedged portfolio has on average 98% less risk than the option. The standard deviation of the

di�erence between the risk free rate and the gamma hedged portfolio is 2.12%. Again, the

standard deviation is substantially greater than zero, but also substantially less than 27%

obtained by holding one share of the option.

6. Conclusions and Further Research

The neural network is able to approximate the American put option using real data. The

neural network is more accurate than other approximation techniques and requires no com-

putation time, providing an instantaneous value of the American put option. Since neural

networks are di�erentiable functions of the state variables, we constructed hedged portfolios

from the neural network approximation. The hedged portfolio reduced the variance of the

option by 90 percent. Furthermore, the portfolio hedged against changes in interest rates,
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which add substantial risk to the option price. The neural network can hedge against changes

in interest rates and volatility, a substantial improvement over other hedging strategies.

For further research, we hope to apply the neural network approximation method to

other derivative securities. The neural network technique is useful for valuing any security

where the value is di�cult to compute due to large numbers of state variables or unknown

exercise strategies. For example, currency options move with respect to large number of

interest rate variables, so the neural network valuation technique would be especially useful.

Neural networks would also be useful for valuing mortgage backed securities, which allow

the mortgage holder to pay the mortgage prior to the expiration date (in essence exercising

an option).
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7. Appendix 1: Tables

O D X v S r
mean 2.36 69.28 48.75 29.79 51.34 3.22
st. dev. 2.47 42.61 9.45 14.57 10.42 0.22
max. 10.75 196.00 60.00 58.95 64.75 3.68
min. 0.06 0.00 30.00 5.82 29.12 2.92

Correlation Matrix
O D X v S r

O 1.00 0.15 0.25 -0.26 -0.27 0.01
D 0.15 1.00 -0.15 -0.22 -0.15 -0.73
X 0.25 -0.15 1.00 0.62 0.82 -0.01
v -0.26 -0.22 0.62 1.00 0.76 0.16
S -0.27 -0.15 0.82 0.76 1.00 -0.08
r 0.01 -0.73 -0.01 0.16 -0.08 1.00

Table 1: descriptive statistics for data set. 1369 total observations.

Data Set mae std sse R2

Network estimation: entire data set. $.12 .15 32.54 .996
Network estimation: out of the money. $.08 .11 8.47 .965
Network estimation: near in the money. $.14 .18 9.94 .976
Network estimation: in the money. $.17 .20 14.13 .988
Binomial Approx. Method $.99 .87 2382.74 .72

Table 2: Put option estimation results and comparison. mae: mean absolute error. std.
standard deviation of error. sse: sum of squared error.

Portfolio me std %
Delta-Rho Hedged portfolio .047% 2.79% 90.0
Delta-Gamma Hedged portfolio .058% 2.12% 92.2
One share of put option 1.078% 27.15%

Table 3: Hedged portfolio results. me: mean error. std. standard deviation of error. %:
percentage reduction in put option variance.
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8. Appendix 2: Figures

Figure 1: graph of errors versus K. The number of parameters is 7K + 1.
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Figure 2: graph of predicted versus actual option prices. The actual option price is the
dotted line.
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Figure 3: Graph of Residuals versus the option price.
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Figure 4: graph of delta-rho hedged portfolio (solid line) versus buying and holding the
option (dotted line). The option exhibits a higher return and greater variance.
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Figure 5: graph of gamma-hedged portfolio (solid line) versus buying and holding the option
(dotted line). The option exhibits a higher return and greater variance.
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