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In recent years the problem of option pricing has received increasing interest from both
financial institutions and academics. It is well known that conventional modeling tech-
niques for option pricing have inherent, persistent and systematic biases which are mainly
due to the assumption of constant volatility for prices associated with the underlying
financial instrument. Nowadays, there is strong and increasing evidence that financial
markets are far from being stationary and then, whenever dealing with option pricing,
we have to take into account the market heteroschedasticity. A possible approach for
dealing with non-constant volatility relies on the modeling of the basic characteristics
named implied volatility. Unfortunately this task is extremely complex and parametric
models are not available. In this paper the authors discuss how models from the class
of Feedforward Neural Networks can be exploited for approaching the task of implied
volatility modeling. In particular the paper shows how the main techniques from the
nonlinear regression framework can be exploited when models from the class of Feedfor-
ward Neural Networks are used. Indeed, in such a case the paucity of data, which can
be used for the network training, and the particular structure of Feedforward Neural
Networks make the modeling task numerically complex. The authors discuss how the
nonlinear regression technique named profile can be exploited for selecting the optimal
network’s structure and evaluating its numeical properties. To this end, a numerical
procedure for empirical model building, in the case of Feedforward Neural Networks,
has been developed. Results are evaluated through an ad-hoc procedure which utilizes
the estimated implied volatility surface for pricing general contingent claims. Numerical
experiments, in the case of the USD/DEM options, are presented and discussed.

1. Introduction

It is well known that conventional modeling techniques for option pricing have

inherent, persistent and systematic biases which are mainly due to the assumption

of constant volatility for prices associated with the underlying financial instrument.

Nowadays, there is increasing evidence that financial markets are far from being

stationary and then, whenever dealing with option pricing, we have to take into

a proper account the market heteroschedasticity. A possible approach consists of

developing a model for the characteristics named implied volatility and then to
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use it within traditional scheme for option pricing. Unfortunately such an ap-

proach is extremely complex and parametric models for the implied volatility are

not available.

Recently, nonparametric regression models have been investigated for different

aspects concerning option pricing and some evidence exists that Feedforward Neu-

ral Networks (FNNs) are the most promising ones. The main property of FNNs

is that they are universal approximators in the sense described by White [1, 2].

This property establishes that FNNs, with as many as one hidden layer, are capa-

ble to approximate, to any degree of accuracy, any mapping between independent

variables and response variables as the size of the data set, describing the Data

Generating Process (DGP), and the number of neurons of the hidden layer go to

infinity. While today the limitation in the number of neurons is less keenly felt, due

to technological enhancements and costs reduction, the problem of paucity of data

is still the main issue. Indeed, in actual applications and in particular in the case

of implied volatility modeling, data are difficult and expensive to get and for this

reason it is important that the FNN model is data-efficient, i.e., it squeezes most

information out of few data. Unfortunately, the universal approximation property,

enjoyed by FNNs, is an asymptotic result of no help in actual problems in which,

quite to the contrary, an increase in the number of parameters leads, too often, to

overfitting and overparametrization. In such a framework the problem is twofold:

(i) to develop efficient algorithms for the network’s structure selection,

(ii) to design procedures for assessing the model performances on new data.

Several theoretical and empirical approaches have been presented and discussed

in the literature for approaching these problems [3–14] and a discussion about their

main characteristics and limitations is out of the scope of this paper.

In this paper the authors investigate further the class of FNNs to the extent

of modeling the implied volatility. In particular, a procedure for the network’s

structure selection is presented. This procedure relies on both graphical and nu-

merical techniques from nonlinear regression and allows to control the network’s

complexity/flexibility in such a way to reduce the risk of overfitting. The main idea,

behind the proposed approach, is to evaluate the usefulness of neurons, from the

hidden layers, for providing a satisfactory approximation for the response variable.

The rest of the paper is organized as follows. In Sec. 2 the main definitions

about FNNs are given together with their main properties. Section 3 introduces

the numerical and graphical procedures, from the nonlinear regression framework,

which are the basic tools for dealing with the problem of the network’s structure

selection. This section presents and discusses a numerical procedure for the net-

work’s structure selection in the case of single layer FNNs. Numerical experiments,

for the USD/DEM option, are reported in Sec. 4. Furthermore, through this sec-

tion, a computational scheme for pricing general contingent claim is described. Such

a scheme is used to the extent of evaluating the effectiveness of the proposed ap-

proach for the network’s structure selection. Finally, Sec. 5 is devoted to comments
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and conclusions about the proposed approach for the implied volatility modeling

through FNNs.

2. Feedforward Neural Networks

An FNN (Fig. 1) is a layered graphical structure consisting of computing units

named artificial neurons (circles) and connections between neurons named synapses

(directed links).

Artificial neurons, or simply neurons, of the input layer are associated with

the independent variables, namely the input variables; while the output neu-

rons are associated with the response variables, namely the output variables.

Synapses are oriented connections linking the neurons from the input layer to the

neurons of the hidden layer and the neurons from the hidden layer to the output

neuron. This means that the information flows from the neurons of the lower layers

to the neurons of the higher layers and cannot flow between the neurons of the same

layer or between a higher layer to the neurons of the lower layers. The strength of

the connection from the neuron i to the neuron j is determined by means of a real

value wij , named synapse’s weight or simply weight. Furthermore, each neuron j

in the hidden layer, and eventually the output neuron, are associated with a real

value bj , named neuron’s bias or threshold. Finally, the neurons from the hidden

layer and eventually the output neuron are associated with a nonlinear function,

named transfer or activation function.

Let us formally describe the structure of FNNs and how, given an input vector,

the network’s output is computed. To this end, consider the single layer FNN with

K input variables and H hidden neurons depicted in Fig. 1 and let:

• x = (x1, . . . , xK), be the input vector (associated with independent variables);

• w(1)
ij , be the weight associated with the link from the ith input to the jth hidden

neuron;

Fig. 1. Single layer Feedforward Neural Network.
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• b(1)
j , be the bias associated with the jth neuron of the hidden layer;

• w(2)
j , be the weight associated with the link from the jth hidden neuron to the

output neuron;

• b(2), be the bias associated with the output neuron.

Furthermore, let G(1)(·) and G(2)(·) be the activation functions associated with the

hidden neurons and the output neuron. Typical choices include:

• logistic G(z) = 1
1+exp(−z) ,

• hyperbolic tangent G(z) = exp(z)−exp(−z)
exp(z)+exp(−z) .

Let the vector θ be defined as follows:

θ = (w
(1)
11 , . . . , w

(1)
1H , . . . , w

(1)
K1, . . . , w

(1)
KH , b

(1)
1 , . . . , b

(1)
H , w

(2)
1 , . . . , w

(2)
H , b(2)) . (2.1)

and assume that the activation functions G(1)(·) and G(2)(·) are given, then the

network in Fig. 1 computes the following function of the input vector x:

ŷ(x,θ) = G(2)

 H∑
j=1

(
w

(2)
j · G(1)

(
K∑
i=1

w
(1)
ij · xi − b

(1)
j

))
− b(2)

 . (2.2)

In the rest of the paper φ(|x|,H) represents the structure of a single layer FNN

having the elements of the vector x as inputs, H hidden neurons and a single output

neuron, analogously φ(|x|,H(1),H(2)) represents the structure of an FNN consisting

of H(1) and H(2) neurons in the first and second hidden layer.

Let us focus the attention to the problem of the network’s structure selection.

Informally, given a set of experimental observations, this problem consists of build-

ing an FNN model such that it will be capable to describe the main features of the

DGP. In order to solve this problem, we have to answer the following questions:

(i) How many hidden layers are needed?

(ii) How many neurons for each hidden layer are needed?

The above questions are not trivial and a great deal has been devoted to them in

the specialized literature.

Answering the above questions requires the solution of the so-called training

problem. This problem can be formally introduced as follows. Let D = (X,Y) be

the data set, where X ∈ <N × <K is called the input matrix, Y ∈ <N is called

the output vector and N ∈ N is the number of observations. Notice that the rows

xn, n = 1, 2, . . . , N of the matrix X are vectors in the input space <K ; while the

elements yn ∈ <, n = 1, 2, . . . , N of the Y vector represent observations of the

dependent variable. Then, for any given network’s structure, the training problem

consists of finding the parameter vector θ̂ which solves the following nonlinear least

squares problem:

E(θ̂) = min
θ

N∑
n=1

(ŷ(xn,θ)− yn)2 . (2.3)
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Problem (2.3), in the contest of FNNs, is usually solved by means of algorithms such

as backpropagation [14–17] or its main variant named momentum learning [18]. Also

numerical methods from nonlinear regression as Gauss–Newton, Newton–Raphson

and Levenberg–Marquardt [19, 20] can be used.

3. Profiling and Network’s Structure Selection

As mentioned, the problem of the network’s structure selection requires the solution

of several training problems on different FNNs and so to cope with the nonlinear

regression analysis. For this reason, the formal nonlinear regression framework,

i.e. the nonlinear regression model and the consequent notation are hereafter intro-

duced. To this end, let D, X and Y be defined as in the previous section. Then,

according to [21], a nonlinear regression model can be written as follows:

yn = f(xn,θ) + zn (3.1)

where f(·, ·) refers to the “expectation function”, θ ∈ <P represents the “parameter

vector” and zn is a “disturbance term”.

The nonlinear model (3.1) differs from the linear one in the sense that at least

one of the derivatives of the expectation function f(·, ·) with respect to the param-

eters θ depends on at least one of the parameters. When analyzing a given data set

D = (X,Y), we can create the “expectation surface”, i.e. the N -vector η(θ) having

the nth element given by

ηn(θ) = f(xn,θ) n = 1, . . . , N (3.2)

and write the nonlinear regression model (3.1) as

Y = η(θ) + Z (3.3)

where Z is normally distributed, i.e.

E[Z] = 0 , Var[Z] = E[ZZT ] = σ2I . (3.4)

For any given data set D = (X,Y), solving the problem (2.3) requires the deter-

mination of the expectation surface η(θ).

This task is made up of two main components:

(i) to specify the nonlinear regression model f(·, ·);
(ii) to select the vector θ such that the Sum of Squared Errors (SSE):

S(θ) = ‖Y − η(θ)‖22 (3.5)

is minimized, where ‖ · ‖2 is the L2 norm.

Once an estimate θ̂ for the parameter vector θ has been determined it is helpful

to summarize the estimation situation. To this end, we can compute “likelihood

regions for parameters”. Unfortunately, for the model (3.1), analytic expressions

are not available. This can be dealt with by means of two approaches:
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(i) to use approximate likelihood regions;

(ii) to compute exact likelihood regions.

The first approach allows to compute the “approximate joint likelihood regions”

as

(θ − θ̂)T V̂T V̂(θ − θ̂) ≤ Ps2F (P,N − P ;α) (3.6)

where:

• V̂, is the N × P derivative matrix having elements {vnp = ∂f(xn,θ)
∂θp

|θ̂};
• s2, is defined as s2 = S(θ̂)

N−P ;

• F (P,N − P ; α), represents the upper α quantile for the Fisher’s F distribution

with P and N − P degrees of freedom.

This approach provides approximate likelihood regions which are easy to calcu-

late for any number of parameters. Unfortunately it can be extremely misleading

[21–24], because it is based on only one approximation (at θ̂), and therefore could

drive to draw wrong conclusions about the significance of the model’s parameters.

The second approach consists of directly computing the “exact joint likelihood

regions”, namely the set of all values θ such that

S(θ) ≤ S(θ̂)

[
1 +

P

N − P F (P,N − P ;α)

]
. (3.7)

Together with the joint likelihood region, we can develope “marginal likelihood in-

tervals” for each model’s parameter θp, p = 1, 2, . . . , P . This can be done according

to what presented and discussed in [21, 22]. In order to define the marginal likeli-

hood interval for the parameter θp, we first have to define some useful quantities.

Definition 3.1 [21]. Let θ−p = (θ1, . . . , θp−1, θp+1, . . . , θP ) and the vector θ̃−p =

(θ̃1, . . . , θ̃p−1, θ̃p+1, . . . , θ̃P ) be the least squares estimate of θ−p conditional on θp,

(θp, θ̃−p) be the vector with elements (θ̃1, . . . , θ̃p−1, θp, θ̃p+1, . . . , θ̃P ), then the profile

sum of squares function S̃(θp) for the parameter θp is defined as

S̃(θp) = minθ−pS((θp,θ−p)) = S((θp, θ̃−p)) . (3.8)

Definition 3.2 [21]. For any parameter θp, of the model (3.1), the profile t function

τ(θp) is defined as follows:

τ(θp) = sign(θp − θ̂p)

√
S̃(θp)− S(θ̂)

s
. (3.9)

Definition 3.3 [21]. For any parameter θp, of the model (3.1), its α marginal

likelihood interval is the set of all θ such that

−t
[
N − P ;

(
1− (1− α)

2

)]
≤ τ(θp) ≤ t

[
N − P ;

(
1− (1− α)

2

)]
(3.10)
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where t[N − P ; (1− (1−α)
2 )], represents the upper (1− (1−α)

2 ) quantile for the Stu-

dent’s t distribution with N − P degrees of freedom.

The importance of the profile t function, in the case of FNNs, is twofold:

• plots of the profile t function provide exact likelihood intervals for parameters,

• plots of the profile t function reveal how nonlinear the parameter is.

Suppose the model were linear. Then, a plot of τ(θp) versus θp would be a straight

line. In particular, a plot of τ(θp) versus the studentized parameter δ(θp) =
θp−θ̂p
se(θ̂p)

,

would be a straight line through the origin with unit slope. Indeed, in a linear model

the following equality holds [21]:

δ(θp) =
θp − θ̂p
se(θ̂p)

= sign(θp − θ̂p)

√
S̃(θp)− S(θ̂)

s
= τ(θp) . (3.11)

On the other hand, in the case when a nonlinear model is considered, the equality

(3.11) does not hold, thus a plot of τ(θp) versus δ(θp) will be curved. The amount

of curvature carries information about the degree of nonlinearity for the model’s

parameter θp.

Let us now clarify how Definitions 3.2 and 3.3 can be exploited to approach the

problem of the network’s structure selection. To this end, consider the elementary

computing unit of FNNs, i.e. the artificial neuron. (Figure 2) and notice that it is

characterized by the following set of free parameters:

• Win = {wsj | s = 1, 2, . . . , S}, input weights,

• Wout = {wjr | r = 1, 2, . . . , R}, output weights,

• bj , bias or threshold.

Therefore its particular structure dictates that, for any given network, it will not

be able to contribute to the output value if both the following conditions are met:

(i) all its input weights wsj ∈Win are equal to zero,

(ii) all its output weights wjr ∈Wout are equal to zero.

In the case when the previous conditions are satisfied, the artificial neuron will

have no effect on the network’s output, i.e. the neuron will be useless to the extent of

Fig. 2. Artificial neuron.
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modeling the unknown relationship between the independent variables (network’s

input) and the response variable (network’s output). However, when solving the

training problem for FNNs, it will be very unlikely that some of the neuron’s

weights and/or its bias will be exactly equal to zero. Then, in order to evaluate

the neuron usefulness, we need to provide some procedure for deciding whether or

not a given neuron’s parameter is equal to zero. This can be done by means of

standard statistical tools as likelihood regions or equivalently hypothesis testing. In

order to establish whether or not a given neuron is useful we introduce the following

definition of α-non rejectable neuron.

Definition 3.4. Let Win = {wsj | s = 1, . . . , S} and Wout = {wjr |r = 1, . . . , R}
denote respectively the set of input and output weights for a given neuron. Then,

for any fixed level of confidence α, the neuron is said to be α-non rejectable if at

least one of the following conditions holds:

0 /∈ JLI(Win, α) (3.12)

0 /∈ JLI(Wout, α) (3.13)

where JLI(·, α) represents the α level joint likelihood region.

Let us now discuss the meaning and usefulness of Definition 3.4 for approaching

the problem of the network’s structure selection. On the above definition, we shall

build a tool for deciding whether a given artificial neuron is useful for approximat-

ing the unknown mapping between the input variables and the network’s output.

Indeed, we can state what follows:

• If either condition (3.12) or condition (3.13) are satisfied then there is no statis-

tical evidence, at the α level of significance, that the neuron will be useless to

the extent of approximating the response function.

• If neither condition (3.12) nor condition (3.13) are satisfied, then there is no

statistical evidence, at the α level of significance, that the neuron will be useful

to the extent of approximating the response function.

As can be noticed from Definition 3.4, establishing whether or not a given neuron

is α-non rejectable requires to perform joint hypothesis testing in the case when

dependent parameters are present. Then, to ensure that the real confidence level

for the test of hypothesis is at least α, we have to use appropriate procedures such

as Bonferroni’s intervals [25].

Furthermore, having fixed the confidence level α, the significance of any given

neuron tells us nothing about the overall significance of the network. Indeed, the

neurons are far to be mutually independent.

Another problem consists of deciding the most complex FNN which should

be trained. A possible approach, for answering this question, is as follows. Assume

the data set consists of N observations, K independent variables and one response

variable, then a reasonable approach will be to impose that the maximum number

of network’s parameters should be strictly less than N . In the case of single layer
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FNNs, the maximum number of hidden neurons is

Hmax =

[
N − 1

(K + 2)

]
(3.14)

while in the case of two layers FNNs, when the first layer consists of H(1) neurons,

the maximum number of neurons for the second hidden layer is

H(2)
max =

[
N − (H(1) · (K + 1) + 1)

(H(1) + 2)

]
. (3.15)

Finally, concerning the choice of a suitable value for the maximum number of net-

work’s free parameters Pmax, some help is readily available from a time honored

statistical tradition. Indeed, a reasonable ratio of the number of observations over

the maximum number of free parameters should range from 3 to 5 in order to obtain

good statistical properties. In the light of such consideration, we can determine the

maximum number of hidden neurons, for both the first and the second hidden layer

by replacing N with Pmax in (3.14) and (3.15).

Let us conclude this section by introducing a procedure for the network’s struc-

ture selection which exploits Definition 3.4 in the case when single layer FNNs

are considered.

Procedure. Single Layer Network’s Structure Selection

(i) Initialization. Let D = (X,Y) be the set of the available data points. Fix

the desired level of confidence α, the maximum number of neurons Hmax

according to (3.14), where N has been replaced by Pmax, and initialize the set

of candidate networks to the empty set, i.e. set ΦD
α = {∅}. Furthermore, set

the current number of hidden neurons to zero, i.e. H = 0.

(ii) New Iteration. Increase the number of hidden neurons, i.e. set H = H + 1. If

H > Hmax, then go to Step (vi). Otherwise, initialize the parameter vector θ

with random values, and go to Step (iii).

(iii) Network Training. Solve the Problem (2.3) for the network φ(|x|,H), record

the solution in the vector θ̂ and go to Step (iv).

(iv) Network Profiling. For each free parameter θp ∈ θ̂ associated with the network

φ(|x|,H), compute the corresponding profile t function and go to Step (v).

(v) α-Hidden Neuron Checking. If all the hidden neurons for the network φ(|x|,H)

are α-non rejectable then add φ(|x|,H) to the set of the candidate networks,

i.e. set ΦD
α = ΦD

α ∪φ(|x|,H) and go to Step (ii). Otherwise, discard φ(|x|,H),

and go to Step (ii).

(vi) Network Selection. Among the FNNs belonging to the set ΦD
α , select the net-

work φ∗(|x|,H) having the smallest SSE (3.5).

(vii) Network Criticism. Analyze the residuals obtained through φ∗(|x|,H). If

statistical evidence exists that some of the assumptions (3.4) are violated,

then remove the current network from the set of the candidate networks,

i.e. ΦD
α = ΦD

α \ φ∗(|x|,H), and go to Step (vi). Otherwise retain the current

network for prediction purposes.
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A similar argument allows to define a general procedure for the network’s struc-

ture selection in the case when two layer FNNs are considered.

Let us discuss the main characteristics of the procedure just introduced.

(i) The proposed approach utilizes all the available data; indeed, by using Defini-

tion 3.4, it is possible to evaluate the extent to which a neuron is added and

whether it is useful. This allows to deal with situations in which the amount

of the available data is small and no further data points can be collected.

(ii) The procedure could also reveal that the quality of the data points at hand

is poor. In such a case the overall approach can be fruitfully exploited for

suggesting which new data points should be collected in order to improve the

results of the modeling task. Notice that this could also mean that, by using

only the available data points, we are not able to give any answers concerning

the main characteristics of the DGP. This should not be taken as a failure, but

carries valuable information and protect us against misunderstandings.

(iii) The sequence of tests and inspections to which the model is submitted can

increase or decrease the confidence in its capability to have good performances

on new cases.

(iv) When dealing with models of increasing complexity it will be more and more

difficult to find good approximations for the optimal solution by means of

iterative methods. In such cases, it will be useful to check the particular na-

ture of the found solution, i.e. how the SSE (3.5) behaves around the given

approximation of the optimal solution.

(v) Once the candidate model has been validated confidence bands for the

expectation function can be provided.

(vi) Last but not least, a well-known criteria like the Occam razor is naturally

embedded in the procedure we have presented. Indeed, neurons are not to be

added without necessity.

The above numerical procedure can be jointly used with the graphical summaries

for the network’s parameters (Profile t function). Indeed, the visual inspection of

the profile t function for the network’s parameters can reveal how nonlinear the

estimation situation is.

Graphical summaries carry useful information for evaluating which are the most

important input variables to the extent of modeling the response variable. Further-

more they can be very useful for finding physical explanations for the phenomena

under study.

4. Implied Volatility and Option Pricing

In this section the problem of approximating the implied volatility surface via FNNs

is addressed and analyzed. To this end, numerical experiments, related to the case

of the USD/DEM option, are presented and discussed.

The performance of the FNN, used for approximating the implied volatility,

is assessed through an ad-hoc procedure. This procedure has been developed in a
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previous work, jointly with a different learning algorithm for FNNs (see [26, 27]

for details). It represents a new approach for contingent claim pricing, in which no

parametric modelling for the market is supposed to exist, but prices are directly

made by the market itself.

The basic idea is to avoid an a priori hypothetical model for the market, but

to directly get all the required information from the market prices of the traded

options, and to use such information for building a price process satisfying the

following conditions:

(i) smiles compatibility,

(ii) model completeness.

More precisely, given the option prices for the entire set of strikes and maturities,

the objective is to determine a risk-neutral process for the security S of the form:

dS

S
= r(t)dt + σ(S, t)dW (4.1)

where r(t) represents the cost of carry and the local volatility σ(S, t) is a determin-

istic function of both the time and the underlying level price.

If the spot price follows a diffusion price of this type, then the model is complete

and the option prices can be computed via a risk-neutral valuation principle.

In order to develop a pricing system, based on the market data, we have to

overcome the following problems:

(i) the available prices represent a restricted subset of strikes and maturities,

(ii) it is necessary to pass from the prices set to the local volatility surface σ(S, t),

(iii) price computation must be done via a discrete scheme able to model the

process (4.1).

A possible procedure for dealing with these problems consists of the following 5

steps (Fig. 3):

(i) computation of the implied volatility surface starting from the market prices,

(ii) computation of the option prices surface starting from the implied volatility

surface,

(iii) computation of the local volatility surface starting from the option prices

surface,

(iv) mapping of the local volatility surface on a discrete model,

(v) computation of the option prices and comparison with the original ones.

Let us now briefly discuss the main steps of such a pricing system.

(i) The first step is an extremely complex modeling task. Indeed, parametric

models are not available and the data paucity increases further its complex-

ity. The approach proposed through this paper is concerned with this mod-

eling task which is addressed through FNNs. Unfortunately the success of

FNNs strongly depends from the choice of the appropriate network’s structure.

This problem is recognized as very complex and the data paucity increases its
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Fig. 3. Pricing system outline.

complexity. Furthermore, data paucity makes the classical algorithms for net-

work’s structure selection extremely difficult and expensive to apply.

(ii) The second step is realized using the celebrated Black’s formula [28].

(iii) The third step is one of the most critical of the entire procedure. It is the

phase concerned with the computation of the local volatility surface starting

from the option prices’ surface. The solution to this problem has been inspired

by the work of Dupire [29, 30], Derman and Kani [31] and Derman, Kani and

Zou [32]. Their works are motivated by the observation that, whenever the

markets are complete and the price process is Markovian, the price process

conditional distribution (for any fixed time) and the local volatility surface

can be computed as explicit functions of the gradient of the price function

with respect to the strike and the time to maturity.

(iv) The fourth step, concerning the modeling of the resulting process described by

(4.1), has been solved using a trinomial scheme which allows to assign to each

node of the tree a different local volatility value according to its time and spot

level [33].

(v) Finally the comparison between the original option prices and the ones

resulting from the overall procedure is accomplished in order to evaluate the

usefulness of the overall approach and in particular represents a measure of

the precision which can be obtained through FNNs modeling.

The pricing system must satisfy the following two requirements:

(i) to “price” correctly (all) the traded instruments in the same asset class,

(ii) to satisfy “stylized facts” (beliefs),

and is used throughout this section not only as the basic tool for option pricing but

also for validating further the approach introduced in the previous section for the

network’s structure selection.

To this end, the problem of option pricing for the USD/DEM option is

considered. In particular a set of 25 USD/DEM OTC (Table 1), where the op-

tions correspond to 20-delta and 25-delta USD/DEM puts and calls and 50-delta

calls, is considered.
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Table 1. USD/DEM option market prices.

Maturity Type Strike Bid Offer Mid IVOL

Call 1.5421 0.0064 0.0076 0.0070 14.9

Call 1.5310 0.0086 0.0100 0.0093 14.8

30 days Call 1.4872 0.0230 0.0238 0.0234 14.0

Put 1.4479 0.0085 0.0098 0.0092 14.2

Put 1.4371 0.0063 0.0074 0.0069 14.4

Call 1.5621 0.0086 0.0102 0.0094 14.4

Call 1.5469 0.0116 0.0135 0.0126 14.5

60 days Call 1.4866 0.0313 0.0325 0.0319 13.8

Put 1.4312 0.0118 0.0137 0.0128 14.0

Put 1.4178 0.0087 0.0113 0.0100 14.2

Call 1.5764 0.0101 0.0122 0.0112 14.1

Call 1.5580 0.0137 0.0160 0.0149 14.1

90 days Call 1.4856 0.0370 0.0385 0.0378 13.5

Put 1.4197 0.0141 0.0164 0.0153 13.6

Put 1.4038 0.0104 0.0124 0.0114 13.6

Call 1.6025 0.0129 0.0152 0.0141 13.1

Call 1.5779 0.0175 0.0207 0.0191 13.1

180 days Call 1.4823 0.0494 0.0515 0.0505 13.1

Put 1.3902 0.0200 0.0232 0.0216 13.7

Put 1.3682 0.0147 0.0176 0.0162 13.7

Call 1.6297 0.0156 0.0190 0.0173 13.3

Call 1.5988 0.0211 0.0250 0.0226 13.2

270 days Call 1.4793 0.0586 0.0609 0.0598 13.0

Put 1.3710 0.0234 0.0273 0.0254 13.2

Put 1.3455 0.0173 0.0206 0.0190 13.2

The implied volatility corresponding to the mid-market price is displayed in the

last column (IVOL).

Prices computed using the pricing system are compared with the market ones

and the estimated volatility surfaces, computed using neural networks and Dupire’s

formula, are analyzed in order to verify that their shape satisfy the market behavior.

From Table 1, we can describe the data set of examples D = (X,Y) in the

following way:

• x(1) “time to maturity”,

• x(2) “strike price”,

• yn, “implied volatility”.

In order to accomplish the implied volatility modeling task we used all the

available data points, i.e. 25 observations.
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Table 2. α-rejectable neurons for single and two hidden layers networks.

Network ELR ALR S(θ)

φ(| x |,1) none none 1.77 · 10−4

φ(| x |,2) none all 4.90 · 10−5

φ(| x |,3) h1 all 4.21 · 10−5

φ(| x |,4) h4 all 3.84 · 10−5

φ(| x |,5) h4,h5 all 48.74 · 10−6

φ(| x |,1,1) none all 2.26 · 10−4

φ(| x |,2,1) none all 4.93 · 10−5

φ(| x |,3,1) h
(1)
1 , h

(1)
2 all 3.33 · 10−5

φ(| x |,2,2) h
(1)
1 , h

(1)
2 all 1.82 · 10−5

φ(| x |,3,2) h
(1)
1 , h

(1)
2 , h

(2)
1 all 1.09 · 10−5

Then, accordingly to what presented for the network’s structure selection, we set

the maximum number of hidden neurons for the single layer FNN to five, i.e. H = 5

while for two layer FNN we set the maximum number of hidden neurons for the

first layer to three, i.e. H
(1)
max = 3.

Then, applying Steps 1 to 6 from the above described procedure for the network’s

structure selection, with confidence level of α = 0.99, we obtain the set of the

candidate networks ΦD
0.99 (Table 2) for both cases when approximated likelihood

regions (ALR) and exact likelihood regions (ELR) are used.

From Table 2 we can read off the set of the candidate networks. In particular

we can notice that whether the approximated likelihood regions are used this set is

ΦD,a
0.99 = {φ(|x|, 1)}, while in the case when the exact likelihood regions are used it

is ΦD,e
0.99 = {φ(|x|, 1), φ(|x|, 2), φ(|x|, 1, 1), φ(|x|, 2, 1)}.
Let us cope with this discrepancy. To this end, accordingly to Step 7, the first

network which should be inspected is φ(|x|, 2). For this network, in the case when

the approximated likelihood regions are used, all the neurons are rejected. To ex-

plain this discrepancy, let us analyze the profile t plots for the parameters associated

with the neurons h1 and h2.

The exact likelihood interval, for each parameter θp, can be computed by means

of its profile t plot. Indeed, the profile t plot gives a set of values for δ(θp), θ̃−p and

τ(θp) which allows to plot τ(θp) versus δ(θp). Then, we can compute the exact

likelihood region, for each parameter θp, according to the following formula:

θp = θ̂p + (δ(θp) · se(θ̂p)) (4.2)

◦ The neuron h1 is associated with the weights w
(1)
11 , w

(1)
21 and w

(2)
1 corresponding

respectively to θ1, θ3 and θ7 in the θ parameter space. The corresponding profile

t plots are reported in Fig. 4 in which we have included a straight line with slope

1 (solid), corresponding to the linear case, axes in scales of δ(θp) and nominal

confidence level, which make easy to read off likelihood intervals. Dashed lines

show the 100 (0.99)% marginal likelihood interval.
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Fig. 4. Profile t plots for θ1, θ3 and θ7 (neuron h1).

Table 3. Approximated and exact likelihood regions for the neuron h1.

ALR ELR

JLI({θ1, θ3}, 0.99) =

[
−1.39, 5
−5.12, 1.9

]
JLI({θ1, θ3}, 0.99) =

[
0.55, 97
−30, −0.32

]
MLI({θ7}, 0.99) = [−4.95, 1.95] MLI({θ7}, 0.99) = [−∞,−0.109]

The analysis of the plots reported in Fig. 4 shows severe nonlinearity associated

with these parameters. Indeed, the profiles are badly curved. In particular, the

profile t plot for parameter θ7 tends to asymptote and the likelihood interval does

not close on the left side.

The 100 (0.99)% exact likelihood intervals are very different from their linear

approximations (Table 3).

Thus, applying Definition 3.4 to the neuron h1, in the case when the ELR

are used h1 is α-non rejectable. While in the case when the ALR are used it is

α-rejectable.

◦ The neuron h2 is associated with the weights w
(1)
12 , w

(1)
22 and w

(2)
2 corresponding

respectively to θ2, θ4 and θ8 in the θ parameter space. The profile t plots are

reported in Fig. 5. As for the neuron h1, the linear approximation is inadequate to

the extent of properly summarizing the estimation situation. Indeed, the profiles

are badly curved. In particular, the profile t plots for the parameters θ4 and θ8

tend to asymptote and the likelihood intervals do not close.
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Fig. 5. Profile t plots for θ2, θ4 and θ8 (neuron h2).

Table 4. Approximated and exact likelihood regions for the neuron h2.

ALR ELR

JLI({θ2, θ4}, 0.99) =

[
−3.68, 2.28
−8.35, 5.45

]
JJLI({θ2, θ4}, 0.99) =

[
−16.3, 0.062
−∞, 0.21

]
MLI({θ8}, 0.99) = [−1.36, 1.38] MLI({θ8}, 0.99) = [10.7,+∞]

Therefore also for the neuron h2 some evidence exists that its parameters are

extremely nonlinear. Indeed, the exact likelihood intervals for the parameters asso-

ciated with the neuron h2 are extremely different from their linear approximations

as can be noticed from Table 4.

Thus, applying Definition 3.4 to the neuron h2, in the case when the ELR

are used h2 is α-non rejectable, while in the case when the ALR are used it is

α-rejectable.

In such a situation the correct approach is to use the exact likelihood regions

which drive to draw the right conclusions about the significance of the model’s

parameters.

Once we realize that the set of models which should be analyzed is obtained

through the exact likelihood regions, we are left with the problem of checking the

assumptions (3.4).

Thus we have to analyze the residual distribution resulting from the model

φ(|x|, 2).
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Fig. 6. Histogram plot of the φ(|x|, 2) residuals.

Fig. 7. Implied volatility surface.

In order to accomplish this task we can use graphical procedures and/or tests

of normality as Shapiro–Wilk or Kolmogorov–Smirnoff [25].

In particular, the Shapiro–Wilk test statistic has a value of 0.978596 resulting

in a probability of 0.8516.

Furthermore, from the histogram plot (Fig. 6), we conclude that there is no

statistical evidence that the residual distribution differs significantly from the

gaussian one.

This suggests that the model φ(|x|, 2) can be used for predicting new cases from

the DGP.

In Fig. 7 the implied volatility surface obtained by means of φ(|x|, 2) is reported.

It is interesting to analyze some sections of the obtained implied volatility sur-

face (Fig. 8).

The first section (Fig. 8(a)) is concerned with the so-called strike structure. In

such a case, for any fixed expiration, the implied volatility varies with the strike

level. As can be seen the implied volatility increases for decreasing strikes, i.e. the

out-of-the-money puts trade at higher implied volatility than the out-of-the-money

calls.

The second section (Fig. 8(b)) represents the term structure. For any fixed strike

level, the implied volatility varies with the time to expiration. We can observe how

the short-term implied volatility exceeds the long-term implied volatility.
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(a) (b)

Fig. 8. Strike and term structures. (a) Strike structure and (b) Term structure.

Fig. 9. Local volatility surface.

According to what was presented concerning the computational scheme for op-

tion pricing, and starting from the implied volatility surface, the local volatility

surface has been computed using the Dupire’s formula.

An important transformation is performed through this step: The implied

volatility function σimp(K,T ), function of the strike price K and of the time to

maturity T , is used to compute the corresponding local volatility function σloc(S, t),

function of the future underlying level S and of the time t.

The local volatility surface, obtained for the USD/DEM market, is reported in

Fig. 9.

Let us consider two sections of the local volatility surface (Fig. 10).

The first section (Fig. 10(a)), which is respect to the spot price, describes the

market’s consensus for the future local volatility with respect to the spot price

changes.

The second section (Fig. 10(b)) shows the shape of the volatility function for

fixed values of the spot price.
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(a)

(b)

Fig. 10. Spot and time structures. (a) Sport structure and (b) Time structure.

Finally, in order to validate the proposed approach, we have to first compute the

option prices for the original set of strikes and maturities (see Table 1) and second

to perform a comparison of such values with the real ones. In order to cope with

the first task, i.e. the computation of the option prices for the original set of strikes

and maturities, we utilize a trinomial tree capable to model the diffusion process of

the form
dS

S
= σloc(S, t) + µ(S, t)

for which the trend µ(s, t) and the volatility σloc(s, t) explicitly depend from the

underlying level S and time t. The results of the second task, i.e. the comparison

between the computed and the original price values, are reported in Table 5.

From Table 5 it is immediate to verify how the pricing system correctly prices

the considered options. Indeed, the computed values are very close to the market

prices, and always within the bid-ask spread, reflecting the market uncertainty.
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Table 5. USD/DEM option market prices comparison.

Maturity Type Strike Bid Offer Mid Computed

Call 1.5421 0.0064 0.0076 0.0070 0.0071

Call 1.5310 0.0086 0.0100 0.0093 0.0091

30 days Call 1.4872 0.0230 0.0238 0.0234 0.0238

Put 1.4479 0.0085 0.0098 0.0092 0.0093

Put 1.4371 0.0063 0.0074 0.0069 0.0070

Call 1.5621 0.0086 0.0102 0.0094 0.0098

Call 1.5469 0.0116 0.0135 0.0126 0.0125

60 days Call 1.4866 0.0313 0.0325 0.0319 0.0321

Put 1.4312 0.0118 0.0137 0.0128 0.0129

Put 1.4178 0.0087 0.0113 0.0100 0.0099

Call 1.5764 0.0101 0.0122 0.0112 0.0115

Call 1.5580 0.0137 0.0160 0.0149 0.0148

90 days Call 1.4856 0.0370 0.0385 0.0378 0.0382

Put 1.4197 0.0141 0.0164 0.0153 0.0156

Put 1.4038 0.0104 0.0124 0.0114 0.0119

Call 1.6025 0.0129 0.0152 0.0141 0.0150

Call 1.5779 0.0175 0.0207 0.0191 0.0198

180 days Call 1.4823 0.0494 0.0515 0.0505 0.0514

Put 1.3902 0.0200 0.0232 0.0216 0.0206

Put 1.3682 0.0147 0.0176 0.0162 0.0152

Call 1.6297 0.0156 0.0190 0.0173 0.0170

Call 1.5988 0.0211 0.0250 0.0226 0.0229

270 days Call 1.4793 0.0586 0.0609 0.0598 0.0603

Put 1.3710 0.0234 0.0273 0.0254 0.0256

Put 1.3455 0.0173 0.0206 0.0190 0.0188

5. Conclusions

This paper shows two main opportunities.

The first one is the particular appealing of FNNs modeling in the case of op-

tion pricing and in particular for modeling the implied volatility surface in the case

when appropriate procedures are adopted. More precisely the paper puts emphasis

on realizing that the FNNs training is a nonlinear least squares problem and then

the main tools from nonlinear regression analysis should be used. This reccomen-

dation is particularly important expecially in the case when few data points are

available which is exactly the case of the implied volatility modeling we considered.

Furthermore the profile t function reveals how nonlinear the estimation situation is

and then could be used for evaluating the importance for any explanatory variable.
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The second opportunity is represented by the fact that it is possible to pass

from a set of liquid option prices to a pricing system by means of which we can

value other derivatives whose prices are not readily available from the market,

i.e. illiquid European options, American options and Exotic options, secure in the

knowledge that the system is valuing all the instruments consistently with the

market. The proposed pricing system can be used for pricing Barrier options, where

the probability of striking the barrier is sensitive to the shape of the smile, for

creating static hedge portfolios for Exotic options or for generating Monte Carlo

distributions for valuing path-dependent options.
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