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THE VALUATION OF RISK ASSETS AND THE SELECTION OF
RISKY INVESTMENTS IN STOCK
PORTFOLIOS AND CAPITAL BUDGETS*

John Lintner

Introduction and Preview of Some Conclusions

HE effects of risk and uncertainty upon
asset prices, upon rational decision rules
for individuals and institutions to use in selecting
security portfolios, and upon the proper selection
of projects to include in corporate capital bud-
gets, have increasingly engaged the attention of
professional economists and other students of the
capital markets and of business finance in recent
years. The essential purpose of the present paper
is to push back the frontiers of our knowledge of
the logical structure of these related issues, albeit
under idealized conditions. The immediately
following text describes the contents of the paper
and summarizes some of the principal results.
The first two sections of this paper deal with
the problem of selecting optimal security port-
folios by risk-averse investors who have the al-
ternative of investing in risk-free securities with
a positive return (or borrowing at the same rate
of interest) and who can sell short if they wish.
The first gives alternative and hopefully more
transparent proofs (under these more general
market conditions) for Tobin’s important “sep-
aration theorem” that *. the proportion-
ate composition of the non-cash assets is inde-
pendent of their aggregate share of the invest-
ment balance . . . ”’ (and hence of the optimal
holding of cash) for risk averters in purely compe-

*This paper is another in a series of interrelated theoretical
and statistical studies of corporate financial and investment
policies being made under grants from the Rockefeller Founda-
tion, and more recently the Ford Foundation, to the Harvard
Business School. The generous support for this work is most
gratefully acknowledged. The author is also much indebted
to his colleagues Professors Bishop, Christenson, Kahr, Raiffa,
and (especially) Schlaifer, for extensive discussion and com-
mentary on an earlier draft of this paper; but responsibility for
any errors or imperfections remains strictly his own.

[Professor Sharpe’s paper, “Capital Asset Prices: A Theory
of Market Equilibrium Under Conditions of Risk” (Journal of
Finance, September 1964) appeared after this paper was in
final form and on its way to the printers. My first section,
which parallels the first half of his paper (with corresponding
conclusions), sets the algebraic framework for sections II,
IIT and VI, (which have no counterpart in his paper) and for
section IV on the equilibrium prices of risk assets, concerning
which our results differ significantly for reasons which will be
explored elsewhere. Sharpe does not take up the capital
budgeting problem developed in section V below.]

titive markets when utility functions are quad-
ratic or rates of return are multivariate normal.!
We then note that the same conclusion follows
from an earlier theorem of Roy’s [19] without
dependence on quadratic utilities or normality.
The second section shows that if short sales are
permilled, the best portfolio-mix of risk assets
can be determined by the solution of a single
simple set of simultaneous equations without
recourse to programming methods, and when
covariances are zero, a still simpler ratio scheme
gives the optimum, whether or not short sales
are permitted. When covariances are not all
zero and short sales are excluded, a single quad-
ratic programming solution is required, but
sufficient.

Following these extensions of Tobin’s classic
work, we concentrate on the set of risk assets
held in risk averters’ portfolios. In section ITI we
develop various significant equilibrium proper-
ties within the risk asset portfolio. In particular,
we establish conditions under which stocks will
be held long (short) in optimal portfolios even
when “risk premiums” are negative (positive).
We also develop expressions for different combi-
nations of expected rate of return on a given
security, and its standard deviation, variance,
and/or covariances which will result in the same
relative holding of a stock, ceteris paribus. These
“indifference functions” provide direct evidence
on the moot issue of the appropriate functional
relationships between “required rates of return”
and relevant risk parameter(s) — and on the
related issue of how “risk classes” of securities
may best be delineated (if they are to be used).2

Tobin [21, especially pp. 82-85]. Tobin assumed that
funds are to be a allocated only over “monetary assets” (risk-
free cash and default-free bonds of uncertain resale price) and
allowed no short sales or borrowing. See also footnote 24 be-
low. Other approaches are reviewed in Farrar [38].

*It should be noted that the classic paper by Modigliani
and Miller [16] was silent on these issues. Corporations were
assumed to be divided into homogeneous classes having the
property that all shares of all corporations in any given class
differed (at most) by a “scale factor,” and hence (a) were per-
fectly correlated with each other and (b) were perfect substi-
tutes for each other in perfect markets (p. 266). No comment
was made on the measure of risk or uncertainty (or other
attributes) relevant to the identification of different “equiva-

[13]



14

There seems to be a general presumption among
economists that relative risks are best measured
by the standard deviation (or coefficient of
variation) of the rate of return,? but in the simp-
lest cases considered — specifically when all
covariances are considered to be invariant (or
zero) — the indifference functions are shown to
be linear between expected rates of return and
their variance, not standard deviation.t (With
variances fixed, the indifference function between
the ith expected rate of return and its pooled
covariance with other stocks is hyperbolic.)
There is no simple relation between the expected
rate of return required to maintain an investor’s
relative holding of a stock and its standard devia-
tion. Specifically, when covariances are non-
zero and variable, the indifference functions are
complex and non-linear even if it is assumed that
the correlations between rates of return on differ-
ent securities are invariant.

To this point we follow Tobin [21] and Marko-
witz [14] in assuming that current security prices
are given, and that each investor acts on his own
(perhaps unique) probability distribution over
rates of return given these market prices. In the
rest of the paper, we assume that investors’
joint probability distributions pertain to dollar
returns rather than rates of return’, and for
simplicity we assume that all investors assign
identical sets of means, variances, and covari-
ances to the distribution of these dollar returns.
However unrealisic the latter assumption may
be, it enables us, in section IV, to derive a set of
(stable) equilibrium market prices which at
least fully and explicitly reflect the presence of

lent return” classes. Both Propositions I (market value of firm
independent of capital structure) and II (the linear relation
between the expected return on equity shares and the debt-
equity ratio for firms within a given class) are derived from
the above assumptions (and the further assumption that cor-
porate bonds are riskless securities); they involve no inter-
class comparisons, “. . . nor do they involve any assertion as
to what is an adequate compensation to investors for assuming
a given degree of risk. . . .” (p. 279).

3This is, for instance, the presumption of Hirschleifer
(8, p. 113], although he was careful not to commit himself to
this measure alone in a paper primarily focussed on other is-
sues. For an inductive argument in favor of the standard
deviation of the rate of return as the best measure of risk, see
Gordon [5, especially pp. 69 and 761. See also Dorfman in
[3, p. 129 ff.] and Baumol [2].

4Except in dominantly “short” portfolios, the constant
term will be larger, and the slope lower, the higher the (fixed)
level of covariances of the given stocks with other stocks.

5The dollar return in the period is the sum of the cash
dividend and the increase in market price during the period.
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uncertainty per se (as distinct from the effects of
diverse expectations), and to derive further
implications of such uncertainty. In particular,
the aggregate market value of any company’s
equity is equal to the capitalization at the risk-
free interest rate of a uniquely defined certainty-
equivalent of the probability distribution of the
aggregate dollar returns to all holders of its stock.
For each company, this certainty equivalent is
the expected value of these uncertain returns less
an adjustment term which is proportional to
their aggregate risk. The factor of proportion-
ality is the same for all companies in equilibirum,
and may be regarded as a market price of dollar
risk. The relevant risk of each company’s stock
is measured, moreover, not by the standard de-
viation of its dollar returns, but by the sum of the
variance of its own aggregate dollar returns and
their fotal covariance with those of all other stocks.

The next section considers some of the impli-
cations of these results for the normative aspects
of the capital budgeting decisions of a company
whose stock is traded in the market. For sim-
plicity, we impose further assumptions required
to make capital budgeting decisions independent
of decisions on how the budget is financed.® The
capital budgeting problem becomes a quadratic
programming problem analogous to that intro-
duced earlier for the individual investor. This
capital budgeting-portfolio problem is formula-
ted, its solution is given and some of its more
important properties examined. Specifically,
the minimum expected return (in dollars of ex-
pected present value) required to justify the
allocation of funds to a given risky project is
shown to be an increasing function of each of the
following factors: (2) the risk-free rate of return;
(#2) the “market price of (dollar) risk”; (742) the
variance in the project’s own present value return;
(7v) the project’s aggregate present value re-
turn-covariance with assets already held by the
company, and (v) its total covariance with other
projects concurrently included in the capital
budget. Al five factors are involved explicitly
in the corresponding (derived) formula for the
minimum acceptable expecied rate of return on an
investment project. In this model, all means

SWe also assume that common stock portfolios are not
“inferior goods,” that the value of all other common stocks is
invariant, and any effect of changes in capital budgets on the
covariances between the values of different companies’ stocks is
ignored.
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and (co)variances of present values must be
calculated at the riskless rate 7*.  We also show
that there can be no “risk-discount’” rate to be used
in computing present values to accept or reject
individual projects. In particular, the “cost of
capital” as defined (for uncertainty) anywhere
in the literature is not the appropriate rate to use
in these decisions even #f all new projects have the
same “risk” as existing assets.

The final section of the paper briefly examines
the complications introduced by institutional
limits on amounts which either individuals or
corporations may borrow at given rates, by rising
costs of borrowed funds, and certain other “real
world” complications. It is emphasized that
the results of this paper are not being presented
as directly applicable to practical decisions, be-
cause many of the factors which matter very
siginificantly in practice have had to be ignored
or assumed away. The function of these sim-
plifying assumptions has been to permit a
rigorous development of theoretical relationships
and theorems which reorient much current
theory (especially on capital budgeting) and pro-
vide a basis for further work.” More detailed
conclusions will be found emphasized at numerous
points in the text.

I —Portfolio Selection for an Individual Investor:
The Separation Theorem

Market Assumptions

We assume that (1) eack individual investor
can invest any part of his capital in certain risk-
free assets (e. g. deposits in insured savings ac-
counts®) all of which pay interest at a common
positive rate, exogeneously determined; and that
(2) he can invest any fraction of his capital in any
or all of a given finite set of 7isky securities which
are (3) traded in a single purely competitive
market, free of transactions costs and taxes, at
given market prices,? which consequently do not
depend on his investments or transactions. We
also assume that (4) any investor may, if he
wishes, borrow funds to invest in risk assets. Ex-

"The relation between the results of this paper and the
models which were used in [11] and [12] is indicated at the end
of section V.

8Government bonds of appropriate maturity provide
another important example when their “yield” is substituted
for the word “interest.”

9Solely for convenience, we shall usually refer to all these
investments as common stocks, although the analysis is of
course quite general.

cept in the final section, we assume that the
interest rate paid on such loans is the same as he
would have received had he invested in risk-free
savings accounts, and that there is no limit on the
amount he can borrow at this rate. Finally (5)
he makes all purchases and sales of securities and
all deposits and loans at discrete points in time,
so that in selecting his portfolio at any “trans-
action point,” each investor will consider only
(@) the cash throw-off (typically interest pay-
ments and dividends received) within the period
to the next transaction point and (#z) changes in
the market prices of stocks during this same
period. The return on any common stock is de-
fined to be the sum of the cash dividends received
plus the change in its market price. The return
on any portfolio is measured in exactly the same
way, including interest received or paid.

Assumptions Regarding Investors

(1) Since we posit the existence of assets
yielding positive risk-free returns, we assume that
each investor has already decided the fraction of
his total capital he wishes to hold in cash and
non-interest bearing deposits for reasons of
liquidity or transactions requirements.’® Hence-
forth, we will speak of an investor’s capital as the
stock of funds he has available for profitable
investment after optimal cash holdings have been
deducted. We also assume that (2) each investor
will have assigned a joint probability distribution
incorporating his best judgments regarding the
returns on all individual stocks, or at least will
have specified an expected value and variance to
every return and a covariance or correlation to
every pair of returns. All expected values of
returns are finite, all variances are non-zero and
finite, and all correlations of returns are less than
one in absolute value (i. e. the covariance matrix
is positive-definite). The investor computes the
expected value and variance of the total return
on any possible portfolio, or mix of any specified
amounts of any or all of the individual stocks, by
forming the appropriately weighted average or
sum of these components expected returns,
variances and covariances.

10These latter decisions are independent of the decisions
regarding the allocation of remaining funds between risk-free
assets with positive return and risky stocks, which are of
direct concern in this paper, because the risk-free assets with
positive returns clearly dominate those with no return once
liquidity and transactions requirements are satisfied at the
margin.
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With respect to an investor’s criterion for
choices among different attainable combinations
of assets, we assume that (3) if any two mixtures
of assets have the same expected return, the inves-
tor will prefer the one having the smaller variance
of return, and if any two mixtures of assets have
the same variance of returns, he will prefer the
one having the greater expected value. Tobin [21,
pp- 75-76] has shown that such preferences are
implied by maximization of the expected value
of a von Neumann-Morgenstern utility function
if either (a) the investor’s utility function is con-
cave and quadratic or (b) the investor’s witility
function is concave, and he has assigned probabil-
ity distributions such that the returns on all pos-
sible portfolios differ at most by a location and scale
parameter, (which will be the case if the joint dis-
tribution of all individual stocks is multivariate
normal).

Alternative Proofs of the Separation T heorem

Since the interest rates on riskless savings
bank deposits (“loans to the bank’’) and on bor-
rowed funds are being assumed to be the same,
we can treat borrowing as negative lending.
Any portfolio can then be described in terms of
(i) the gross amount invested in stocks, (ii) the
fraction of this amount invested in each indivi-
dual stock, and (iii) the net amount invested in
loans (a negative value showing that the investor
has borrowed rather than lent). But since the
total net investment (the algebraic sum of stocks
plus loans) is a given amount, the problem sim-
ply requires finding the jointly optimal values
for (1) the ratio of the gross investment in stocks
to the total net investment, and (2) the ratio of
the gross investment in each individual stock to
the total gross investment in stocks. It turns out
that although the solution of (1) depends upon
that of (2), in our context the latter is indepen-
dent of the former. Specifically, the separation
theorem asserts that:

Given the assumptions about borrowing,
lending, and investor preferences stated earlier in
this section, the optimal proportionate composition
of the stock (risk-asset) porifolio (i.e. the solution
to sub-problem 2 above) is independent of the
ralio of the gross investment in stocks to the total net
investment.

Tobin proved this important separation theo-
rem by deriving the detailed sclution for the

optimal mix of risk assets conditional on a given
gross investment in this portfolio, and then for-
mally proving the critical invariance property
stated in the theorem. Tobin used more restric-
tive assumptions that we do regarding the avail-
able investment opportunities and he permitted
no borrowing.! Under our somewhat broadened
assurrptions in these respects, the problem fits
neatly into a traditional Fisher framework, with
different available combinations of expected
values and standard deviations of return on al-
ternative stock portfolios taking the place of
the original “production opportunity” set and
with the alternative investment choices being
concurrent rather than between time periods.
Within this framework, alternative and more
transparent proofs of the separation theorem
are available which do not involve the actual
calculation of the best allocation in stocks over
individual stock issues. As did Fisher, we shall
present a simple algebraic proof'?, set out the
logic of the argument leading to the theorem, and
depict the essential geomretry of the problem.!
As a preliminary step, we need to establish the
relation between the investor’s total investment
in any arbitrary mixture or portfolio of individual
stocks, his total net return from all his invest-
ments (including riskless assets and any borrow-
ing), and the risk parameters of his investment
position. Let the interest rate on riskless assets
or borrowing be r*, and the uncertain return (divi-
dends plus price appreciation) per dollar invested
in the given portfolio of stocks be r. Let w rep-
resent the ratio of gross investment in stocks to

"Tobin considered the special case where cash with no
return was the only riskless asset available. While he formally
required that all assets be held in non-negative quantities
(thereby ruling out short sales), and that the total value of risk
assets held not be greater than the investment balance available
without borrowing, these non-negativity and maximum value
constraints were not introduced into his formal solution of the
optimal investment mix, which in turn was used in proving the
invariance property stated in the theorem. Our proof of the
theorem is independent of the programming constraints neglec-
ted in Tobin’s proof. Later in this section we show that when
short sales are properly and explicitly introduced into the set
of possible portfolios, the resulting equations for the optimum
portfolio mix are identical to those derived by Tobin, but that
insistence on no short sales results in a somewhat more complex
programming problem (when covariances are non-zero), which
may however, be readily handled with computer programs now
available.

2An alternative algebraic proof using utility functions
explicitly is presented in the appendix, note I.

13Lockwood Rainhard, Jr. hasalsoindependently developed
and presented a similar proof of the theorem in an unpublished
seminar paper.
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total net investment (stock plus riskless assets
minus borrowing). Then the investor’s net
return per dollar of total net investment will be
1) 9 =1 —wyr*+uf =r*+uw(@F—*); 0=w< «,
where a value of w<1 indicates that the investor
holds some of his capital in riskless assets and
receives interest amounting to (1 —w)r*; while
w> 1 indicates that the investor borrows to buy
stocks on margin and pays interest amounting to
the absolute value of (1—w)r*. From (1) we
determine the mean and variance of the net re-
turn per dollar of total net investment to be:
(2a) ¥ =r*4+w(@—r*), and

(20) % =uteh.

Finally, after eliminating w between these two
equations, we find that the direct relation be-
tween the expected value of the investor’s net
return per dollar of his total net investment and
the risk parameters of his investment position is:
(3a¢) ¥ =r*+06qy, where

(30) 6 =(F—7*) /or

In terms of any arbitrarily selected stock port-
folio, therefore, the investor’s net expected rate
of return on his total net investment is related
linearly to the risk of return on his total net
investment as measured by the standard deviation
of hisreturn. Given any selected stock portfolio,
this linear function corresponds to Fisher’s
“market opportunity line’’; its intercept is the
risk-free rate r* and its slope is given by ¢, which
is determined by the parameters 7 and ¢, of the
particular stock portfolio being considered. We
also see from (2a) that, by a suitable choice of w,
the investor can use any stock mix (and its asso-
ciated “market opportunity line”’) to obtain an
expected return, 4, as high as he likes; but that,
because of (26 )and (3b), as he increases his in-
vestment w in the (tentatively chosen) mix, the
standard deviation ¢, (and hence the variance
¢%) of the return on his total investment also
becomes proportionately greater.

Now consider all possible stock porifolios.
Those portfolios having the same ¢ value will
lie on the same ‘““market opportunity line,” but
those having different ¢ values will offer differ-
ent ‘“market opportunity lines” (between expected
return and risk) for the investor to use. The in-
vestor’s problem is to choose which stock port-
folio-mix (or market opportunity line or ¢ value)
to use and how intensively to use it (the proper

value of w). Since any expected return ¥ can be
obtained from any stock mix, an investor adher-
ing to our choice criterion will minimize the
variance of his over-all return ¢?% associated with
any expected return he may choose by confining
all his investment in stocks to the mix with the
largest 0 value. This portfolio minimizes the
variance associated with any § (and hence any w
value) the investor may prefer, and consequently,
is independent of § and w. This establishes the
separation theorem', once we note that our
assumptions regarding available portfolios® in-
sure the existence of a maximum 6.

It is equally apparent that after determining
the optimal stock portfolio (mix) by maximizing
6, the investor can complete his choice of an
over-all investment position by substituting
the ¢ of this optimal mix in (3) and decide which
over-all investment position by substituting
of the available (§, g,) pairs he prefers by refer-
ring to his own utility function. Substitution
of this best § value in (2a) determines a unique
best value of the ratio w of gross investment in
the optimal stock portfolio to his total net
investment, and hence, the optimal amount of
investments in riskless savings deposits or the
optimal amount of borrowing as well.

This separation theorem thus has four immedi-
ate corrolaries which can be stated:

(7) Given the assumptions about borrowing
and lending stated above, any investor whose
choices maximize the expectation of any particu-
lar utility function consistent with these condi-
tions will make identical decisions regarding the
proportionate composition of his stock (risk-asset)
portfolio. This is true regardless of the particular
utility function'® whose expectation he maximizes.

(71) Under these assumptions, only a single
point on the Markowitz “Efficient Frontier” s
relevant to the investor’s decision regarding his
investments in risk assets.”” (The next section

14 See also the appendix, note I for a different form of proof.

15Specifically, that the amount invested in any stock in
any stock mix is infinitely divisible, that all expected returns
on individual stocks are finite, that all variances are positive
and finite, and that the variance-covariance matrixispositive-
definite.

1When probability assessments are multivariate normal,
the utility function may be polynomial, exponential, etc.
Even in the ‘“non-normal” case when utility functions are
quadratic, they may vary in its parameters. See also the
reference to Roy’s work in the text below.

Y"When the above conditions hold (see also final para-
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shows this point can be obtained directly without
calculating the remainder of the efficient set.)

Given the same assumptions, (447) the para-
meters of the investor’s particular utility within
the relevant set determine only the ratio of his
total gross investment in stocks to his total #et
investment (including riskless assets and borrow-
ing) ; and (7v) the investor’s wealth is also, conse-
quently, relevant to determining the absolute size
of his investment in individual stocks, but »of to
the relative distribution of his gross investment in
stocks among individual issues.

The Geomelry of the Separation Theorem and Its
Corrolaries

The algebraic derivations given above can
be represented graphically as in chart 1. Any
given available stock portfolio is characterized
by a pair of values (or, 7) which can be repre-
sented as a point in aplane withaxes ¢, and #.
Our assumptions insure that the pointsrepresent-
ing all available stock mixes lie in a finite region,
all parts of which lie to the right of the vertical
axis, and that this region is bounded by a closed
curve.’® The contours of the investor’s utility
function are concave upward, and any movement
in a north and or west direction denotes con-
tours of greater utility. Equation (3) shows that
all the (gy, y) pairs attainable by combining,
borrowing, or lending with any particular stock
portfolio lie on a ray from the point (0, 7¥)
though the point corresponding to the stock mix
in question. Each possible stock portfolio thus
determines a unique ‘‘market opportunity line”.
Given the properties of the utility function, it is
obvious that shifts from one possible mix to
another which rofate the associated market op-
portunity line counter colckwise will move the inves-
tor to preferred positions regardless of the point on
the line he had tentatively chosen. The slope of
this market-opportunity line given by (3) is 6,
and the limit of the favorable rotation is given
by the maximum attainable 6, which identifies
the optimal mix M.® Once this best mix, M,

graph of this section), the modest narrowing of the relevant
range of Markowitz’ Efficient Set suggested by Baumol [2] is
still larger than needed by a factor strictly proportionate to the
number of portfolios he retains in his truncated set! This is
true since the relevant set is a single portfolio under these con-
ditions.

18See Markowitz [14] as cited in the appendix, note 1.

19The analogy with the standard Fisher two-period pro-
duction-opportunity case in perfect markets with equal bor-

has been determined, the investor completes the
optimization of his total investment position
by selecting the point on the ray through M
which is tangent to a utility contour in the
standard manner. If his utility contours are as
in the U; set in chart 1, he uses savings accounts
and does not borrow. If his utility contours are
as in U; set, he borrows in order to have a gross
investment in his best stock mix greater than his
net investment balance.

Risk Aversion, Normality and the Separation
Theorem

The above analysis has been based on the
assumptions regarding markets and investors
stated at the beginning of this section. One
crucial premise was investor risk-aversion in the
form of preference for expected return and prefer-
ence against return-variance, ceteris paribus. We
noted that Tobin has shown that either concave-
quadratic utility functions or multivariate nor-
mality (of probability assessments) and any con-
cave utility were sufficient conditions to validate
this premise, but they were not shown (or alleged)
to be necessary conditions. This is probably for-
tunate because the quadratic utility of income
(or wealth!) function, in spite of its popularity in
theoretical work, has several undesirably restric-
tive and implausible properties,* and, despite

rowing and lending rates is clear. The optimal set of produc-
tion opportunities available is found by moving along the en-
velope function of efficient combinations of projects onto ever
higher present value lines to the highest attainable. This best
set of production opportunities is independent of the investor’s
particular utility function which determines only whether he
then lends or borrows in the market (and by how much in
either case) to reach hi best over-all position. The only diff-
erences between this case and ours lie in the concurrent nature
of the comparisons (instead of inter-period), and the rotation
of the market opportunity lines around the common pivot of
the riskless return (instead of parallel shifts in present value
lines). See Fisher [4] and also Hirschlaifer [7], figure 1 and
section 1a.

20T brief, not only does the quadratic function imply
negative marginal utilities of income or wealth much “too soon”
in empirical work unless the risk-aversion parameter is very
small — in which case it cannot account for the degree of risk-
aversion empirically found,— it also implies that, over a major
part of the range of empiricaldata,commonstocks, like potatoes
in Ireland, are “inferior” goods. Offering more return at the
same risk would so sate investors that they would reduce their
risk-investments because they were more attractive. (Thereby,
as Tobin [21] noted, denying the negatively sloped demand
curves for riskless assets which are standard doctrine in “liqui-
dity preference theory” — a conclusion which cannot, inciden-
tally, be avoided by “limit arguments” on quadratic utilities
such as he used, once borrowing and leverage are admitted.)
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its mathematical convenience, multivariate nor-
mality is doubtless also suspect, especially per-
haps in considering common stocks.

It is, consequently, very relevant to note that
by using the Bienaymé-Tchebycheff inequality,
Roy [19] has shown that investors operating on
his “Safety First” principle (i.e. make risky in-
vestments so as to minimize the upper bound of
the probability that the realized outcome will fall
below a pre-assigned ‘“‘disaster level”) should
maximize the ratio of the excess expected port-
folio return (over the disaster level) to the
standard deviation of the return on the port-
folio? — which is precisely our criterion of max
6 when his disaster level is equated to the risk-
free rate r*. This result, of course, does not
depend on multivariate normality, and uses a
different argument and form of utility function.

The Separation Theorem, and its Corrolaries
() and (42) above — and all the rest of our follow-
ing analysis which depends on the maximization
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This function also implausibly implies, as Pratt [17] and
Arrow [1] have noted, that the insurance premiums which peo-
ple would be willing to pay to hedge given risks rise progress-
ively with wealth or income. For a related result, see Hicks
[6, p. 8o2].

21 Roy also notes that when judgmental distributions are
multivariate normal, maximization of this criterion minimizes
the probability of ““disaster” (failure to do better in stocks than
savings deposits or government bonds held to maturity). It
should be noted, however, minimization of the probability of
short falls from “disaster” levels in this “normal” case is
strictly equivalent to expected utility maximization under all
risk-averters’ utility functions. The equivalence is not re-
stricted to the utility function of the form (o, 1) (zero if “dis-
aster” occurs, one if it doesn’t), as claimed by Roy [19, p. 432]
and Markowitz [14, p. 293 and following.].

of § — is thus rigorously appropriate in the non-
multivariate normal case for Safety-Firsters who
minimax the stated upper bound of the chance
of doing less well on portfolios including risk
assets than they can do on riskless investments,
just as it is for concave-expected utility maxi-
mizers in the ‘“normal’’ case. On the basis
of the same probability judgments, these Safety-
Firsters will use the same proximate criterion
function (max ) and will choose proportionately
the same risk asset portfolios as the more
orothodox ‘“‘utility maximizers” we have hitherto
considered.

IT — Portfolio Selection: The Optimal Stock Mix

Before finding the optimal stock mix — the
mix which maximizes ¢ in (3b) above —it is
necessary to express the return on any arbitrary
mix in terms of the returns on individual stocks
included in the portfolio. Although short sales
are excluded by assumwption in most of the
writings on portfolio optimization, this restric-
tive assumption is arbitrary for some purposes
at least, and we therefore broaden the analysisin
this paper to include short sales whenever they
are permitted.

Computation of Returns on a Stock Mix, When
Short Sales are Permitted

We assume that there are m different stocks in
the market, denoted by < = 1, 2,.. ., m,and treat
short sales as negative purchases. We shall use
the following basic notation:

|| — The ratio of the gross investment in

the i stock (the market value of the

amount bought or sold) to the gross

investment in all stocks. A positive

value of %; indicates a purchase, while

a negative value indicates a shor? sale.

#i — The return per dollar invested in a

purchase of the i" stock (cash divi-
dends plus price appreciation)

# — As above, the return per dollar inves-

ted in a particular mix or porifolio of

stocks.

Consider now a gross investment in the entire
mix, so that the actual investment in the 4™
stock is equal to |%;]. The returns on purchases
and short sales need to be considered separately.

First, we see that if || is invested in a pur-
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chase (h; > 0), the return will be simply ##:.
For reasons which will be clear immediately how-
ever, we write this in the form:

(4a) h# = h(_<f’i —r*) + Ih,[ r*.

Now suppose that |A;]| is invested in a short
sale (h; < o), this gross investment being equal
to the price received for the stock. (The price
received must be deposited in escrow, and in
addition, an amount equal to margin require-
ments on the current price of the stock sold must
be remitted or loaned to the actual owner of the
securities borrowed to effect the short sale.)
In computing the refurn on a short sale, we
know that the short seller must pay to the
person who lends him the stock any dividends
which accrue while the stock is sold short (and
hence borrowed), and his capital gain (or loss)
is the negative of any price appreciation during
this period. In addition, the short seller will
receive interest at the riskless rate 7* on the
sales price placed in escrow, and he may or may
not also receive interest at the same rate on his
cash remittance to the lender of the stock. To
facilitate the formal analysis, we assume that
both interest components are always received by the
short seller, and that margin requirements are
100%. In this case, the short seller’s refurn per
dollar of his gross investment will be (2r*— 7;),
and if he invests |k, | in the short sale (%;< o),
its contribution to his portfolio return will be:

(4b) lh@I (27* - 7’@) = hi(ii - 7’*) + [hl [ r*.
Since the right-hand sides of (4¢) and (4b) are

identical, the total return per dollar invested in
any stock mix can be written as:

22]p recent years, it has become increasingly common for
the short seller to waive interest on his deposit with the lender
of the security —in market parlance, for the borrowers of
stock to obtain it “flat”— and when the demand for borrowing
stock is large relative to the supply available for this purpose,
the borrower may pay a cash premium to the lender of the
stock. See Sidney M. Robbins, [18, pp. 58-59]. It will be
noted that these practices reduce the expected return of short
sales without changing the variance. The formal procedures
developed below permit the identification of the appropriate
stocks for short sale assuming the expected return is (2r* — 7).
If these stocks were to be borrowed “flat” or a premium paid,
it would be simply necessary to iterate the solution after replacing
(#: — r*) in (4b) and (5) for these stocks with the value (7:) —
and if, in addition, a premium p; is paid, the term (7 + p:)
should be substituted (where p; = o is the premium (if any)
per dollar of sales price of the stock to be paid to lender of the
stock). With equal lending and borrowing rates, changes in
margin requirements will not affect the calculations. (I am
indebted to Prof. Schlaifer for suggesting the use of absolute
values in analyzing short sales.)

(5) 7 =2l — r*) + || r¥]
=p* + E,h,(f-’, - f*)
because Z; |k;| = 1 by the definition of |A4;] .
The expectation and variance of the return on
any stock mix is consequently
(60) 7 =r* + Ezh,(i’z —_ 7’*) = r* + Eihiaéi,
(6b) 7\: = Eijhihj;ij = Ei,‘hihiﬂbﬁ
where #;; represents the variance o,;? when
i =7, and covariances when 7 > j. The notation
has been further simplified in the right-hand
expressions by defining:

€

and making appropriate substitutions in the
middle expressions. The quantity 6 defined in
(3b) can thus be written:
(8) 9 = 7F—r* _ X _ Z‘ihiaﬁi i
@z @Y (Sihikag)
Since %; may be either positive or negative,
equation (6a) shows that a portfolio with
7 2 r* and hence with 6 > o exists if there is
one or more stocks with 7; not exactly equal to
r*. We assume throughout the rest of the paper
that such a portfolio exists.

X, =7; — 7’*,

Determination of the Optimal Stock Portfolio

As shown in the proof of the Separation
Theorem above, the optimal stock portfolio is
the one which maximizes 6 as defined in equa-
tion (8). We, of course, wish to maximize this
value subject to the constraint
(9 Zilh| =1,
which follows from the definition of |%;|. But
we observe from equation (8) that 6 is a komog-
eneous function of order zero in the k;: the value
of 6 is unchanged by any proportionate change in
all ;. Our problem thus reduces to the simpler
one of finding a vector of values yielding the
unconstrained maximum of 6 in equation (8),
after which we may scale these initial solution
values to satisfy the constraint.

T he Optimum Portfolio W hen Short Sales
are Permitted

We first examine the partial derivatives of (8)
with respect to the %; and find:

(10) = (0 [ — Mk + Sisti) ]
where,
(I I) 7\ = 32/(7,;2 = Elhzﬁ,/zzzjhlh,ab“
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The necessary and sufficient conditions on the
relative values of the /%, for a stationary and the
unique (global) maximum?® are obtained by
setting the derivatives in (10) equal to zero,
which give the set of equations

(12) szl + Sy =%, 1 =1,2,...,m;
where we write
(13) Z; = )\}l,

It will be noted the set of equations (12) —
which are identical to those Tobin derived by a
different route?¢— are linear in the own-vari-
ances, pooled covariances, and excess returns of
the respective securities; and since the covariance
matrix % is positive definite and hence non-
singular, this system of equations has a unique
solution

(14)
where #i/ represents the ij** element of (&)1,
the inverse of the covariance matrix. Using
(13), (7), and (6b), this solution may also be
written in terms of the primary variables of the
problem in the form

(15) A = (NO)TZF(F; — r¥),
Moreover, since (13) implies
(16) 2 ]Z,‘ l = ANZ; |hz |,

A may readily be evaluated, after introducing
the constraint (g) as

(17)  Zilz®| = N2 [h°] =\

The optimal relative investments z;° can conse-

quently be scaled to the optimal proportions of
the stock portfolio %,°, by dividing each z,° by

Zio = Ejaéi%

all 7.

23]t is clear from a comparison of equations (8) and (11),
showing that sgn 6 = sgn \, that only the vectors of %; values
corresponding to X > o are relevant to the maximization of .
Moreover, since 6 as given in (8) and all its first partials shown
in (10) are continuous functions of the %, it follows that when
short sales are permitted, any maximum of 6 must be a station-
ary value, and any stationary value is a maximum (rather than
a minimum) when A > o because 6 is a convex function with a
positive-definite quadratic torm in its denominator. For the
same reason, any maximum of 8 is a unique (global) maximum.

24See Tobin, [21], equation (3.22), p. 83. Tobin had, how-
ever, formally required no short selling or borrowing, implying
that this set of equations is valid under these constraints [so
long as there is a single riskless asset (pp. 84-85)]; but the
constraints were ignored in his derivation. We have shown
that this set of equations ¢s valid when short sales are properly
included in the portfolio and borrowing is available in perfect
markets in unlimited amounts. The alternative set of equi-
librium conditions required when short sales are ruled out is
given immediately below. The complications introduced by
borrowing restrictions are examined in the final section of the
paper.

the sum of their absolute values. A comparison
of equations (16) and (11) shows further that:
(18)  Zilz:0] = N0 =2/ 0,7

i.e. the sum of the absolute values of the z°
yields, as a byproduct, the value of the ratio of
the expected excess rate of return on the optimal
portfolio to the variance of the return on this
best portfolio.

It is also of interest to note that if we form the
corresponding A-ratio of the expected excess
return to its variance for each 7t® stock, we have
at the optimum:

(19) hio = ()\1/)\0) - Ej;é,'hjo.’f?ij/ééii Where

>\i = 331/ .’)5“

The optimal fraction of each security in the best
portfolio is equal to the ratio of #s A; to that of
the entire portfolio, less the ratio of its pooled
covariance with other securities to its own vari-
ance. Consequently, if the investor were to act
on the assumption that all covariances were
zero, he could pick his optimal portfolio mix
very simply by determining the \; ratio of the
expected excess return %; =7, — r* of each
stock to its variance #;; = #;;, and setting each
k; = N/ Z\;; for with no covariances,?® Z\; =
N0 = %%/0,% With this simplifying assumption,
the \; ratios of each stock suffice to determine
the optimal mix by simple arithmetic;? in the
more general case with non-zero covariances, a
single set?” of linear equations must be solved in
the usual way, but no (linear or non-linear)
programming is required and no more than one
point on the ‘‘efficient frontier’” need ever be
computed, given the assumptions under which
we are working.

The Optimum Portfolio When Short Sales
are not Permitted

The exclusion of short sales does not compli-
cate the above analysis ¢f the investor is willing
to act on an assumption of no correlations
between the returns on different stocks. In this
case, he finds his best portfolio of “long” holding
by merely eliminating all securities whose A;-

25 With no covariances, the set of equations (12) reduces
to M = %;/%x = i, and after summing over all ¢ =1,
2...m, and using the constraint (g9), we have immediately
that | N°| = =; | \i |,and A° > o for max 6 (instead of min 6).

26 Using a more restricted market setting, Hicks [6, p. 8o1]
has also reached an equivalent result when covariances are
zero (as he assumed throughout).

27 See, however, footnote 22, above.



22 THE REVIEW OF ECONOMICS AND STATISTICS

ratio is negative, and investing in the remaining
issues in the proportions %; = \;/ZX\; in accord-
ance with the preceding paragraph.

But in the more generally realistic cases when
covariances are nonzero and short sales are not
admitted, the solution of a single bilinear or
quadratic programming problem is required to
determine the optimal portfolio. (All other
points on the ‘efficient frontier,” of course,
continue to be irrelevant so long as there is a
riskless asset and a “perfect” borrowing market.)
The optimal portfolio mix is now given by the
set of %;° which maximize 6 in equation (8)
subject to the constraint that all 4; = o. As
before, the (further) constraint that the sum of
the %; be unity (equation ¢) may be ignored in
the initial solution for the relative values of the
h; [because 6 in (8) is homogeneous of order
zero]. To find this optimum, we form the
Lagrangian function

(20) ok, u) = 0 + Zauh
which is to be maximized subject to %#; = o and
#; = o. Using (11), we have immediately

(21)

¢ i ., N
Th,z C<=>X; — k(h,x“ -+ Ejhjxi,-)
+ au; 20.

As in the previous cases, we also must have
N > o for a maximum (rather than a minimum)
of ¢, and we shall write 2, = Mz, and v; = au,.
The necssary and sufficient conditions for the
vector of relative holdings z,° which maximizes
6 in (20) are consequently,?® using the Kuhn-
Tucker theorem [g],

28 Equation (22¢—22d) can readily be shown to satisfy the
six necessary and two further sufficient conditions of the
Kuhn-Tucker theorem. Apart from the constraints i = o
and # = o which are automatically satisfied by the com-

puting algorithm [conditions (220 and 22c)] the four necessary
conditions are:

¢
0 [@] 0 £ o. This condition is satisfied as a strict

equality in our solutions by virtue of equation (22a) [See
equation (21)]. This strict equality also shows that,
2) h? [g-}%:l 0 =o, the first complementary slackness
condition is also satisfied.
3) [9¢
Qs
equation (20),
9¢
Aus
same equation shows that the second complementary
slackness condition,

0 > o. This condition is satisfied because from

0 = ;% = o by virtue of equation (22b). This

a Py
4) w;® [5—]" = o0, may be written %;° ;% =o which is
1

also satisfied because of equation (22¢) since a # o.

(22a) 2%+ Z;2;%:;— 0. =%;1 =1, 2, ..
where
(22b-d) 2:°=0,9,° = o, 2,",°=o.

.m;

This system of equations can be expeditiously
solved by the Wilson Simplicial Algorithm [23].
Now let m’ denote the number of stocks with
strictly positive holdings z,° > o in (22b), and
renumber the entire set of stocks so that the
subset satisfying this strict inequality [and,
hence also, by (22d) v,° =o] are denoted 1,
2, ..., m'. Within this m' subset of stocks
found to belong in the optimal porifolio with posi-
tive holdings, we consequently have, using the
constraint (1g),
(I']d) El=1m,Zi° = )\02i=1m’h,‘0 =\
so that the fraction of the optimal portfolio in-
vested in the 7t stock (where 7 =1, 2...m') is
(23) 0 =29/A0 =2,9/Z="2,0.
Once again, using (17¢) and (11), the sum of the
z;° within this set of stocks held yields as a by-
product the ratio of the expected excess rate of
return on the optimal porifolio to the variance
of the return on this best portfolio:
(18(1) 2‘,'=1m,Z1;0 = A0 = :)?:"/021«».
Moreover, since z,° > o in (22a¢ and 22b) strictly
implies v,° = o by virtue of (22¢), equation (22q)
for the subset of positively held stocks i =1, 2
. m' is formally identical to equation (12).
We can, consequently, use these equations to
bring out certain significant properties of the
security portfolios which will be held by risk-
averse investors trading in perfect markets.?® In
the rest of this paper, all statements with respect to
“other stocks” will refer to other stocks included
within the portfolio.

III Risk Premiums and Other Properties
of Stocks Held Long or Short
in Optimal Portfolios

Since the covariances between most pairs of
stocks will be positive, it is clear from equation
(19) that stocks held long (%;° > o) in a port-
folio will generally be those whose expected

The two additional sufficiency conditions are of course
satisfied because the variance-covariance matrix ¥ is positive
definite, making ¢ (&, #°) a concave function on k& and
¢ (k% u) a convex function of u.

29 More precisely, the properties of portfolios when both
the investors and the markets satisfy the conditions stated
at the outset of section I or, alternatively, when investors
satisfy Roy’s premises as noted previously.
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return is enough greater than the risk-free rate
to offset the disutility, so to speak, of the con-
tribution of their variance and pooled covariance
to the risk of the entire portfolio. This much is
standard doctrine. Positive covariances with
other securities held long in the portfolio raise
the minimum level of #; > o which will lead to
the inclusion of the 7t stock as a positive holding
in the optimal portfolio. But equation (19)
shows that stocks whose expected returns are
less than the riskless rate (i.e. #; < oor #; < r*)
will also be held long (h;° > o) provided that
either (a) they are megatively correlated in suf-
ficient degree with other important stocks /eld
long in the portfolio, or (b) that they are posi-
tively correlated in sufficient degree with other
important stocks #eld short in the portfolio. The
precise condition for %,° > o when &; < ois that
the weighted sum of the ¢t covariances be
sufficiently negative to satisfy

(190) h® > 0o |ZpahfEy| > |8/N],

which follows from (19) since %;; > o.

Since our &; is precisely what is usually called
the “risk premium” in the literature, we have
just shown that the “risk premiums” required on
risky securities (i.e. those with o; and o;2 > o)
for them fo be held long by optimizing risk-averse
investors in perfect markets need not always be
positive, as generally presumed. They will in fact
be negative under either of the conditions stated
in (@) and (b) above, summarized in (19a). The
explanation is, of course, that a long holding of
a security which is negatively correlated with
other long holdings tends to reduce the variance
of the whole portfolio by offsetting some of the
variance contributed by the other securities in
the portfolio, and this ‘“variance-offsetting”
effect may dominate the security’s own-variance
and even a negative expected excess return
x; < o.

Positive correlations with other securities held
short in the portfolio have a similar variance-
offsetting effect.3?

Correspondingly, it is apparent from (19)
itself that any stock with positive excess returns

30 Stocks with negative expected excess returns or ‘“‘risk
premiums” (& < o) will, of course, enter into portfolios only
as short sales (provided these are permitted) when the in-
equality in (19g) is reversed, i.e.

hi® < 0 € = 4 b0 %ij + /N0 < o. When short sales are
not permitted, and (19a) is not satisfied, stocks with # < o
simply do not appear in the portfolio at all.

or risk premiums (%; > o) will be held short
(h® < o) in the portiolio provided that either
(a) it is positively correlated in sufficient degree
with other stocks keld long in the portfolio, or
(b) it is megatively correlated in sufficient degree
with other stocks held short in the portfolio.
Positive (negative) risk premiums are neither a
sufficient nor a necessary condition for a stock to
be held long (short).

Indifference Contours

Equation (12) (and the equivalent set (22a)
restricted to stocks actually held in portfolios)
also enables us to examine the indifference con-
tours between expected excess returns, variances,
or standard deviations and covariances of secu-
rities which will result in the same fraction h;°
of the investor’s portfolio being held in a given
security. The general presumption in the litera-
ture, as noted in our introduction,’! is that the
market values of risk assets are adjusted in
perfect markets to maintain a linear relation
between expected rates of return (our 7; =
Z; + r*) and risk as measured by the standard
deviation of return o, on the security in question.
This presumption probably arises from the fact
that this relation ss valid for trade offs befween a
riskless security and a single risk asset (or a
given mix of risk assets to be held in fixed pro-
portions). But it can not be validly attributed to
indifferent trade offs befween risk assets within
optimizing risk-asset portfolios. In point of
fact, it can easily be shown that there is a
strictly linear indifference comtour between the
expected return 7, (or the expected excess return
%;) and the variance o> (not the standard devia-
tion o;) of the individual security, and this
linear function has very straightforward proper-
ties. The assumption made in this derivation
that the covariances ¢,; with other securities are
invariant is a more reasonable one than is perhaps
readily apparent.?? Subject to the acceptability

31 See footnote 3 for references and quotations.

32 Fixed covariances are directly implied by the assumption
that every pair of it and j*® stocks are related by a one-
common-factor model (e.g. the general state of the economy
or the general level of the stock market), so that, letting jz repre-
sent the general exogenous factor and & the random outcome
of endogenous factors under management’s control, we have

#=a+bip+ e

=0 +bp+a
with g, @;, and @ mutually independent. This model implies

a2 = b? 0, + 0% and gy = bibjo,?,
so that if management, say, varies the part under its control,
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of this latter assumption, it follows that risk
classes of securities should be scaled in terms of
variances of returns rather than standard devia-
tions (with the level of covariances reflected in
the parameters of the linear function). The
complexities involved when indifference contours
are scaled on covariances or standard deviations
are indicated below.

The conclusion that the indifference contour
between %, and the variance ¢,% is linear in the
general case when all covariances o;; are held
constant is established in the appendix, note II,
by totally differentiating the equilibrium con-
ditions (12) [or the equivalent set (22a) restricted
to the m’ stocks held in the portfolio]. But al
pairs of values of #; and ¢, along the linear
indifference coutour which holds #%,° fixed at
some given level also rigorously imply that the
proportionate mix of all other stocks in the port-
folio is also unchanged. Consequently, we may
proceed to derive other properties of this indif-
ference contour by examining a simple ‘“two
security’ portfolio. (The st security is renum-
bered “1,” and ‘‘all other” securities are called
the second security.) If we then solve the
equilibrium conditions® (12) in this two-stock
case and hold K = #%,°/h,° constant, we have
(24) K = h°/h;® = constant = (%,052 —

F2012)/ (%2012 — %1012)
which leads to the desired explicit expression,
using 7, = &; + r¥,
(25) 7-'1 = 7’*+W¢712+WK0’12,
where
(250) W = o’cz/(ag? + Ka'lz).

Since3* WK = A%;° and A% > o, the slope of
this indifference contour between %; and ¢,2 will
always be positive when %% > o (as would be
expected, because when ¢;, is held constant,

@ and o.2%, the covariance will be unchanged. (This single-
common-factor model is essentially the same as what Sharpe
[20] calls the “diagonal” model.)

33 The explicit solution is 210 = N0 %10 = (%1 022 — £ 012)/
(C!120'22 bl 5122); and 220 = )\ohzo = (9320;2 bt 551612)/(6120'12— 0'122);
where A0 =32,0 4 2,0,

3¢ Upon substituting (24) in (25) and using the preceding
footnote, we have W = A0}y = 3,9 from which it follows
that WK = N0 k0 519/ hy® = N0 1y 0.

As noted earlier, we have A° > o (because the investor maxi-
mizes and does not minimize 6). [It may be noted that
W is used instead of z,° in (25) in order to incorporate the
restriction on the indifference contours that K is constant, and
thereby to obtain an expression (25¢) which does not contain
%, and o412 (as does 2,° without the constraint of constant K).]

increased variance requires added return to
justify any given positive holding®®); but when
the first stock is held short, its expected (or
excess) return and its variance along the contour
vary inversely (as they should since ‘“shorts”
profit from price declines). Moreover, if we
regard ¢, as an exogenous “shift” parameter,
the constant term (or intercept) of this indifference
contour varies directly®® with o5, and the slope
of %; on o,% varies inversely®” with o;; in the
usual case, when &, > o.

Now note that (25) and (25¢) can be written
(25[)) 71 =7r* 4 332(0’12 + K0'12)/(0'22 + Ko'lg),
which clearly depicts a hyperbolic (rather than
linear) indifference contour on ¢;; if o2 is re-
garded as fixed, and a more complex function
between #; (or x;) and the standard deviation o3,
which may be written (using 12 = ¢102p),
(25[),) % = %:Ko:% [1 + P(K‘Tl/‘”)_l]

a2 (1 + pKoi/a2)
The slope of the indifference contour between

%; and ¢, is a still more involved function, which
may be written most simply as
0%1 & [2Ka100® + (K%01%05 + 05%)p)
00’1 (0’22 + K¢712)2
1+(p/2) [(Ko1/0s) + (02/Ka1)].
o%(1 4+ pKa1/as)?
It is true, in the usual situation with K > o,
%y > o0, and p > o, that % (=7 — r*) and
dx1/ 001 are necessarily positive as common
doctrine presumes, but the complex non-linearity
is evident even in this “normal case” restricted
to two stocks — and the positive risk premium
%1 and positive slope on o1, of course, cannoi be
generalized. For instance, in the admittedly less
usual but important case with £ > o and the
intercorrelation p < o, both %, and 9%,/ do; are
alternatively negative and positive over different
ranges 38 of ¢, for any fixed %#,° or K > o.

= 2K0’1922

3% Note that this is true whether the “other security” is
held long or short.
36 Let the constant term in (25) be C =7* + Waia. Then
aC (o2 + Kow) & — fa012 K X 09?
(022 + Ko12)? (022 + Ko1)?
which has the same sign as %, independent of the sign of K
012, OF X1.
37We have 0WK/do12 = — K2 %2/(02® + Ko12)?, which
has a sign opposite to that of &,.
3 With K > o, & > o, and p < o, we have from (25b")
%1 <oif o < Koy /d2< | p|, and
f1>0if|p| <K0’1/0'2<|p_1|.
On the other hand, from (25¢) we have

do12



VALUATION OF RISK ASSETS 25

Moreover, in conirast to the #; — ¢;2 contour
examined above, the pairs of values along the
%; — o; contour which hold %,° constant do #ot¢
imply an unchanged mix®® of the other stocks
in the optimizing portfolio when 7’ > 2: nor is
A\ invariant along an %; — o; contour, as it is
along the %, — o, contour with covariances
constant. For both reasons, the indifference con-
tour between %, and o, for portfolios of m' > 2
stocks is very much more complex than for the
two-stock case, whereas the “two-stock’ contour
(3) between #; and ¢,? is exact for any number of
stocks (when “all other” stocks are pooled in
fixed proportions, as we have seen they can
validly be). We should also observe that there
does not seem to be an easy set of economically
interesting assumptions which lead to fixed cor-
relations as ¢, varies (as assumed in deriving
%1 — o1 indifference contours) in marked con-
trast to the quite interesting and plausible
“single-factor” model (see footnote 32 above)
which directly validates the assumption of fixed
covariances used in deriving the £, — ¢,? indif-
ference contours.

In sum, we conclude that — however natural
or plausible it may have seemed to relate risk
premiums to standard deviations of return
within portfolios of risk assets, and to scale risk
classes of securities on this same basis — risk
premiums can most simply and plausibly be
related directly to variances of returns (with the
level of covariances reflected in the parameters
of the linear function). Since the principal func-
tion of the concept of “risk class” has been to
delineate a required level of risk premium, we
conclude further that risk classes should also be
delineated in the same units (variances) if,
indeed, the concept of risk class should be
used at all.4°

IV — Market Prices of Shares Implied by
Shareholder Optimization in
Purely Competitive Markets
Under Idealized Uncertainty

Our analysis to this point has followed Tobin
[21] and Markowitz [14] in assuming that current
security prices are exogenous data, and that each

0%1/901 < oif o < Kai/os < | p1| —Vp2—1 ,
and

9%1/301 > oif | p1| — Vp 2 — 1 < Kaw/o: < | p1].
3 See appendix, note 11(b).
®However, see below, especially the “fifth” through
“seventh’” points enumerated near the end of Section V.

investor acts on his own (doubtless unique)
probability distribution over rates of return,
given these market prices. I shall continue to
make the same assumptions concerning markets
and investors introduced in section I. In par-
ticular, it is assumed that security markets are
purely competitive, transactions costs and taxes
are zero, and all investors prefer a greater mean
rate of return for a given variance and a lesser
rate of return variance for any given mean return
rate. But in this and the following section, I shall
assume (1) that investors’ joint probability distri-
butions pertain to dollar returns rather than rates
of return — the dollar return in the period being
the sum of the cash dividend and the increase
of market price during the period. Also, for
simplicity, assume that (2) for amy given set
of market prices for all stocks, all investors assign
identical sets of means, variances, and convari-
ances to the joint distribution of these dollar
returns (and hence for any set of prices, to the
vector of means and the variance-covariances
matrix of the rates of return #; of all stocks), and
that all correlations between stocks are < 1.

This assumption of identical probability beliefs
or judgments by all investors in the market
restricts the applicability of the analysis of this
and the following section to what I have else-
where characterized as idealized wuncertainty
[10, pp. 246—247]. But however unrealistic this
latter assumption may be, it does enable us to
derive a set of (stable) equilibrium market prices
—and an important theorem concerning the
properties of these prices — which at least fully
and explicitly reflect the presence of uncertainty
per se (as distinct from the effects of diverse
judgmental distributions among investors).

Note first that the assumption of identical
probability judgments means that (1) the same
stock mix will be optimal for every investor (al-
though the actual dollar gross investment in this
mix — and the ratio, w, of gross investment in
this mix to his net investment balance — will
vary from one investor to the next). It conse-
quently follows that, when the market is in
equilibrium, (2) the %,° given by equation (15)
or (12) can be interpreted as the ratio of the
aggregate market value of the it* stock to the total
aggregate market value of all stocks, and hence,
(3) all h; will be strictly positive.

In order to develop further results, define
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Vo: — the aggregate market value of the
ith stock at time zero,
R, — the aggregate return on the 7tt stock
(the sum of aggregate cash dividends paid
and appreciation in aggregate market
value over the transaction period); and
T =z, V., the aggregate market value
of all stock in the market at time zero.
The original economic definitions of the vari-
ables in the portfolio optimization problem give

(26a) h; = Vo/T,

(26b) #; = Ri/Vo,

(266) X, =7 —r¥ = (R, —7* V) /Voi
(26d) x5 = Fi5 = jéij/VOi Vos

where R;;is the covariance of the aggregate dollar
returns of the 4t and jt» stocks (and Ry is the
it stock’s aggregate return variance). The equi-
librium conditions (12) may now be written

(IZ(I) R,: —r* ViO =\ Vio éii
Vo T (Vm')2
Vo:  Ri;
AT Y
T VeV

which reduces to
(27) Ri—1r* Vo= (\T) [Rii + Zju Ry

= (MT) Z; Ry
Now R; — r* V, represents the expected excess
of the aggregate dollar return on the #** security
over earnings at the riskless rate on its aggregate
market value, and =, R;;represents the aggregate
risk (direct dollar return variance and total co-
variance) entailed in holding the stock. Equation
(27) consequently establishes the following:

Theorem: Under Idealized Uncertainty, equilib-
rium in purely competitive markets of risk-averse
investors requires that the values of all stocks
will have adjusted themselves so that the ratio
of the expected excess aggregate dollar returns
of each stock to the aggregate dollar risk of hold-
ing the stock will be tkhe same for all stocks (and
equal to A/T), when the risk of each stock is
measured by the variance of its own dollar re-
turn and its combined covariance with that of
all other stocks.

But we seek an explicit equation*! for V;, and

41 do not simply rearrange equation (27) at this point
since (\/T) includes Vo; as one of its terms (see equation (29d)
below).

to this end we note that partial summation of
equation (27) over all other stocks gives us
(28) El‘;ﬂ' (Rk — r* Vo)c) = ()\/T)Ek#i Ej .Rkj.
After dividing each side of (27) by the corre-
sponding side of (28), and solving for V, we
then find that the aggregate market value of the
ith stock is related to the concurrent market
values of the otker (m — 1) stocks by
(20) Vo= Ri—Wy)/r*
where
(20a) W, = 'Yizjjéij = i (Ru + 2 Rz])
and
(20b) 7, = 2o o =7 Vo)

Ek;éi z i Rkj
_ T (Re — 7* Vox)

2 ki D Rkj + T -Rij.

Since (29b) appears to make the slope coeffi-
cient v, unique to each company, we must note
immediately that dividing each side of (27) by
its summation over all stocks shows that the
aggregate market value of the t* stock is also
related to the concurrent market values of all (m)
stocks?? by equation (29) when W, is written as
(200) W= (M/T) 2, Ry,
and

*
(20d) NT = 2 &= Vo)
But from equations (28) and (29b), we see that
(29¢) 7vi=v;i=MT,
a common value for all companies in the markei.
The values of W, given by (29a) and (29c) are
consequently identical, and the subscripts on +
should henceforth be ignored.

In words, equations (29) establish the following
further

Theorem: Under Idealized Uncertainty, in purely
competitive markets of risk-averse investors,

A) the total market value of any stock in
equilibrium is equal to the capitalization at
the risk-free interest rate r* of the certainty
equivalent (R~W ) of its uncertain aggre-
gate dollar return R;

B) the difference W, between the expected
value R, of these returns and their certainty

42 Alternatively, equations (29) and (29¢) follow directly
from (27), and (29d) may be established by substituting
(26a—d) in (11).
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equivalent is proportional for each company
to its aggregate risk represented by the sum
(2, R;;) of the variance of these returns and
their total covariance with those of all
other stocks; and

C) the factor of proportionality (y = N\/T) is
the same for all companies in the market.

Certain corrolaries are immediately apparent:

Corrolary I: Market values of securities are re-
lated to standard deviations of dollar returns by
way of variances and covariances, #not direcily
and not linearly.

Corrolary II: The aggregate risk (Z;R;;) of the
it stock which is directly relevant to its aggre-
gate market value V, is simply éts contribution
to the aggregate variance of the dollar returns
(for all holders together) of all stocks (which is
2 2; Ry).

Corrolary III: The ratio (R, — W,)/R; of the
certainty-equivalent of aggregate dollar returns to
their expected value is, in general, different for
each it company when the market is in equili-
brium;*? but for all companies, this certainty-
equivalent to expected-dollar-return ratio is the
same linear function {1—v[Z;R:j/R]} of total
dollar risk (Z; R,;) attributable to the 7t stock
deflated by its expected dollar return R..

Several further implications also follow imme-
diately. First, note that equation (29) can be
written
(20") Voo = (Ri — W) /r*

— (Vo + R — W)/(x + 1)

=(H;—=W)/(x +r%.
Since R; was defined as the sum of the aggregate
cash dividend and increase in value in the equity
during the period, the sum V,, + R, is equal to
the expected value of the sum (denoted H.,) of the
cash dividend and end-of-period aggregate
market value of the equity, and the elements of
the covariance matrix H are identical to those in
R. All equations (29) can consequently be validly
rewritten substituting H for R throughout [and
(1 + r*) for r*], thus explicitly determining all
current values V o; directly by the joint probability
distributions over the end-of-periodrealizations** H .

43 From equations (27), (29), (29a), and (29e¢), this state-
ment is true for all pairs of stocks having different aggregate

market values, Vo 5% Vo;.
44 : “« : ”» :
Because we are assuming only “idealized” uncertainty,

(The value of W, incidentally, is not affected by
these substitutions.) Our assumption that in-
vestors hold joint probability distributions over
dollar returns R, is consequently equivalent to an
assumption that they hold distributions over
end-of-period realizations, and owur analysis
applies equally under either assumpiion.

Moreover, after the indicated substitutions,
equation (29”) showsthat the current aggregate value
of any equity is equal to the certainty-equivalent of
the sum of its prospective cash receipis (to share-
holders) and total market value at the end of the
period, discounted at the riskless rate r*. Similarly,
by an extension of the same lines of analysis, the
certainty equivalent of the cash dividend and
market value at the end of the first period clearly
may be regarded as the then-present-values using
riskless discount rates of the certainty-equivalents
of random receipts still further in the future.
The analysis thus justifies viewing market values
as riskless-rate present values of certainty-equiva-
lents of random future receipts, where certainty-
equivalents are related to expected values by
way of variances and covariances weighted by
adjustment factors v,, which may or may not be
the same for each future period .

Still another implication of equation (29) is
of a more negative character. Those who like
(or hope) to find a “risk” discount rate k, with
which to discount expected values under uncer-
tainty will find from (29) that, using a subscript ¢
for the individual firm

" R R;
(29") Voi = PR = Wk
_ R,
(1 — AZRi/R)
so that
(30) ky=7*(1— yZRi;/R:) .

It is apparent that (7) the appropriate ‘“risk”
discount rate k,; is unique to each individual com-
pany in a competitive equilibrium (because of
the first half of corrolary III above); (¢) that
efforts to derive it complicate rather than simplify
the analysis, since (477) it is a derived rather than
a primary variable; and that (i) it explicitly
involves all the elements required for the determi-
nation of V', itself, and, (v) does so in a more
the distribution of these end-of-period realizations will be
independent of judgments regarding the dividend receipt and

end-of-period market value separately. See Lintner [10] and
Modigliani-Miller [16].
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complex and non-linear fashion.** Having estab-
lished these points, the rest of our analysis
returns to the more direct and simpler relation
of equation (29).

V — Corporate Capital Budgeting Under
Idealized Uncertainty

Capital budgeting decisions within a corpo-
ration affect both the expected value and vari-
ances — and hence, the certainty-equivalents —
of its prospective aggregate dollar returns to its
owners. When the requisite conditions are satis-
fied, equation (29) thus provides a normative
criterion for these decisions, derived from a
competitive equilibrium in the securities market.

In developing these important implications of
the results of the last section, I of course maintain
the assumptions of idealized uncertainty in
purely competitive markets of risk-averse in-
vestors with identical probability distributions,
and I continue to assume, for simplicity, that
there are no transactions costs or taxes. The
identity of probability distributions over out-
comes NOW covers corporate management as well
as investors, and includes potential corporate
investments in the capital budget as well as assets
currently held by the company. Every corporate
management, ex ante, assigns probability zero to
default on its debt, and all investors also treat
corporate debt as a riskless asset. I thus extend
the riskless investment (or borrowing) alterna-
tive from individual investors to corporations.
Fach company can invest any amount of its
capital budget in a perfectly safe security (savings
deposit or certificate of deposit) at the riskless
rate 7*, or it may borrow unlimited amounts at
the same rate in the current or any future period. 46
I also assume that the investment opportunities
available to the company in any time period are
regarded as independent of the size and compo-
sition of the capital budget in any other time
period.#” T also assume there is no limited lia-

4 It may also be noted that even when covariances between
stocks are constant, the elasticity of %, with respect to the
variance Ri; (and a fortiori) to the standard deviation of
return) is a unique (to the company) multiple of a hyperbolic
relation of a variance-expected-return ratio:

(300) &3 Okry v Ru/Rs
I—y (Ej,gRij/Ri) - Rii/Ri )

kre  ORu

46 The effects of removing the latter assumption are con-
sidered briefly in the final section.

47 This simplifying assumption specifies a (stochastic) com-

parative static framework which rules out the complications

bility to corporate stock, nor any institutional or
legal restriction on the investment purview of
any investor, and that the riskless rate 7* is
expected by everyone to remain constant over
time.

Note that this set of assumptions is sufficient
to validate the famous (taxless) Propositions I
and IT of Modigliani and Miller [15]. In par-
ticular, under these severely idealized conditions,
for any given size and composition of corporate
assets (investments), investors will be indifferent
to the financing decisions of the company. Sub-
ject to these conditions, we can, consequently,
derive valid decision rules for capital budgets
which do not explicitly depend upon concurrent
financing decisions. Moreover, these conditions
make the present values of the cash flows fo any
company from its real (and financial) assets and
operations equal to the total market value of
investors’ claims to these flows, i.e., to the sum
of the aggregate market value of its common (and
preferred) stock outstanding and its borrowings
(debt)¢t. They also make any change in share-
holders claims equal to the change in the present
values of flows (before interest deductions) to the
company less any change in debt service. The
changes in the market value of the equity Vo,
induced by capital budgeting decisions will con-
sequently be precisely equal to
(31) AVe= AR = W)/(x +1¥)

= AH: = W)/(x + 7%,
where AH; is the net change induced in the
expected present value at the end of the first
period of the cash inflows (net of interest charges)
to the ¢ company attributable to ifs assets®
when all present values are computed at the
riskless rate 7*.

These relationships may be further simplified
in a useful way by making three additional

assumptions: that (i) the aggregate market value

introduced by making investor expectations of future growth
in a company’s investment opportunities conditional on current
investment decisions. I examine the latter complications in
other papers [11], and [12].

8 See Lintner [10]. Note that in [10, especially p. 265,
top 1st column] I argued that additional assumptions were
needed to validate the ‘“‘entity theory” under uncertainty —
the last sentence of the preceding paragraph, and the stipula-
tion that corporate bonds are riskless meet the requirement.
See, however, Modigliani-Miller [16].

4 By definition, AH; is the change in the expected sum
of dividend payment and market value of the equity at the
end of the period. This is made equal to the statement in the
text by the assumptions under which we are operating.
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of all other stocks—and (i%) the covariances Ri;
with all other stocks are invariant to the capital
budgeting decisions of the i company; while
(¢47) the (optimal) portfolio of risk assets is not
an “inferior good” (in the classic Slutsky-Hicks
sense) vis a vis riskless assets. The reasonable-
ness of (777) is obvious (especially in the context
of a universe of risk-averse investors!), and given
(447), assumption (7) is a convenience which only
involves ignoring (generally small) second-order
feedback effects (which will not reverse signs);
while the plausibility of (i) as a good working
first approximation was indicated above (foot-
note 32).5°

In this context, we now show that capital
budgeting decisions by the 7t firm will raise the
aggregate market value of its equity V o; — and
hence by common agreement be in the interest
of its shareholders — so long as the induced
change in expected dollar return is greater than
the product of the market price v of risk and the
induced variance of dollar returns, i.e.,
(32) ARt —_ ‘YAR,,‘,' = Ag, -_ 'YAﬁu > o.
This assertion (or theorem) can be proved as
follows. The total differential of (29) is
(20f) 7*AVoi — AR; + vAR: + (Z,R:)Ay =0
so that under the above assumptions
(208) AR: = v ARy + (2, Rj)d v —

AV(){ ; o— AT ; O.
But using (29¢) and (20d), we have
(20h) Ay = (AR: — vAR:)/2:2; R,
so that
(208) AR; = yAR;; — Ay = 0—
AV(],' =0— AT = o,

and the first equality in (297) defines the relevant
indifference function.s! Moreover, using (29/)
and the fact that Z;R,; < 2,2;R;;, we have
from (29g):
(20f) AR:Z yARu—AR, 2 vAR:+ (2,R:) Ar,
and consequently
(29k) AR, = v AR,;{—) AV{], =0— AT = o,
from which (32) follows immediately.

In order to explore the implications of (32)

% It is, however, necessary in general to redefine the
variables in terms of dollar returns (rather than rates of
return), but this seems equally reasonable.

%1 Note that this indifference function can also be derived
by substituting equations (26a-d) directly into that found in
section III above (equation 6b) in appendix Note II or
equation (25) in the text) for the relevant case where covari-
ances are invariant.

further, it will now be convenient to consider in
more detail the capital budgeting decisions of a
company whose existing assets have a present
value computed at the rate 7* (and measured
at the end of the first period) of H,®, a random
variable with expected value H,® and vari-
ance é 00-

The company may be provisionally holding
any fraction of H, in savings deposits or CD’s
yielding 7*, and it may use any such funds (or
borrow unlimited amounts at the same rate) to
make new ‘“real” investments. We assume that
the company has available a set of new projects
I, 2...7...n which respectively involve
current investment outlays of H,;, and which
have present values of the relevant incremental
cash flows (valued at the end of the first period)
of A,%. Since any diversion (or borrowing) of
funds to invest in any project involves an oppor-
tunity cost of 7* H;, we also have the “excess”
dollar end-of-period present value return

(33) X;0 = 0,0 — pr g, O,

Finally, we shall denote the (1) ’th order co-

variance matrix (including the existing assets

Z? o) by H or X whose corresponding elements
ik =

+

X

Determination of the Optimal Corporate
Capital-Budget-Portfolio

In this simplified context, it is entirely reason-
able to expect that the corporation will seek to
maximize the left side of equation’? (32) as its
capital budgeting criterion. At first blush, a very
complex integer quadratic-programming solution
would seem to be required, but fortunately we
can break the problem down inductively and find
a valid formulation which can be solved in essen-
tially the same manner as an individual investor’s
portfolio decision.

% Under our assumption that stock portfolios are not
inferior goods, sgn AT = s gn [AR; — yAR;] so that (although
generally small in terms of percentages) the induced change
in aggregate values of all stocks will reinforce the induced
change in the relative value of the it stock; the fact that Ay
also has the same sign introduces a countervailing feedback,
but as shown above [note especially (29g)], this latter effect
is of second order and cannot reverse the sign of the criterion
we use. In view of the overwhelming informational require-
ments of determining the maximum of a fully inclusive cri-
terion function which allowed formula induced adjustments
external to the firm, and the fact our criterion is a monotone
rising function of this ultimate ideal, the position in the
text follows.
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First, we note that if a single project ; is added
to an existing body of assets H°, we have
(340) AR: — yAR; = H;® — r*H

— v [Hj+ 2Hjo) = X;0 — o [Xj5+ 2X0].
Now suppose a project % is also added. The total
change from j and % fogether is
(340) (ARi— vAR) = X; 0+ X, @ 5

— v [ X+ Xpr + 2X 0 + 2Xxo + 2X 4,
while the increment due to adding & with j already
in the budget is
(34¢) (AR:—7R:) . 5 5

= X3P — v Xt 2Xpot+ 2X 5.

Given the goal of maximizing the left side of (32),
the k* project should be added to the budget
(already provisionally containing 7) if and only
if the right side of (34¢) is > o— and if this condi-
tion is satisfied, the same test expression written
for 7, given inclusion of %, will show whether j
should stay in. Equation (34c) appropriately
generalized to any number of projects, is thus a
necessary condition to be satisfied by eack project
in an optimal budget, given the inclusion of all
other projects simultaneously satisfying this
condition.

The unstructured iterative or search procedure
suggested by our two-project development can
obviously be short-circuited by programming
methods, and the integer aspect of the pro-
gramming (in this situation) can conveniently
be by-passed by assuming that the company
may accept all or any fractional part a¢; o<a;=r,
of any project (since it turns out that all ¢; in the
final solution will take on only limiting values).
Finally, thanks to this latter fact, the objective
of maximizing the left side of (32) is equivalent
to maximizing
(32/) 7 = H"(lv)'i' Ejajfjvj(l)_ r*E,-a,-H,-(“)v

— y[Z0H ji+2Z0H jo+ 2Z permoa;arH 53]
=Ho®+ ZjaX,;— 720X +
22;a;X 0+ 22 pea0 001X i,

subject to the constraints that o < a; < 1 for all

a,7 =1, 2...n Not only will all ¢; be binary

variables in the solution, but the generalized

form of the necessary condition (34¢) will be

given by the solution [see equation (37) below].

In order to maximize Z in (32”) subject to the

53 For the reason given, the maximum of (32’) is the same
as it would be if (32°) had been written in the more natural
way using a:? instead of a; as the coefficient of Hj;; the use of a;

is required to make the form of (35") and (37) satisfy the
requirement of (34¢).

THE REVIEW OF ECONOMICS AND STATISTICS

constraints on a¢;, we let ¢;= 1 — @, for conveni-
ence, and form the Lagrangian function

(35) ¥(a,mn) =Z+ Z;p;0;+ 250595
which is to be maximized subject to a¢; =0, ¢;= o,
pj = o, and 7; = o, where u; and 7; are the
Lagrangian multipliers associated with therespec-
tive constraints ¢; = o and ¢; = o. Using (33),
we have immediately

(35") g—ﬁ—z oo X; — ylaX; + 220X 0
j

+ 2% 40 a1 X jal + p; — 7 = o.
Using the Kuhn-Tucker Theorem [¢], the neces-
sary and sufficient conditions for the optimal
vector of investments ¢;° which maximize ¢ in
(35) are consequently®*
(360) 7 [a;° X ;4 20,°X jo + 2Z kim0 ax°X 2]

— ui®+ %= X;
when
(36b7 Cr d) 6) djog o, q;'OZ o,
pi®Z o, n;°Z o

and
(367, &) u;i®a;®= o, n;° ¢;°= o,
where
j=12...1m

in each set (36a) — (36g).

Once again, these equations can be readily solved
by the Wilson Simplicial Algorithm [23] on
modern computing equipment. It may be ob-
served that this formulation in terms of inde-
pendent investment projects can readily be
generalized to cover mutually exclusive, contin-
gent, and compound projects® with no difficulty.
It is also apparent that the absence of a financing
constraint (due principally to our assumption

54 The proof that the indicated solution satisfies the Kuhn-
Tucker conditions with respect to the variables ¢,° and y;° is
identical to that given above footnote 28 upon the substi-
tution of X for %, a; for hi, and p; for u;, and need not be
repeated. The two additional necessary conditions are

3" [(;i]" = o, which is satisfied, since from (35) we have
Uil

-gi]° =g, = o by virtue of (36¢); and this latter relation
i

shows that the corresponding complementary slackness con-
dition,

(4") [%]0 = o, may be written u;° ¢;° = o, and is there-
]

fore satisfied because of (36g).

All three sufficiency conditions are also satisfied because
the variance-covariance matrix X is positive definite, making
v (g, 4%, n°) a concave function on ¢ and ¢ (g, %% #° a
convex function on both % and #.

86 See Weingartner [22], 11 and 32-34.
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that new riskless debt is available in unlimited
amounts at a fixed rate 7*) insures that all proj-
ects will either be accepted or rejected in foto.
All a;% will be either o or 1, and the troublesome
problems associated with fractional projects or
recourse to integer (non-linear) programming
do not arise.

Consider now the set of accepted projects, and
denote this subset with asterisks. We then have
all = aw®= 1; the corresponding p %= psx°
= o; and for any project 5*, the corresponding
749> o (i.e. strictly positive),’® and the number
7% is the “dual evaluator” or ‘‘shadow price”
registering the net gain to the company and its
shareholders of accepting the project. Rewriting
the corresponding equation from (36a) we have®”
(37) 7% —Hw‘”—r*H ) — ’Y[H,*J*

=+ QHJ*() + ZEk*#,*#on*k*]> o.

Several important features and implications
of these results should be emphasized. First of
all, note that we have shown that even when
uncertainty is admitted in only this highly
simplified way, and when any effect of changes
in capital budgets on the covariances between
returns on different companies’ stocks is ignored,
the minimum expected return (in dollars of ex-
pected present value H @) required to justify
the allocation of funds to a given risky project
costing a given sum H ;» ‘% is an increasing func-
tion of each of the following factors: (7) the risk-
free rate of return 7*; (¢Z) the “market price of
dollar risk”, v; (i4i) the variance Hjpx in the
project’s own present value return; (7v) the proj-
ect’s aggregate present value return-covariance
H jxo with assets already held by the company,
and (v) its total covariance 2 juejro H jxpx with
other projects concurrently included in the capital
budget.

Second, it follows from this analysis that, if
uncertainty is recognized to be an important fact
of life, and risk-aversion is a significant property
of relevant utility functions, appropriate risk-
variables must be introduced explicitly into the
analytical framework used in analysis, and that
these risk-variables will be essential components

56 We are of course here ignoring the very exceptional and
coincidental case in which #,x° = o which implies that ;4" is
indeterminate in the range o < ao; £ 1, the company being
totally indifferent whether or not all (or any part) of a project
is undertaken.

57 We use Hjiex to denote elements the original covariance
matrix H after all rows and columns associated with rejected
projects s have been removed.

of any optimal decision rules developed. Import-
ant insights can be, and have been, derived from
“certainty”’ models, including some qualitative
notions of the conditional effects of changes in
availability of funds due to fund-suppliers’ reac-
tions to uncertainty,’® but such models ignore
the decision-maker’s problem of optimizing kis
investment decisions in the face of the stochastic
character of the outcomes among which %e must
choose.

Third, it is clear that stockastic considerations
are a primary source of interdependencies among
projects, and these must also enter explicitly into
optimal decision rules. In particular, note that,
although own-variances are necessarily positive
and subtracted in equation (37), the net gain 7 x°
may still be positive and justify acceptance even
if the expected end-of-period * excess” present-
value return (Xp® = Hp® — p* H,®) s
negatlve”—— so_long as its total present-value-
covariances (Hjxo + Zspepzo Hpix) are also
negative and sufficiently large. Sufficienily risk-
reducing investments rationally belong in corporate
capital budgets even at the expense of lowering
expected present value returns— an important
(and realistic) feature of rational capital budget-
ing procedure not covered (nor even implied) in
traditional analyses.

Fourth, note that, as would by now be ex-
pected, for any fixed 7* and v, the net gain from
a project is a linear function of its (present value)
variance and covariances with existing company
assets and concurrent projects. Standard devia-
tions are not involved except as a component of
(co)variances.

Fifth, the fact that the risk of a project involves
all the elements in the bracketed term in (37),
including covariances with other concurrent
projects, indicates that in practice it will often be
extremely difficult, if not impossible, to classify
projects into respectively homogeneous “risk
classes.” The practice is convenient (and de-
sirable where it does not introduce significant
bias) but our analysis shows it is not essenizal, and
the considerations which follow show it to be @

58 See Weingartner [22] and works there cited. Wein-
gartner would of course agree with the conclusion stated here,
see pp. 193-194.

% Indeed, in extreme cases, a project should be accepted
even if the expected end-of-period present value H;x® is less
than cost Hjx(®, provided negative correlations with existing
assets and other concurrent investments are sufficiently strong
and negative.
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dangerous expedient which is positively misleading
as generally employed in the literature.

Sixth, it must be emphasized that — following
the requirements of the market equilibrium con-
ditions (29) from which equations (36), (37), and
(38) were derived — all means and (co)variances
of present values have been calculated using the
riskless rate r*. In this connection, recall the
non-linear effect on present values of varying the
discount rate used in their computation. Also
remember the further facts that (7) the means and
variances of the distributions of present values
computed at different discount rates do not vary
in proportion to each other when different dis-
count rates are applied to the same set of future
stochastic cash flow data, and that (ii) the
changes induced in the means and variances of
the present values of different projects having
different patterns and durations of future cash
flows will also differ greatly as discount rates
are altered. From these considerations alone, it
necessarily follows that there can be no single “risk
discount rate” to use in computing present values
for the purpose of deciding on the acceptance or
rejection of different individual projects out of a
subset of projects even if all projects in the subset
have the same degree of “‘risk.”’®® The same con-
clusion follows a fortiori among projects with
different risks.

Seventh, the preceding considerations, again
a fortiors, insure that even if all new projects have
the same degree of “risk” as existing assets, the
“cost of capital” (as defined for uncertainty any-
where in the literature) is not the appropriate dis-
count rate to use in accepi-reject decisions on indi-
vidual projects for capital budgeting.®! This is
true whether the “cost of capital” is to be used

% Note, as a corollary, it also follows that even if the world
were simple enough that a single “as if”’ risk-discount rate
could in principle be found, the same considerations insure
that there can be no simple funciion relating the appropriate
“risk-discount” rate to the riskless rate r* and “degree of risk,’
however measured. But especially in this context, it must be
emphasized that a single risk discount rate would produce
non-optimal choices among projects even if (i) all projects could
be assigned to meaningful risk-classes, unless it were also true
that (i7) all projects had the same (actual) time-pattern of
net cash flows and the same life (which is a condition having
probability measure zero under uncertainty!).

¢! Note particularly that, even though we are operating
under assumptions which validate Modigliani and Miller’s
propositions I and II, and the form of finance is #ot relevant
to the choice of projects, we nevertheless cannot accept their
use of their pr— their cost of capital—as the relevant
discount rate.

as a “hurdle rate” (which the “expected return”
must exceed) or as a discount rate in obtaining
present values of net cash inflows and outflows.

Perhaps at this point the reader should be
reminded of the rather heroic set of simplifying
assumptions which were made at the beginning
of this section. One consequence of the unreality
of these assumptions is, clearly, that the results
are not being presented as directly applicable
to practical decisions at this stage. Too many
factors that matter very significantly have been
left out (or assumed away). But the very sim-
plicity of the assumptions has enabled us to
develop rigorous proofs of the above propositions
which do differ substantially from current treat-
ments of “capital budgeting under uncertainty.”
A little reflection should convince the reader that
all the above conclusions will still hold under more
realistic (complex) conditions.

Since we have shown that selection of indi-
vidual projects to go in a capital budget under
uncertainty by means of “risk-discount” rates
(or by the so-called “cost of capital”) is funda-
mentally in error, we should probably note that
the decision criteria given by the solutions of
equation (36) [and the acceptance condition (37)]
— which directly involve the means and vari-
ances of present values computed at the riskless
rate — do have a valid counterpart in the form
of a “required expected rate of return.” Specifi-
cally, if we let [SH ;] represent the entire bracket
in equation (37), and divide through by the
original cost of the project H ;x(®, we have
(38) HpW/Hp® = rp> r*+ o [SH ol /Hp .

Now the ratio of the expected end-of-period
present value H ) to the initial cost H j(©—
i.e. the left side of (38), which we write 7 x— is
precisely (the expected value of) what Lutz
called the net short term marginal efficiency of
the investment [13 p. 159]. We can thus say that
the minimum acceptable expected rate of return on.
a project is a (positively sloped) linear function
of the ratio of the project’s aggregate incremental
present-value-variance-covariance (ZH x) to its
cost H;u®. The slope coefficient is still the
“market price of dollar risk”’, v, and the intercept
is the risk-free rate 7*. (It will be observed that
our “accept-reject” rule for individual projects
under uncertainty thus reduces to Lutz’ rule
under certainty — as it should — since with
certainty the right-hand ratio term is zero.) To
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avoid misunderstanding and misuse of this rela-
tion, however, several further observations must
be emphasized.

a) Equation (38) — like equation (37) from
which it was derived — states a necessary condi-
tion of the (Kuhn-Tucker) optimum with respect
to the projects selected. It may validly be used
to choose the desirable projects out of the larger
set of possible projects if the covariances among
potential projects H;urxo are all zero.5* Other-
wise, a programming solution of equaiion set (36)
is required®3 to find which subset of projecis H i
satisfy either (37) or (38), essentially because the
total variance of any project [ZH ] is dependent
on which other projects are concurrently included
in the budget.

b) Although the risk-free rate r* enters equa-
tion (38) explicitly only as the intercept [or
constant in the linear (in)equation form], it must
be emphasized again that it also enters implicitly
as the discount rate used in computing the means
and variances of all present values which appear in
the (in)equation. In comsequence, () any shift in
the value of 7* changes every term in the function.
(#3) The changes in HVj and ZH, are non-
linear and mnon-proportional to each other.t*
Since (7i2) any shift in the value of 7* changes
every covariarice in equation (36a) non-proportion-
ately, (i) the optimal subset of projects 7* is not
tnvariant to a change in the risk-free rate r*.
Therefore (v), in principal, any shifi in the value
of r* requires a new programming solution of the
entire set of equations (36).

¢) Even for a predetermined and fixed #*, and
even with respect only to included projects, the
condition expressed in (38) is rigorously valid only
under the full set of simplifying assumptions
stated at the beginning of this section. In addi-
tion, the programming solution of equation (36),
and its derivative property (38), simultaneously
determines both the opiimal composition and the
optimal size of the capital budget only under this
Jull set of simplifying assumptions. Indeed, even

82 Note that covariances Hjo with existing assets need not
be zero since they are independent of other projects and may
be combined with the own-variance Hj;.

83 In strict theory, an iterative exkhaustive search over all
possible combinations could obviate the programming proce-
dure, but the number of combinations would be very large
in practical problems, and economy dictates programming
methods.

64 This statement is true even if the set of projects j* were

invariant to a change in 7* which in general will not be the
case, as noted in the following text statement.

if the twin assumptions of a fixed riskless rate r*
and of formally unlimited borrowing oppor-
tunities at this rate are retained®s, but other
assumptions are (realistically) generalized —
specifically to permit expected returns on new
investments at any time to depend in part on
investments made in prior periods, and to make
the “entity value” in part a function of the
finance mix used — then the (set of) programming
solutions merely determines the optimal mix or
composition of the capital budget conditional on
each possible aggregate budget size and risk.%¢
Given the resulting “investment opportunity
function” — which is the three-dimensional
Markowitz-type envelope of efficient sets of
projects — the optimal capital budget size and
risk can be determined directly by market
criteria (as developed in [11] and [12])¢7 but will
depend explicitly on concurrent financing deci-
sions (e.g. retentions and leverage).t#

VI — Some Implications of More Relaxed
Assumptions

We have come a fairly long way under a
progressively larger set of restrictive assump-
tions. The purpose of the exercise has not been
to provide results directly applicable to practical
decisions at this stage — too much (other than
uncertainty per se) that matters greatly in prac-

% If these assumptions are not retained, the position and
composition of the investment opportunity function (defined
immediately below in the text) are themselves dependent
on the relevant discount rate, for the reasons given in the
“sixth” point above and the preceding paragraph. (See also
Lutz [13 p. 160].) Optimization then requires the solution
of a much different and more complex set of (in)equations,
simultaneously encompassing finance-mix and investment mix.

6 This stage of the analysis corresponds, in the standard
“theory of the firm,” to the determination of the optimal mix
of factors for each possible scale.

871 should note here, however, that on the basis of the
above analysis, the correct marginal expecied rate of return
for the investment opportunity function should be the value
of 7;* [See left side equation (38) above] for the marginally
included project at each budget size, i.e. the ratio of end-of-
period present value computed at the riskless rate 7* to the
project cost — rather than the different rate (generally used
by other authors) stated in [12, p. 54 top]. Correspondingly,
the relevant average expected return is the same ratio computed
for the budget as a whole. Correspondingly, the relevant
variance is the variance of this ratio. None of the subsequent
analysis or results of [12] are affected by this corrected specifi-
cation of the inputs to the investment opportunity function.

8 This latter solution determines the optimal point on the
investment opportunity function at which to operate. The
optimal mix of projects to include in the capital budget is that
which corresponds to the optimal point on the investment
opportunity function.
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tice has been assumed away — but rather to
develop rigorously some of the fundamental
implications of uncertainty as suck for an
important class of decisions about which there
has been much confusion in the theoretical litera-
ture. The more negative conclusions reached —
such as, for instance, the serious distortions
inherently involved in the prevalent use of a
“risk-discount rate” or a ‘‘company-risk-class”
“cost-of-capital” for project selection in capital
budgeting — clearly will hold under more general
conditions, as will the primary role under uncer-
tainty of the risk-free rate (whether used to calcu-
late distributions of present values or to form
present values of certainty-equivalents). But others
of our more afhirmative results, and especially the
particular equations developed, are just as clearly
inherently conditional on the simplifying assump-
tions which have been made. While it would be
out of place to undertake any exhaustive inven-
tory here, we should nevertheless note the impact
of relaxing certain key assumptions upon some
of these other conclusions.

The particular formulas in sections II-V
depend ¢nter-alia on the Separation Theorem and
each investor’s consequent preference for the
stock mix which maximizes 6. Recall that in
proving the Separation Theorem in section I we
assumed that the investor could borrow unlimited
amounts at the rate * equal to the rate on savings
deposits. Four alternatives to this assumption
may be considered briefly. (1) Borrowing Limits:
The Theorem (and the subsequent development)
holds provided that the margin requirements turn
out #ot to be binding; but if the investor’s utility
function is such that, given the portfolio which
maximizes 6, he prefers a w greater than is per-
mitted, tken the Theorem does not hold and the
utility function must be used explicitly to deter-
mine the optimal stock mix.*? (2) Borrowing rate
r** greater than “lending rate” r*: (a) If the
max 6 using r* implies a w < 1, the theorem
holds in original form; (b) if the max 6 using r*
implies w > 1 and (upon recomputation) the
max 6 using 7** in equations (3b), (7) and (8)
implies w > 1, the theorem also holds but r**

8 See appendix, note III.

(rather than r*) must be used in sections II-V;
(¢) if max 6 using 7* implies w > 1 and max 6
using 7** implies w < 1, then there will be no
borrowing and the utility function must be used
explicitly to determine the optimal stock mix.7°
(3) Borrowing rate an increasing function of lever-
age (w — 1): The theorem still holds under
condition (2a) above, but if max 6 using 7*
impliesw > 1 then the optimal mix and the optimal
Sfinancing must be determined simultaneously using
the utility function explicitly.” (4) The latter
conclusion also follows immediately #f the borrow-
ing rate is not independent of the siock mix.

The qualitative conclusions of sections II and
IIT hold even if the Separation Theorem does not,
but the formulas would be much more complex.
Similarly, the stock market equilibrium in sec-
tion IV— and the parameters used for capital
budgeting decisions in section V — will be altered
if different investors in the market are affected
differently by the “real world” considerations in
the preceding paragraph (because of different
utility functions, or probability assessments), or
by differential tax rates. Note also that even if
all our original assumptions through section IV
are accepted for investors, the results in section V
would have to be modified to allow for all real
world complications in the cost and availability
of debt and the tax treatment of debt interest
versus other operating income. Finally, although
explicitly ruled out in section V, it must be re-
called that “limited liability,” legal or other in-
stitutional restrictions or premiums, or the pres-
ence of “market risk” (as distinct from default
risk) on corporate debt, are sufficient both to make
the optimal project mix in the capital budget
conditional on the finance mix (notably retentions
and leverage), and the finance mix itself also
something to be optimized.

Obviously, the need for further work on all
these topics is great. The present paper will have
succeeded in its essential purpose if it has rigor-
ously pushed back the frontiers of theoretical
understanding, and opened the doors to more
fruitful theoretical and applied work.

70 See appendix, note IV.
71 See appendix, note V.
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APPENDIX

Note I — Alternative Proof of Separation
Theorem and Its Corrolaries

In this note, I present an alternative proof of the
Separation Theorem and its corrolaries using utility
functions explicity. Some readers may prefer this
form, since it follows traditional theory more closely.

Let 5 and o, be the expected value and variance of
the rate of return on any asset mixture and A, be the
amount of the investor’s total net investment. Given
the assumptions regarding the market and the investor,
stated in the text, the investor will seek to maximize
the expected utility of a function which can be written
in general form as
(1) E[U(Ad, Adoay)] = U(Aed, Aoay),
subject to his investment opportunities characterized
by the risk-free rate r*, at which he can invest in savings
deposits or borrow any amount he desires, and by the
set of all stock mixes available to him, each of which
in turn is represented by a pair of values (7, o,). Our
assumptions establish the following properties’ of the
utility function in (1”):

6[7/637 = Ao[jl > o, aﬁ/ady = AoUz < o

(a) 9
&
Also, with the assumptions we have made,? all
available stock mixes will lie 7% a finite region all parts
of which are strictly to the right of the vertical axis
in the o,, 7 plane since all available mixes will have
positive variance. The boundary of this region will be
a closed curve’ and the region is convex.”® Moreover,
since U, > o and U, < o in (1a’), all mixes within this
region are dominated by those whose (g, #) values lie
on the part of the boundary associated with values of
7 > o, and for which changes in o, and 7 are positively
associated. This is Markowitz’ Efficient Set or “E-V”’
Frontier. We may write its equation as

dzy
dao,?

> o.

= —U,/U, > o;

72 For formal proof of these properties, see Tobin, [21],
Pp- 72-77.

78 Specifically, that the amount invested in any stock
in any stock mix is infinitely divisible, that all expected
returns on individual stocks are finite, that all variances are
positive and finite, and that the variance-covariance matrix
is positive-definite.

74 Markowitz [14] has shown that, in general, this closed
curve will be made up of successive hyperbolic segments which
are strictly tangent at points of overlap.

76 Harry Markowitz, [14], chapter VII. The shape of the
boundary follows from the fact that the point corresponding
to any mix (in positive proportions summing to one) of any
two points on the boundary lies to the left of the straight line
joining those two points; and all points on and within the
boundary belong to the set of available (g7, 7) pairs because any
such point corresponds to an appropriate combination in
positive proportions of at least one pair of points on the
boundary.

76 Note that the stated conditions on the derivatives in

(2) 7 =f(a), f'(e) >0, f'(er) <o.

Substituting (2’) in (2) and (3) in the text, we find
the first order conditions for the maximization of
(1) subject to (2), (3), and (2’) to be given by the
equalities in
(3¢") oU/ow =U,(F —r*) + Use, 2 0.

(3b") 8U/de, = Uwf' (¢) + Usw Z o.

which immediately reduce to the two equations [using
(3a) from the text]

(4) 6 ==UU: =/ (ar).

Second order conditions for a maximum are satisfied
because of the concavity of (1”) and (2’). The separa-
tion theorem follows immediately from (4’) when we
note that the equation of the first and third members
0 =f" (o) is precisely the condition for the maximization™
of 6, since

(Sa/) _g_ - (4 [fl (”r)l 2_ [7 —r¥] =fl (0'73 — 0
, 020 _ arf (ar) +[f" (o) — 6] — [’ (o) — 6]
S FTPSE

={" (a,;)/0r < o forall e, > o.

A necessary condition for the maximization of (1”) is
consequently the maximization of 6 (as asserted), which
is independent of w. The value of (— U,/U;), however,
directly depends on w (for any given value of 6), and
a second necessary condition for the maximization of U
is that w be adjusted to bring this value (— U,/U,) into
equality with 6, thereby satisfying the usual tangency
condition between utility contours and the market
opportunity function (3) in the text. These two
necessary conditions are also sufficient because of the
concavity of (1’) and the positive-definite property of
the matrix of risk-investment opportunities. Q.E.D.

Note I1

) Indifference Contours Between x; and o2
When all 4;; are Constant

The conclusion that the indifference contour between
Z:; and the variance o;?is linear in the general case when
all covariances os; are held constant can best be estab-
lished by totally differentiating the equilibrium condi-
tions (12) in the text [or the equivalent set (22a) re-
stricted to the m’ stocks held in the portfolio] which
yields the set of equations

(2’) hold even in the exceptional cases of discontinuity.
Markowitz [14], p. 153.

77 This conclusion clearly holds even in the exceptional
cases (noted in the preceding footnote) in which the derivatives
of r = f(or) are not continuous. Equation (3a’) will hold as
an exact equahty because of the continuity of the utility
function, glvmg 6 = — U,/U:. By equation (3b” '), expected
utility U increases with o, for all f* (¢) = — Uz/ U, = 6, and
the max o, consistent with f”(¢) = 6 maximizes 6 by
equation (5a”).
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)\0 0’12 dhlo + )\0 ag12 dhzo + PR + )\0 g1s dhio +
e N0 gy By +%d)\°=o

6) Naii%dhi® 4 Noidh® + . ... + Noi2dh0 +

cove F Noopprdhy,© -I-%d)\" =dx; — Nhide:?

Noapndh® 4+ Nopradhy® + . ... 4 Naprdhi® +
coee + N2 dh, 0 + %’dxo =0

Ah® +dh® +.... +dhO+.... + dhy? =0
Denoting the coefficient matrix on the left by H, and
the ¢, jt* element of its inverse by H‘, we have by
Cramer’s rule,

(6a’) dhi® = (dx; — \°h;%doy?) H¥.

Since H is non-singular, %;° will be constant along an
indifference contour if and only if

(6b") dx; = A%h%doi.

The indifference contour is strictly linear because the
slope coefficient A%.° is invariant to the absolute levels
of #; and ¢:? when 4;° is constant, as may be seen by
noting that

(66') AN = (d:f; — A0 f;0 da.'z) Hio

so that

(6d") dhi®=0—dN" =0,

when only & and o.? are varied. Moreover, any pair of
changes d#; and d¢:2 which hold d#:° = o by (6a’ and 3’)
imply #no change in the relative holding #;° of any other
security, since dk,° = (d%: — \° hi®de:?) H'i =o for all
7 # 1 when dh;° = o. Consequently, all pairs of values
of &; and o:? along the linear indifference contour which
holds #%:° fixed at some given level rigorously imply that
the proportionate mix of all other stocks in the portfolio
is also unchanged — as was also to be shown.

b) Indifference Contours Between x; and o;
When p Constant

If the equilibrium conditions (12) are differentiated
totally to determine the indifference contours between
#; and ¢, the left-hand side of equations (6”) above will
be unaffected, but the right side will be changed as
follows: In the 7t equation

dZi — N [2h:i% i — Zj«ihi%jpis] dai =

dx; — N\ (hi%e; — %i/agi)dai
replaces d&; — \%.%a:?; the last equation is unchanged;
and in all other equations —\%:;%;pijdo;s replaces o.
We then have

(7a")  dhi® =[dxi — N\ (hi'0s — %/ i) dai] H¥
— N0 2 jsioj pij H dos;
(70")  dh;* =[d&; — N\° (hi%ci — %i/os) doi) HY

— N%;® Ty i 0k pix Hi® dai;
A\ =[d&; — N\ (hi%0s — %ifoi) dos] HNO
— Nk Bg i ox pix H " dos.

(7¢)

Clearly, in this case, dhi® = o does not imply dk;° = o,
nor does it imply dA°® =o.

Note III — Borrowing Limits Effective

In principle, in this case the investor must compute
all the Markowitz efficient boundary segment joining M
(which maximizes 6 in figure 1) to the point N corre-
sponding to the greatest attainable 7. Given the fixed
margin w, he must then project all points on this original
(unlevered) efficient set (see equation 2’ above) to
determine the new (levered) efficient set of (o, 7) pairs
attainable by using equations (2a, ) in the text; and he
will then choose the (o,, 7) pair from this latter set
which maximizes utility. With concave utility functions
this optimum (o, 7) pair will satisfy the standard opti-
mizing tangency conditions between the (recomputed)
efficient set and the utility function. The situation is
illustrated in figure 2.

i 4

— /gfriciem with no borrowing
-
M-<Efficient point with unlimited borrowing

Efficient with 43% borrowing (70%
margin)

gy
Ficure II

Note IV — Borrowing Rate »** is Higher
than Lending Rate »*

The conclusions stated in the text are obvious from
the graph of this case (which incidentally is formally
identical to Hirschleifer’s treatment of the same case
under certainty in [7].)

_4
y
w> |
wr | _—— (borrow)
p
* (I end)

Ficure III

The optimum depends uniquely upon the utility func-
tion if it is tangent to the efficient set with no borrowing
in the range MM'.

Note V — Borrowing Rate is Dependent
on Leverage

With r** = g(w), g’(w) > o, and when the optimum
w > 1 so that borrowing is undertaken, 6 itself from
equation (3) in the text becomes a function of w, which
we will write 6 (w). The optimizing equations, corre-
sponding to (3a, b) above in note I, then become
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(6a’) oU/ow =Ui[(r — r**) — wg’ ()] +Us0, 20
60") 8U/d0, = U wf' (o) + Usw = 0
which reduce to the two equations
(7)) 6@ —wg’ W)/e, = — Us/Ur =f(0).

The equation of the first and third members
0 (w) — wg' (w)/o, =f" () is no longer equal to the
maximization of 6 itself, nor is the solution of this
equation independent of w which is required for the
validity of the Separation Theorem. It follows that
the selection of the optimal stock mix (indexed by 6)
and of w simultaneously depend upon the parameters of
the utility function (and, with normal distribution, also
upon its form). Q.E.D.
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